Electronic multidimensional health assessment questionnaire (eMDHAQ): past, present and future of a proposed single data management system for clinical care, research, quality improvement, and monitoring of long-term outcomes

T. Pincus

Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA.

Theodore Pincus, MD

Please address correspondence to:
Dr Theodore Pincus,
Division of Rheumatology,
Rush University Medical Center,
1611 West Harrison Street, Suite 510,
Chicago, IL 60612, USA.
E-mail: tedpincus@gmail.com

Received and accepted October 5, 2016.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2016.

Key words: rheumatoid arthritis, multidimensional health assessment questionnaire (MDHAQ), routine assessment of patient index data (RAPID3), information technology, electronic medical record (EMR)

ABSTRACT

An MDHAQ/RAPID3 (multidimensional health assessment questionnaire/routine assessment of patient index data) was developed from the HAQ over 25 years, based on observations made from completion by every patient (with all diagnoses) at every routine rheumatology visit since 1980. Modification of the HAQ was viewed as similar to improving a laboratory test, with a primary focus on clinical value for diagnosis, prognosis, and/or management, as well as feasibility for minimal effort on clinical workflow. Rigorous attention was also directed to validity, reliability, other methodologic and technological considerations, but after clinical value and feasibility were established. A longer “intake” MDHAQ was introduced for new patients to record a complete past medical history - illnesses, hospitalisations, surgeries, allergies, family history, social history and medications. MDHAQ scales not found on the HAQ record complex activities, sleep quality, anxiety, depression, self-report joint count, fatigue, symptom checklist, morning stiffness, exercise status, recent medical history, social history and demographic data within 2 pages on one sheet of paper. An electronic eMDHAQ/ RAPID3 provides a similar platform to pool data from multiple sites. A patient may be offered a patient-administered, password-protected, secure, web site, to store the medical history completed on the eMDHAQ. This eMDHAQ would allow a patient to complete a single general medical history questionnaire rather than different intake questionnaires in different medical settings. The eMDHAQ would be available for updates and correction by the patient for future visits, regardless of electronic medical record (EMR). The eMDHAQ is designed to interface with an EMR using HL7 (health level seven) and SMART (Substitutable Medical Apps, Reusable Technology) on FHIR (Fast Healthcare Interoperability Resources), although implementation requires collaboration with the EMR vendor. Advanced features include reports for the physician formatted as a medical record note of past medical history for entry into any EMR without typing or dictation, and a periodic “tickler” function to monitor long-term outcomes with minimal effort of the physician and staff. Nonetheless, clinical use of an eMDHAQ should be guided primarily not by the latest technology, but by value and feasibility in clinical care, the same principles that guided development of the pencil-and-paper MDHAQ/RAPID3.

Introduction

A major milestone in rheumatology was publication in 1980 of two patient self-report questionnaires, the health assessment questionnaire (HAQ) (1) and arthritis impact measurement scales (AIMS) (2), sequentially in the same issue of Arthritis and Rheumatism (now Arthritis and Rheumatology). In the same year, 1980, the author assumed a new academic position with considerably greater clinical responsibilities than any previous position. An interest in clinical measurement had been kindled a decade earlier in development of a radioimmunoassay for DNA antibodies in systemic lupus erythematosus (SLE) for routine laboratories (3), which had been performed only in research settings at the time. Further serological research (4-6) resulted in a position as director of a clinical immunology laboratory.

The HAQ and AIMS appeared of possible value to improve routine clinical
care and outcomes, analogous to laboratory tests. The clinic receptionist was instructed to ask each patient to complete a HAQ or AIMS in the waiting area before seeing the rheumatologist. The receptionist was oriented to explain to patients that the questionnaire was to help the doctor provide the best care possible, not for “research” or to serve as an “intake” questionnaire to record a medical history, the primary previous experiences of patients, doctors, and staff with patient questionnaires. The HAQ was found more user-friendly. The only feasible method to avoid complicating workflow was for every patient, regardless of diagnosis, to complete a HAQ at every visit, rather than any effort to select certain patients to complete different questionnaires (or no HAQ) according to diagnosis or any criterion. Fortuitously, the HAQ was informative in most patients with all diagnoses. The explanation that the purpose of the questionnaire was to help the doctor provide the best care has been readily accepted by more than 20 receptionists over the years, who then explained this purpose to patients, almost all of whom completed the questionnaire. The doctor reviewed the questionnaire carefully, which requires only about 15 seconds, but provides considerable information concerning patient physical function, pain, and patient global estimate in far less time than a clinical interview. Patient questionnaire scores are quantitative, standard measures, similar to laboratory tests, extending components of a patient history from “subjective” (7) narrative descriptions to meet criteria for “scientific” data (8).

