Suppression of adjuvant arthritis in rats by boar seminal immunosuppressive fraction

L. Veselsky¹, B. Zelezná¹, J. Dostál², M. Stancíková³, K. Svík³, R. Rokyta⁴, J. Jurcovicová⁴,⁵

¹Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague;
²Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libchov, Czech Republic;
³Research Institute of Rheumatic Diseases, Piešťany, Slovak Republic,
⁴Department of Normal, Pathological and Clinical Physiology, Third Medical Faculty of Charles University, Prague, Czech Republic,
⁵Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic

Abstract

Objective
The effect of the immunosuppressive fraction of boar seminal vesicle fluid (ISF) was tested on the manifestation of adjuvant arthritis (AA) in rats.

Methods
The inhibitory effect of ISF on mitogen-stimulated proliferation of rat lymphocytes was evaluated by immunoassay using bromodeoxyuridine incorporation. Adjuvant arthritis was induced in male Long Evans rats with Mycobacterium butyricum in adjuvant. ISF was administered at the time of the induction of arthritis. At the time of maximal manifestation of the disease, the hind paw swelling and thymus weight were estimated. IgM and IgG in the rat blood sera were quantified by sandwich ELISA. Serum corticosterone was analyzed by radioimunoassay. Serum NO₂⁻/NO₃⁻ concentrations were estimated by diazotation. Serum albumin was measured spectrophotometrically. The expression of IL-6 mRNA in peritoneal macrophages was estimated by dot-blot hybridization.

Results
Treatment of arthritic rats with ISF attenuated hind paw edema. The production of IgG subclasses dropped in ISF-treated AA rats. The thymus mass and serum albumin concentration were partially restored due to the ISF effect. Serum corticosterone as well as NO₂⁻/NO₃⁻ concentrations were reduced by the ISF effect. The expression of IL-6 in peritoneal macrophages was inhibited in AA rats after ISF treatment.

Conclusion
ISF attenuated the manifestation of AA in rats and mitigated the inflammation. Immunoglobulin production was most probably inhibited by the decreased proliferation of B lymphocytes.

Key words
Seminal immunosuppressor, adjuvant arthritis inhibition, IgM and IgG subclasses, anti-inflammatory effect.
Introduction

Rheumatoid arthritis (RA) is a systemic disease characterized by chronic joint inflammation, enhanced acute phase response and hypertrophy of the synovial tissue, which lead to bone and joint destruction. General agreement exists that the pathogenic process of RA is mediated by various T cell types infiltrating the synovial sub-lining cell layer and synovial joint fluid (1). Accumulation of T cells in the synovial tissue, their clone association with antigen-presenting cells, activation of B lymphocytes and the following overproduction of immunoglobulins suggest that RA is a typical autoimmune disease (2).

Adjuvant arthritis (AA), a rat model of RA, is developed after an injection of bacteria suspended in adjuvant (3). An excessive immune reaction follows accompanied by a chronic enhancement of corticosterone secretion that is necessary for survival of the animals (4). Several cytokines and chemokines are involved in a AA progress. TNFα, IL-1 and IL-6 are linked to the proliferation of synoviocytes (5) leading to synovial hyperplasia. TNFα and IL-1 seem to be connected with early inflammatory events, IL-6 with the late phase of AA (6). Furthermore, inflamed synovial membrane and articular chondrocytes produce high levels of NO², which regulates some inflammatory processes (7).

Some seminal proteins have immunosuppressive effects such as impaired generation of cytotoxic T cells, lowered response of B cells to a variety of antigens (8, 9), decreased cytotoxicity of natural killer cells (10) and inactivation of human anti tumor effector cells (11). Recently, we have isolated the immunosuppressive fraction (ISF) from boar seminal vesicle fluid (12). ISF was identified as a tight complex of two major seminal plasma proteins – PSP I and PSP II (13), both of known primary structure. We established ISF immunosuppressive effect on the antibody response to keyhole limpet hemocyanin, boar epididymal spermatozoa and bacteria (14, 15). After intraperitoneal or rectal administration to mice, ISF was detected in white blood cells (WBC). The number of lymphocytes but not granulocytes in blood was decreased by the ISF effect (12). ISF was detected on spleen B cells from ISF-treated mice, as well, and mitogen-stimulated proliferative activity of these cells was significantly lowered. However, ISF was not found on T cells and did not affect mitogen-induced proliferation of T cells (16). In the present study, we tested the influence of ISF on the progression of AA development.