Availability of HAQ or AIMS data to the physician in the examination room facilitates doctor-patient communication to be directed to matters of greatest interest to the patient and/or the doctor. In general, if the staff and patients recognise that anything is important to the doctor, it is not difficult to implement, including a patient questionnaire. By contrast, if a patient is told that a questionnaire in routine care is collected for “research,” documentation, or any purpose other than to improve clinical care, most patients and staff members lose interest. It should be emphasised that patient questionnaire data are not regarded as a substitute for conversation between the doctor and the patient. On the contrary, questionnaire responses have always been regarded as a providing guidance to add considerable value to the conversation. For example, a pain score on a 0–10 visual analogue scale (VAS) of “1” versus “8” suggests different queries about pain intensity and character (9). Although the doctor knows considerably more about pathophysiology and treatment than the patient, the patient has more accurate knowledge concerning patient-experienced problems. Furthermore, of course, patient data require interpretation by the doctor, as with laboratory tests, as discussed below (10, 11).

Quantitative measures have been central to advances in diagnosis, prognosis, assessment of status, management, and description of outcomes of many chronic diseases over the last century, primarily from the laboratory and other high-technology sources (12). RA differs from many chronic diseases in that medical history information is regarded as far more prominent in diagnosis and management decisions in RA than laboratory tests or ancillary studies, according to a survey of 313 physicians (154 rheumatologists and 159 non-rheumatologists) (13). By contrast, clinical decisions in 7 other prevalent chronic diseases are dominated by other components of a clinical encounter, e.g., vital signs in hypertension, laboratory tests in diabetes, or ancillary studies in ulcerative colitis (13). RA was the only one of the 8 diseases in which a patient history accounted for more than 50% of clinical decisions in diagnosis and management (13).

Inclusion of patient questionnaires in routine care was given great impetus by an observation in 1982 that premature mortality rates in RA (14), with a natural history similar to hypertension and diabetes (15), were predicted significantly by functional disability on a patient questionnaire (14). Further, formal prospective studies indicated that patient questionnaire data were far more significant than any laboratory or imaging test in the prognosis of RA mortality (16), confirmed in many settings over the years (17). Recognition of the significance of physical function in the prognosis of severe RA outcomes of premature mortality (14, 17, 18) and work disability (14, 19) suggested that a patient questionnaire was not only a clinical tool for a better encounter, but also provided a target to improve prognosis, analogous to blood pressure in hypertension or serum haemoglobin A1C in diabetes (20). Completion of a HAQ by patients in the waiting area in routine care appeared as important as laboratory tests (21-23).

Modifications to improve the clinical value of the HAQ for patients and doctors were introduced on the basis of observations from regular completion in routine care by patients in the waiting area over 25 years, between 1980 and 2005, to develop a multidimensional HAQ (MDHAQ) (21) (Fig. 1). The strategy for modification reflected the author’s background in laboratory science, with a primary focus on clinical utility for diagnosis, prognosis, and/or management (4), analogous to development of laboratory tests (3), in which minor changes in, say, the pH or ionic strength of a buffer were not unusual without formal reports (5, 24). Modification of the HAQ to an MDHAQ is viewed in retrospect as an effort to implement continuous quality improvement (CQI) into routine clinical care, rather than a research agenda (21, 25, 26), introducing changes according to principles of a CQI “plan-do-study-act” strategy (21, 25-28) (Fig. 2).

This article updates previous reviews concerning the MDHAQ: the past - development of the MDHAQ from the HAQ in 1980-2005 (12, 29-32); the present - results supporting a rationale for the MDHAQ/RAPID3 (routine assessment of patient index data) at every visit in routine clinical care (22, 26, 33-37), and the future - available and projected features of an electronic MDHAQ/RAPID3 (eMDHAQ/RAPID3).

The Past: Development of MDHAQ with a focus on clinical value and feasibility within clinic workflow unlike usual patient questionnaire development

Development of the MDHAQ (21) in routine care with changes to improve
its value differed in many ways from development of most reported questionnaires in the rheumatology, general medical, and psychology literature (Table I). This information is presented in part to emphasise a guiding focus on clinical value and feasibility, as summarised below:

1. The primary goal of modifying the HAQ was to improve the encounter in routine care and outcomes, rather than to develop and report a new questionnaire for clinical research or clinical trials as seen for rheumatoid arthritis (RA) (38), osteoarthritis (39), psoriatic arthritis (40-44), systemic lupus erythematosus (SLE) (45-54), ankylosing spondylitis (55-61), vasculitis (62, 63), fibromyalgia (64), and others. Nonetheless, versions of the MDHAQ have been used in clinical trials (65, 66), and MDHAQ components of physical function, pain and patient global estimate were analysed in clinical trial data in order to validate a RAPID3 index to distinguish active from control treatments (67-72).

2. As noted, development of the MDHAQ is recognised as an effort to implement CQI into routine care, rather than a research agenda (21, 25, 26). The primary consideration was clinical value of information provided by the patient to the doctor that would affect clinical management and save time for both doctor and patient in shared decisions, analogous to laboratory tests. Nonetheless, many research observations have emerged from use of the MDHAQ, as availability of quantitative data in a long-term database facilitates many research studies and reports (8, 26, 36, 37, 73).

3. The CQI approach (27, 28), with attention to clinical value of content, feasibility and acceptability to patients and health professionals in addition to validity and reliability (38-43), by definition resulted in many changes over a 25 year period (from 1980-2005) according to a “plan-do-study-act” strategy (21, 25-28) (Fig. 2), which continues at this time. By contrast, the HAQ has remained unchanged over 36 years, although various modifications have been published (29-31, 74, 75).

4. All changes that were introduced and maintained on the basis of providing clinical information that contributed to better clinical decisions ultimately were analysed rigorously for psychometric validity and reliability (30, 31, 76, 77), although this testing generally occurred after use in routine care, unlike usual development of questionnaires.

5. Scores for physical function, pain and global status were viewed as “vital signs” for management of chronic rheumatic diseases (78-80). Scores were recorded in flow sheets (Fig. 4) which also include laboratory tests and medical data. Physical function scores are highly significant in the prognosis of mortality (14, 17, 18, 81-84) and work disability (14, 19, 85-88). Collection of physical function scores is regarded as analogous to collecting blood pressure or serum cholesterol in cardiovascular disease (15, 18, 89).

6. The second major consideration was feasibility, with minimal interference with clinic workflow, by having each patient complete the same questionnaire in the waiting area, with minimal staff support for most patients. Requests for help may be answered with the instruction on the questionnaire, “there are no right or wrong answers, please answer exactly as you think or feel,” (31). The MDHAQ should be available to the rheumatologist in the examination room, rather than completed by the patient in the examination room or after the visit, when the patient is anxious to leave, and the questionnaire would have no impact on care (23).

7. Attention to feasibility included maintenance of the questionnaire on two-sides of one piece of paper, so that when a new feature was added, such as a rheumatoid arthritis self-report joint count (RADAI) (90), fatigue visual analogue scale (VAS) (91) or symptom checklist (92, 93), some scales were deleted, such as queries about pain and satisfaction in daily activities (29) and an Arthritis Helplessness Scale of 15 items.

Table I. Development of multi-dimensional health assessment questionnaire (MDHAQ):

<table>
<thead>
<tr>
<th>Differences from development of most rheumatology questionnaires.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Development in routine care rather than in research setting, to facilitate doctor-patient communication and save time for both doctor and patient.</td>
</tr>
<tr>
<td>2. Implement continuous quality improvement (CQI) using “plan-do-study-act” strategy (21, 25, 26) rather than research design, although data may be of great value for research.</td>
</tr>
<tr>
<td>4. Rigorous analyses to document psychometric validity and reliability after recognition of clinical value and feasibility by doctor and acceptability by patient for routine care (30, 31).</td>
</tr>
<tr>
<td>5. Scores for physical function, pain, and patient global estimate viewed as analogous to laboratory tests – “vital signs” for care of people with chronic diseases (78-80), depicted in a flow sheet which also includes laboratory tests and medical data.</td>
</tr>
<tr>
<td>6. Requirement for feasibility and minimal interference with clinic workflow by having patient complete MDHAQ in waiting area, rather than in examination room or after visit, with minimal staff support needed for most patients (23), as self-report is most reliable (1).</td>
</tr>
<tr>
<td>7. Analyse, rather than dismiss, data that are discordant between patient and physician, as possible clues to diagnosis and management, e.g. distinguish fibromyalgia from RA (92, 96, 97).</td>
</tr>
<tr>
<td>8. Maintain MDHAQ on 2-sides of one piece of paper – addition of new measures for possible incremental clinical value, e.g. self-report joint count (90), fatigue (91), required deletion of valid and reliable measures of patient satisfaction (29), helplessness (94, 95).</td>
</tr>
<tr>
<td>9. Develop 4-page version in new patient intake questionnaire for past history – illnesses, surgeries, allergies, family history, social history, medications, etc. in standard format (26, 98).</td>
</tr>
<tr>
<td>10. Patient-friendly report to the patient, for review and so she/he may amend, correct, and update new information concerning medical history at encounter or for future encounters (99).</td>
</tr>
<tr>
<td>11. Entry of patient medical history information into database to improve documentation, with minimal effort on the part of the physician (77).</td>
</tr>
<tr>
<td>12. Report physician of patient self-reported past-history in a medical record format, available for possible entry into a medical record as entered data rather than narrative transcription (99).</td>
</tr>
</tbody>
</table>
(94) reduced to 5 times as a Rheumatology Attitudes Index (95). Although valid and reliable, the deleted scales were replaced for greater incremental information regarding management and prognosis within two pages.

8. Recognition that when patient-reported data did not agree with physician impressions, the data were not dismissed with a presumption that the physician was "correct," but rather that the patient data were "valid" and accurate, although clearly requiring interpretation by the rheumatologist, such as whether a high pain score is a result of inflammation, damage, or distress (11) or recognition of patterns of MDHAQ data as clues to distinguish fibromyalgia from RA (92, 96, 97).