Materials and methods

Isolation of ISF from boar seminal vesicle fluid

The usual purification procedure was followed, only the reverse phase HPLC was omitted. The fraction with immunosuppressive activity previously tested on porcine and mouse lymphocytes was used in this study (12).

Series 1: ISF action on mitogen-stimulated proliferation of rat splenocytes

Three male Wistar rats were injected intraperitoneally with 300 g of ISF in 0.5 ml PBS on days 0, 1 and 2. Three controls received saline only. On day 5 the animals were sacrificed and their spleens were excised and homogenized. The cell suspension was passed through 110 μ mesh and washed 3 times with saline. After centrifugation at 400g for 5 min, the number of cells was adjusted to 2 x 10⁵ cells/ml by RPMI-1640 medium (Serva, Heidelberg, Germany) supplemented with 10% fetal calf serum, L-glutamine (2 mmol/l), penicillin (100 iu/ml) and streptomycin (0.1 g/ml). Triplicate cultures of splenocytes with either 5 mg of PWM (Sigma) or 10 g of PHA (Wellcome Laboratories, Dartford, UK) were incubated in 100 μ volumes on microtiter plates (Nunc, Raskilde, Denmark) at 37°C for 72 h. Lymphocyte proliferation was determined by bromodeoxyuridine incorporation. The instructions provided with the kit (Boehringer, Mannheim, Germany) were followed.

Series 2: AA in rats treated with ISF

Male Long Evans rats (bred in the Department of Normal, Pathological
and Clinical Physiology, Third Medical Faculty of Charles University, Prague) 6 to 7 weeks old, weighing about 160 g were used. Four to 5 rats were housed per cage in an animal room with a 12 h light/dark cycle, controlled humidity and temperature. They had free access to water and a standard pellet diet. The animals were treated with accordance with the national law No. 167/1993 on the use of laboratory animals.

Heat-killed *Mycobacterium butyricum* (Difco, MI, USA) was suspended in paraffin oil, saline and Tween 80 (1: 1: 0.08) to the concentration of 5 mg/ml. AA was induced to the animals by a single intra dermal injection of 50 μl of the suspension at the base of the tail. The study consisted of three experimental groups. Animals in group 1 (12 rats) received no treatment and served as negative controls. Animals in group 2 (14 rats) were injected with *Myco-bacterium butyricum* suspended in adjuvant to induce AA (positive controls). Animals in group 3 (14 rats) received 8 doses of ISF intraperitoneally (each dose of 3 mg of ISF in 1 ml of sterile PBS per 1 kg of body weight), on days -3, -2, -1 with respect to the day of AA induction (day 0) and then on days 3, 6, 9, 12, 15 and 18. On day 22, the rats were sacrificed by decapitation. Blood samples were collected, and the serum was separated by centrifugation and stored at -20°C. Hind paw swelling was measured volumetrically. The thymus was dissected and weighed. Peritoneal macrophages were harvested by washing the abdominal cavity with sterile saline, followed by pelleting at 800 xg for 10 min. The macrophages were resuspended in sterile saline and centrifuged at 4000 xg for 30 s. The pellets were used for extraction of total RNA.