9. The goal of providing useful clinical information efficiently led to development of a 4-page MDHAQ on 2 sheets of paper (Fig. 3), as a new patient intake questionnaire (26, 98). The 3rd page contains a traditional "past history," including illnesses, hospitalisations, surgeries, allergies, family history, and medications, for entry into a medical database. The 4th page includes a review of medications and requests for patient consents to be monitored periodically (every 3, 6 or 12 months), if she/he does not return to the same clinical setting, as well as for sharing her/his data with colleagues of the patient’s physician for medical research (26, 98).

10. A patient-friendly report to the patient for her/him to amend, correct, and update new information concerning demographic data, medical history and medications (99) (Fig. 5), to be available to health professionals at the next visit. This feature has now been re-incorporated into an electronic version of MDHAQ presented later in this article.

11. Value to the physician to save time at each visit also was an important consideration. Examples include:
 a) provision of scores for physical function, pain, global status, fatigue in flow-sheets for comparisons over time (Fig. 4),
 b) pertinent negative information in the patient history to help improve doctor-patient conversation (77),
 c) adding documentation with minimal effort on the part of the physician in patients with all rheumatic diseases (22, 31, 76, 100-102).

12. Physician reports of the patient’s self-reported past medical history on
Fig. 3. 4-page new patient MDHAQ/RAPID3 intake questionnaire for past history - illnesses, surgeries, allergies, family history, social history, medications, etc. in standard format (26, 98)
The MDHAQ compared to the HAQ

As noted above, modification of the HAQ (1) to the MDHAQ (30, 31) is now recognised as a continuous quality improvement (CQI) program in routine care, rather than a research program (21, 25, 26). Both the HAQ and MDHAQ are simple 2-page questionnaires on one sheet of paper which score physical function, pain and patient global estimate, the 3 patient self-report measures among the 7 measures in the RA core data set (105), as quantitative data rather than as narrative descriptions. Both questionnaires (Table II) are completed by a patient in 5–10 minutes, and both have templates for quantitative scores. The HAQ includes 20 activities, in 8 categories of 2 or 3 activities each, for a total of 20 activities. The MDHAQ initially included 8 activities, 1 from each of the 8 HAQ categories, which was found to provide similar information to the HAQ, but allow space for additional scales (29). In the 1990s, it was noted that many patients had scores of “zero” on the HAQ and modified HAQ (MHAQ) (29), suggesting “normal” physical function, despite reporting ongoing limitations to perform more difficult physical activities (floor effects) (31). Therefore additional complex activities were added as an MDHAQ (31), ultimately 2 activities, “walk 2 miles or 3 kilometers” and “participate in sports and recreation as you would like,” for a total of 10, which facilitated scoring and provided values similar to the HAQ (30, 31, 106). The VAS for pain and patient global estimate on the MDHAQ are in a 21-circle format, rather than a 10-cm line as on the HAQ (107) (Fig. 1), which facilitates completion by patients and scoring by doctors and staff.

RAPID3 is an index of only the 3 RA Core Data Set patient self-report measures of physical function, pain and patient global estimate (69, 108). RAPID3 is calculated easily on the pencil and paper MDHAQ, using a scoring template for physical function (FN) to convert the sum of ten 0-3 scores (range 0–30) to a 0–10 physical function score through division by 3, and small boxes to record the FN score, and VAS scores for pain (PN) and patient global estimate of status (PATGL) (each scored 0–10). The sum of these three variables is the composite RAPID3 score (0–30). RAPID3 on an MDHAQ requires about 5 seconds to score, compared to 42 seconds for the HAQ, and almost 2 minutes for a DAS28 or CDAI (109).

Four categories of RAPID3 scores – for high, moderate, low disease severity, and remission in RA – are correlated significantly with similar categories according to DAS28 and CDAI (70, 108, 109). Thus RAPID3 can be useful in implementing a treat-to-target strategy in usual clinical care (22, 37), analogous to DAS28 (110) or CDAI (111) while offering a number of pragmatic advantages over the other indices (37, 68), primarily that all measures are provided by the patient.

The MDHAQ includes 3 psychological items concerning sleep quality, anxiety and depression in the patient-friendly HAQ format (Table II, Fig. 1); the depression query is correlated significantly with the Beck Depression inventory (31), and provides a useful screening query. Also included is a rheumatoid arthritis disease activity index (RA-DAI) self-report joint count (52), which is correlated significantly with tender joint count (r=0.55) and swollen joint count (r=0.42), in the same range as ESR with CRP (r=0.50) (109).

The MDHAQ includes a 60 symptom checklist (Table II), introduced initially to serve as a review of systems, which provides a useful screen for non-inflammatory problems of distress, such as fibromyalgia or depression, in patients who check more than 16-20 of 60 symptoms. This finding may be particularly helpful in patients who may also meet formal criteria for RA, systemic lupus erythematosus (SLE) osteoarthritis (OA) or other rheumatic disease, and have secondary fibromyalgia (92, 97), which may affect negatively responses to therapy.

The MDHAQ includes a 0–10 VAS for fatigue, regarded by many patients as a prominent problem affecting RA (112), SLE and other rheumatic diseases. A query concerning the frequency of exercise also is included; limited exercise is as significant as smoking in the prognosis of 5-year mortality in normal older individuals (113).

The patient also records responses to 12 queries concerning recent medical history (Table II) – surgeries, illnesses, hospitalisation, new medications, adverse effects of medications, etc. At most visits, responses to these queries are all “no”; availability of self-report information from the patient can save a physician 2–3 minutes. If a response is “yes,” that information should be known at the visit. Finally, demographic data, including date of birth, gender, ethnic group, marital status, occupation, and formal education level are queried, so a database can be developed directly from the questionnaire.

As noted above, a 4-page MDHAQ on 2 sheets of paper provides a standard new patient intake questionnaire (26, 98). The first 2 pages are the 2-page MDHAQ; the 3rd page contains a traditional “past history;” the 4th page includes a review of medications, consents for future monitoring and sharing of data with colleagues of the physician. The 3rd and 4th pages can be developed into a report for a physician for entry into a medical record, which saves considerable time at each new patient encoun-
ter, and a patient-friendly report for the patient to update, correct and amend information concerning her/his medical history (26, 98).

The Present: Pragmatic and scientific rationale for MDHAQ/ RAPID3 at every rheumatology visit

Many pragmatic and scientific features of the MDHAQ/ RAPID3 support its use at all rheumatology visits (Table III). The “pragmatic” value of MDHAQ/ RAPID3 (Table III) includes:

1. The patient does 99% of the work, with minimal effort on the part of the staff or rheumatologist. About 20% of patients do require help, but help from a health professional should be minimal, as self-report generally is more reliable than scoring by a health professional (1).

2. The MDHAQ allows a health professional to review information in 5–10 seconds that otherwise would require 10–15 minutes of conversation. Nonetheless, self-report of medical history always requires conversation between patient and doctor and interpretation by a knowledgeable health professional, as is the case with any laboratory test such as ESR or CRP, or ancillary study such as ultrasound or biopsy report (22).

3. The data inform doctor-patient communication, facilitating a focus on issues of greatest interest to the patient and doctor (77).

4. The “new patient” 4-page intake version of MDHAQ for new patients includes a traditional “past history,” including illnesses, hospitalisations, surgeries, allergies, family history, social history, and medications, for entry into a medical record and a request for patient consent to be monitored periodically (every 3, 6 or 12 months), if the patient does not return to the same clinical setting, as well as for sharing her/his data to with colleagues of the patient’s physician for medical research (26, 98).

5. A report for the patient in a patient-friendly format for the patient to amend, correct, and update new information concerning demographic data, medical history and medications, to be available to health professionals at the next visit.

6. A report for the physician in a medical record format for entry into a medical record (99), which saves 10–15 minutes at each new patient visit (26, 99).

The “scientific” value of MDHAQ/ RAPID3 (Table III) includes:

1. Physical function scores on a patient self-report questionnaire are more significant than laboratory tests or radiographs to predict most severe long-term outcomes of RA, including premature mortality (14, 81, 83, 84), as well as work disability (14, 19, 86, 87, 114), costs of care (115, 116), and joint replacement surgery (117). Five-year survival of RA patients with poor physical function was in the range of 50%, similar to Stage IV Hodgkin’s disease and 3-vessel coronary artery disease (118).

2. Individual patient self-report measures of physical function, pain, and patient global estimate of status are as efficient as joint counts and laboratory tests to distinguish active from control treatments in clinical trials involving adalimumab (119), abatacept (69, 70), certolizumab (71), and infliximab (72). Physician and patient global estimates tend to have the highest relative efficiencies, followed by SJC, physical function and pain on a patient questionnaire, while ESR or CRP and TJC are generally the least efficient among the seven core Data Set measures (72).

3. RAPID3 gives similar results to DAS28 and CDAI to distinguish active from control treatments in clinical trials of leflunomide (120), methotrexate (120), adalimumab (67), abatacept (69) and certolizumab (71).

4. RAPID3 is correlated significantly with DAS28 and CDAI in clinical trials (67, 69, 71, 120) and clinical care (108, 109), including categories for high, moderate, low disease severity and remission (70, 71, 108, 109).

5. RAPID3 also provides criteria for remission in RA in the ESPOIR cohort of patients who received usual care in France, as the prevalence of remission according to RAPID3≤3+ SJ≤1 (RAPID3 ≤3 and ≤1 swollen joint) was similar to ACR/EULAR Boolean criteria, SDAI (simplified disease activity index), and CDAI (clinical disease activity index) (121).