Quantification of IgM and IgG sub-classes. The concentrations of IgG1, IgG2a, IgG2b, IgG3, and IgM in the rat sera collected 22 days after the induction of AA were estimated by sandwich ELISA (17). Microtiter wells were coated with 100 μl of affinity purified sheep anti-rat IgG or IgM (2 μg/ml PBS, Binding Site, Birmingham, UK) and incubated at 4°C overnight. The coated wells were blocked with PBS-Tween (PBS containing 0.1 % Tween 20, 1% bovine serum albumin, 1% bovine serum) for 1 h at 37°C. For the specific immunoglobulin class determinations, the rat sera were diluted 1:10 for IgG, 1:100 for IgG2a, 1:200 for IgG2b and 1:500 for IgM. The plates were incubated at 4°C overnight, washed and covered with affinity purified sheep antibodies to particular rat immunoglobulin subclasses conjugated with horseradish peroxidase diluted 1:3000 at 37°C for 1 h. Bound peroxidase activity was detected using H2O2 as a substrate and o-phenylenediamine as a chromophore. The absorbance at 492 nm was measured by the ELISA reader Spectra II (SLT - Labinstruments, Salzburg, Austria).

Each assay was done in duplicate and the concentrations of particular immunoglobulin subclasses were determined using the calibration curves for standard immunoglobulins (Binding Site, UK).

Corticosterone assay. Serum corticosterone was extracted with methylene chloride and analyzed by radioimmunoassay using specific antibodies (Sigma Aldrich, Deisenhofen, Germany) and [1,2,6,7-3H] - corticosterone (Amersham, Little Chalfont, UK). Free and bound hormone was separated by dextran-coated charcoal.

Serum nitrate assay. Serum NO3/NO2 were estimated after the reduction to nitrate followed by diazotation using the Griess’ reagent according to the method of Cortas and Wakiid (18).

Serum albumin assay. Serum albumin was measured spectrophotometrically using Albumin (BCGSYS 1 BMI Hitachi kit, Boehringer, Germany) based on the formation of albumin bromcresol green complex.

Expression of IL-6 mRNA. IL-6 mRNA was estimated by dot-blot hybridization. Total RNA was extracted from the pelleted peritoneal macrophages by the guanidinium isothiocyanate method using RNAZOL™ (Cinna Biotech, TX, USA). Samples of RNA were denatured in a mixture of 20 x SSC (0.15 M NaCl/0.015 M trisodiumcitrate) and 37% formaldehyde by heating to 60°C for 15 minutes according to White and Bancroft (19). Samples of 10 μg were immobilized on Hybond-N+ membrane (Amersham, UK) using 15x SSC solution in a dot-blot apparatus (BIO-RAD, CA, USA).

The membrane was baked at 80°C for 30 minutes. Hybridization with the random-primed (Prime-a-Gene® System, Promega, WI, USA) cDNA encoding rat IL-6 (provided by Dr. Bryan Sangelo, University of Nevada, Las Vegas, USA) was performed using the Quick-Hyb® hybridization solution (Stratagene Cloning Systems, La Jolla, CA, USA) according to the instruction manual for 2 h. The blot was washed as recommended by the instruction manual and exposed to an X-ray film (Hyperfilm™, Amersham, UK) at -70°C in an autoradiography cassettes with an intensifying screen for 7 days. Then the blot was stripped by 2 washes in 0.1 x SSC/0.5% SDS at 95°C for 20 minutes and rehybridized for random-primed cDNA encoding rat muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The probe originally cloned by Fort et al. (20) was amplified in the Laboratory for Diabetes and Nutrition IEE SAS Bratislava, Slovak Republic.

The hybridization and autoradiography procedures were performed according to the same protocol as for IL-6. The blot was autoradiographed for 20 h. The autoradiograms were photographed with a digital camera and analyzed by the Electrophoresis Documentation and Analysis System (Eastman Kodak, NY, USA). The integrated intensity was determined for each spot and IL-6 mRNA was expressed in densitometric units as the ratio of IL-6 to GAPDH intensity.

Statistical analysis
The results were analyzed by one way ANOVA followed by Dunn’s test. The significance of the differences in concentrations of particular immunoglobulins between experimental and control groups were analyzed by Student’s t-test. Values of p < 0.05 are considered as statistically significant.

Results
Isolation of ISF
One ml of seminal vesicle fluid yielded 100-200 mg of ISF.
Series 1. Suppression of mitogen-stimulated proliferation of rat splenocytes by ISF

In splenocytes isolated from ISF-treated animals, the PHA-stimulated proliferative activity was reduced by 47% (p < 0.01) and the PWM-stimulated proliferative activity was lowered by 51% (p < 0.01) compared to controls (Table I). ISF seems to impede the development of humoral immune responses by lowering B lymphocyte proliferation and inhibiting the antibody response (16).