6. Patient questionnaire scores are more reproducible than formal joint counts (122-128) by physicians, a pheno-
Table III. Pragmatic and scientific rationales for MDHAQ/RAPID3 at each patient visit.

Pragmatic rationale

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient does 99% of the work, with minimal impact on workflow or staff or rheumatologist for about 80% of patients, although about 20% need some help.</td>
</tr>
<tr>
<td>2</td>
<td>The MDHAQ allows a health professional to review information in 5-10 seconds that otherwise would require 10-15 minutes of conversation, but requires interpretation by a knowledgeable health professional, as is the case with laboratory tests (22).</td>
</tr>
<tr>
<td>3</td>
<td>Data inform doctor-patient communication, facilitating a focus on issues of greatest interest to the patient and doctor (77).</td>
</tr>
<tr>
<td>4</td>
<td>4-page intake MDHAQ for new patients includes a traditional “past history” for databases (26, 98).</td>
</tr>
<tr>
<td>5</td>
<td>Report for the patient in patient-friendly format for her/him to amend, correct, and update medical history information to be available to health professional at next visit. (Note: A medical record is a legal document that cannot be altered; however, a medical history database can be amended by the patient for the next and future visits.)</td>
</tr>
<tr>
<td>6</td>
<td>A report for the physician formatted for entry into a medical record (99), which saves 10-15 minutes at most new patient visits (26, 99).</td>
</tr>
</tbody>
</table>

Scientific rationale

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physical function scores on a patient self-report questionnaire are more significant than laboratory tests or radiographs to predict most severe long-term outcomes of RA, including premature mortality (14, 81, 83, 84), as well as work disability (14, 19, 86, 87, 114), costs of care (115, 116), and joint replacement surgery (117).</td>
</tr>
<tr>
<td>2</td>
<td>In clinical trials, active treatment is distinguished from control treatment by individual patient self-report measures of physical function, pain, and patient global estimate, and RAPID3 (67, 69, 71, 120), as efficiently as joint counts, laboratory tests (119, 150-152).</td>
</tr>
<tr>
<td>3</td>
<td>RAPID3 gives similar results to DAS28 and CDAI to distinguish active from control treatments in clinical trials of leflunomide (120), methotrexate (120), adalimumab (67), abatacept (69) and certolizumab (71).</td>
</tr>
<tr>
<td>4</td>
<td>RAPID3 is correlated significantly with DAS28 and CDAI in clinical trials (67, 69, 71, 120) and clinical care (108, 109), including categories for high, moderate, low disease severity and remission (70, 71, 108, 109).</td>
</tr>
<tr>
<td>5</td>
<td>RAPID3 also provides criteria for remission in RA similar to ACR/EULAR Boolean criteria, SDAI, and CDAI (121).</td>
</tr>
<tr>
<td>6</td>
<td>Patient questionnaire scores are more reproducible than joint counts by physicians (122-128).</td>
</tr>
<tr>
<td>7</td>
<td>RAPID3 is more likely to be abnormal in new RA patients than ESR (37), and RAPID3 identifies incomplete responses to methotrexate and initiation of a biological agent while ESR does not (102).</td>
</tr>
<tr>
<td>8</td>
<td>RAPID3 is effective to document change in clinical status in all rheumatic diseases (129).</td>
</tr>
<tr>
<td>9</td>
<td>Continuation of courses of DMARDs is more accurately described by observational data from clinical care than by data from clinical trials (136).</td>
</tr>
<tr>
<td>10</td>
<td>A medical history is far more prominent in diagnosis and management decisions in RA than laboratory tests or ancillary studies, in contrast to other chronic diseases, according to a survey of rheumatologists and non-rheumatologists (13).</td>
</tr>
</tbody>
</table>

A medical history is far more prominent in clinical decisions concerning diagnosis and management in RA than laboratory tests or ancillary studies, unlike 7 other chronic diseases, according to a survey of rheumatologists and non-rheumatologists (13). Other components of a patient encounter such as vital signs (e.g. hypertension), laboratory tests (e.g. diabetes), or ancillary studies (e.g. ulcerative colitis) (13) were more prominent in other diseases (13).
Introduction of electronic medical records (EMRs) has retained the heterogeneity of electronic versions of the HAQ, MDHAQ/RAPID3, and other informative patient questionnaires. More than 100 EMRs are used in different settings in the United States, which are incompatible with one another for electronic data transfer (139). Available EMRs at present do not take great advantage of capacities of computers, and function more as simply stored paper records (139). Therefore, a mandate has been established for an interface termed “health level 7” (HL7) to link all EMRs, though a set of international standards for transfer of clinical and administrative data. HL7 and programs such as SMART (Substitutable Medical Apps, Reusable Technology) on FHIR (Fast Healthcare Interoperability Resources), the latest standard to be developed under the HL7 organisation (140, 141), allow exchange of electronic data with any EMR, as of August 2016. Implementation of these interfaces to date has been relatively slow, however, and unavailable at most sites. It is ironic that several features which were available 2 decades ago to improve clinical encounters and outcomes of routine care using MDHAQ (142-145) have not been incorporated into any EMR, as of August 2016. Such features as flowsheets to compare MDHAQ scores, laboratory test results and medications over time (Fig. 4), patient-friendly reports to allow the patient to amend, correct, and update new information concerning demographic data, medical history and medications (Fig. 5), and physician reports of the patient’s self-reported past medical history in a medical record format (Fig. 6), which can save 10-15 minutes for each new patient (26, 99), are not yet available. An electronic MDHAQ/RAPID3 (eMDHAQ/RAPID3) is designed with the capacity to incorporate HL7 and SMART on FHIR thereby allowing exchange of electronic data with any EMR, and a number of additional advanced features (Table IV). The eMDHAQ/RAPID3 may be completed in a clinic setting, at home on the day before a visit, or anywhere at any time for entry into a database at a HIPAA (Health Insurance Portability and Accountability Act)-secure website. All sites that use an identical platform for eMDHAQ/RAPID3 can pool all available data seamlessly to advance knowledge concerning rheumatology care and outcomes, particularly if simultaneous laboratory test results and medication data are available. Availability of these data would be greatly enhanced with implementation of HL7 and SMART on FHIR, but coordination of these data remains possible even with “old-fashioned” data entry. An intake new patient eMDHAQ/RAPID3 similar to the 4-page paper version (Fig. 3), is now being pilot (beta) tested, so that a patient can record a complete and accurate general past medical history - illnesses, surgeries, hospitalisations, allergies to medications and other substances, family history, social history, medications, demographic data (19, 92). All these data can be entered into an EMR efficiently, particularly if HL7 and SMART on FHIR are available. Implementation of HL7 and SMART on FHIR would allow a note to be available for entry into any EMR without typing or dictation by physician or transcription by a scribe, saving considerable time for the physician. The patient can be offered an option to save the medical history data completed on the new patient eMDHAQ/RAPID3 at a patient-administered, password-protected, secure HIPAA compliant web site, to be retrieved by the patient at any time or any site. When the patient completes the eMDHAQ, a query appears: “Would you like a report of the medical history questionnaire you have completed sent to a patient-administered, password-protected, secure HIPAA compliant web site, to which she/he is under care, regardless of the electronic medical record system in place?” This option would allow the patient to complete only a single general medical history questionnaire for all sites at which she/he is under care, regardless of the electronic medical record system in place.

Table IV. Electronic MDHAQ (eMDHAQ): Proposed advantages to doctor and patient.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May be completed at home on the day before a visit, including 4 page MDHAQ to record illnesses, hospitalisations, surgeries, allergies, family history, social history, medications, to facilitate workflow in the clinic and have data available in database.</td>
</tr>
<tr>
<td>2</td>
<td>May be completed anywhere, including other doctor’s offices, vacation setting, etc. to record quantitative data for informed clinical decisions.</td>
</tr>
<tr>
<td>3</td>
<td>All data in same computer platform at all sites which use same electronic MDHAQ system, for ease of pooling and collaborative research, for all rheumatic diseases, particularly rare diseases such as polymyositis, vasculitis, etc. for analyses of course and outcomes.</td>
</tr>
<tr>
<td>4</td>
<td>SPERA – Standard Protocol to Evaluate RA - Patient-generated standard history of comorbidities, extra-articular disease, surgeries, medications, etc. recorded in standard database structure, available for pooling of data from different clinical and research sites.</td>
</tr>
<tr>
<td>5</td>
<td>Patient option for patient-administered, password-protected, secure, HIPAA compliant web site to store past medical history - illnesses, hospitalisations, surgeries, allergies, family history, medications (26, 98), so patient completes only a single general medical history questionnaire for any doctor, regardless of EMR.</td>
</tr>
<tr>
<td>6</td>
<td>Report to patient in patient-friendly format at patient-administered, password-protected, secure, website for patient to amend, correct errors, and update history for future visits. (Note: A medical record is a legal document that cannot be altered; however, a medical history database can be amended by the patient for the next and future visits.)</td>
</tr>
<tr>
<td>7</td>
<td>Option for patient to request and store patient-protected website any medical record information (such as visit note, operation note, discharge summary), regardless of EMR in which the information is recorded, as PDF, if HL7, SMART on FHIR available not, to be available for care of patient at any facility.</td>
</tr>
<tr>
<td>8</td>
<td>Periodic list with “tickler” function of those with no contact after 3, 6, or 12 months (at discretion of the site, with no extra work of the part of the site) for automatic email and questionnaire to be sent to those consented patients.</td>
</tr>
<tr>
<td>9</td>
<td>MDHAQ data available for seamless data interface with electronic medical record (EMR), using HL7, SMART on FHIR – requires collaboration with EMR vendor, which could enhance seamless transfer to any EMR of items 3-8 above.</td>
</tr>
<tr>
<td>10</td>
<td>Report to physician in formatted as a medical record note of past medical history - illnesses, hospitalisations, allergies, family history, social history, medications (26, 98), available for entry into any EMR without typing or dictation by physician or transcription by scribe, if HL7, SMART on FHIR available.</td>
</tr>
</tbody>
</table>
of EMR, although unique medical history data for different specialties may then be competed at different sites.