Series 2. Effect of ISF on the production of IgM and IgG subclasses in rats with AA

Immunoglobulin concentrations in AA positive controls and naive rats did not differ significantly. However, the production of IgG1, IgG2a, and IgG2b in AA rats treated with ISF dropped dramatically compared with AA animals. No difference between ISF-treated AA rats and AA positive controls was found for IgG3c and IgM concentrations (Fig. 1).

Attenuation of AA manifestation by ISF

Arthritic rats showed the first signs of edema on day 10 of the disease, which fully developed by day 22. In rats treated with ISF the amounts of edema were profoundly reduced, though not totally prevented. The loss of thymus mass observed in arthritic rats was significantly recovered after the administration of ISF (Fig. 2). The serum levels of the negative acute phase reactant albumin were reduced in AA animals and were partially restored by the ISF treatment. Serum nitrate concentrations indicating NO- radical production were enhanced in AA rats compared to naive animals, ISF treatment attenuated NO- production (Fig. 3). A similar picture was given by the anti-inflammatory hormone corticosterone. High corticosterone levels observed in arthritic rats were suppressed by the ISF treatment. The expression of IL-6 in peritoneal macrophages did not differ between naive and AA animals. However, it was inhibited in AA rats treated with ISF (Fig. 4).

Discussion

In this study, the immunosuppressive and anti-inflammatory actions of ISF in the pathogenesis of adjuvant arthritis are presented. The reduced mitogen-stimulated proliferative activity of WBC from rats treated with ISF is in agreement with our previous findings in mice (12) and suggests that the ISF effect is not species specific. ISF seems to impede the development of humoral immune responses by lowering B lymphocyte proliferation and inhibiting the antibody response (16).

Moreover, this study evidenced the abrogated production of immunoglobulin subclasses IgG1, IgG2c, and IgG2b in ISF-treated AA rats. However, IgG2c...
and IgM were resistant to ISF treatment.

ISF deposition partly restored serum albumin levels, which is in line with the suppressed IL-6 expression in peritoneal macrophages in ISF-treated AA rats. As IL-6 is the cytokine accounting for induction of fever and acute phase response (21), its muted expression apparently took part in the reduction of inflammation. It has been shown lately that IL-6 deficient mice were less susceptible to the development of antigen induced arthritis and had remarkably reduced antibody production (22).

Pro-inflamatory cytokines released from activated lymphocytes were shown to enhance production of NO radicals (7). We suggest that ISF might reduce NO production by inhibiting the pro-inflammatory cytokines, which play a role in activating the hypothalamic-pituitary-adrenocortical axis. They may stimulate ACTH secretion by a direct action on the pituitary corticotrophs, but their predominant effect is activation of the hypothalamic regulatory neurons triggering secretion of ACTH and corticosterone (23). We assume that ISF attenuated production of pro-inflammatory cytokines that led to the inhibition of the hypothalamic regulatory pathways and lowered the corticosterone release. ISF partially restored arthritis-induced thymolysis.

Our results indicate that ISF inhibits the development of AA in rats. We suppose that the suppression of pro-inflammatory cytokines was followed by a muted acute phase response, NO production, and corticosterone release. Our previous results indicated that ISF treatment led to prolonged immunosuppression but not to a permanent tolerance to challenging antigens (14). We hypothesize that the prolonged immunosuppression was associated with the continual presence of ISF on WBC membranes. The normal immune response was restored in a relatively short time (weeks) after the ISF application had been ceased. The immunosuppressive fraction of boar seminal plasma may be considered a potent immunosuppressive component with no apparent side effects on long-term treated animals.

Acknowledgements

The authors than Mrs M. Hosková, Mrs. L. Košerová and Mrs. H. St’astná for their excellent technical assistance.

References

16. VESELSKY L, DOSTÁL J, HOLÁN V, SOUČEK J, ZELEZNA B: Effect of boar seminal