These capacities are possible even without HL7 and SMART on FHIR, although implementation could add considerable efficiency, with added value to the data.

The stored data could generate a report to the patient in a simple, patient-friendly format, for the patient to amend, correct errors, and update history in 3 categories – demographic data, past medical history, and medications – for future visits (Fig. 5). The patient is queried: “Would you like an additional report of the information you have completed in an electronic or paper format for any future medical encounters, which you can amend, correct any errors, and add new information?” It should be noted that a medical record is a legal document that cannot be altered, although a medical history database can be amended by the patient for the next and future visits.

A further option for the patient is to request and store at the patient-administered, password protected secure eMDHAQ/RAPID3 website any medical record information, such as a visit note, laboratory test report, imaging study, operation note, discharge summary, etc. regardless of EMR. “Would you like to have all medical record visits to any doctor, health professional, hospital stay, etc., sent to this secure web site, so that you may collect all your own medical records, regardless of the EMR in which they exist (as most are incompatible), password protected and available for your care anytime at any facility?”

The documents could be available for care of the patient at any facility and any time, regardless of EMR. The patient could request that all information be sent “automatically” to the eMDHAQ website without further request, much as current EMRs allow automatic forwarding of EMR data to referring physicians.

The eMDHAQ/RAPID3 platform also includes screens for rheumatologists to enter pertinent quantitative data. A user-friendly homunculus includes a single mannequin for both swollen and tender joint counts, for 28 or 42 joints. Also included is an entry form for a RheuMetric (formerly RHEUMDOC) checklist (Fig. 7), which includes a physician global estimate, and 3 subscale estimates for degree of reversible findings – inflammation, infection; irreversible signs – organ damage; and distress – fibromyalgia, depression, hypochondriasis, etc. (10, 11). The software provides automatic calculations of DAS28, CDAI, and SDAI, in addition to RAPID3, if the component measures are available.

The eMDHAQ/RAPID3 might involve further implementation of a standard protocol to evaluate RA (SPERA), which initially was reported in 1999 (146-148). SPERA presents a standard, structured history of comorbidities, extra-articular disease, surgeries, medications, etc. All clinical sites that use the eMDHAQ/RAPID3 software could collect the same data in the same computer format in all patients with RA for a SPERA. This process would allow data in a standard database structure at participating sites to be available for pooling to conduct long-term observational research.

All of the above functions of eMDHAQ/RAPID3 would be enhanced by...
seamless transfer with any EMR which has HL7, and SMART on FHIR. However, initial implementation does not require HL7 and SMART on FHIR. As noted, although implementation is mandatory, collaboration with the EMR vendor is required, and dissemination has been slow, though should become available over the years to enhance the value of the data.

Concluding thoughts
Development of an eMDHAQ/RAPID3 presents a number of features that seek to overcome limitations of current use of pencil and paper. While simple in concept, implementation of many of these features present complexities to workflow that were experienced in the introduction of the EMR, which were unsettling in many clinical settings (139). Introduction of an eMDHAQ/RAPID3, which is not a legal document (until introduced into a medical record), appears to allow a more gradual introduction of each feature, some of which may never be implemented, over a decade or more. Each interested clinical
Electronic MDHAQ / T. Pincus

site may proceed at a level of comfort appropriate to the workflow of the setting, recognising expertise in information technology, goals of the physician and staff, and possible requirements for documentation as they may develop.

A first step is to collect eMDHAQ/RAPID3 patient data and physician RheuMetric data electronically. This change may appear relatively simple if the transfer of information were from a desk of a patient to the desk of the physician, but introduces complexities to the workflow of the clinical setting. Indeed, pencil and paper may be an appropriate initial step in many clinical settings with no previous experience in the use of patient questionnaires. Other settings may choose to begin directly with an eMDHAQ/RAPID3, particularly if advanced skills are available.

Pencil and paper may be maintained in some settings at this time and for the foreseeable future, although ultimately it would appear that all information in medical care will be recorded in an electronic format.

A second step is to introduce seamless exchange of data from the eMDHAQ/RAPID3 and RheuMetric with an EMR using HL7 and SMART on FHIR. Again, this undertaking is not trivial, as collaboration with an EMR vendor is required, often involving additional intermediaries outside of solo- or rheumatology-only group practice settings. Implementation of HL7, although “mandatory,” may involve months of planning, waiting for higher priorities of an institution or EMR vendor.

The advantages of HL7 and SMART on FHIR to have potentially “automatic” exchange of laboratory test results and medications from an EMR to a common database are not underestimated. Nonetheless, entry by a physician or assistant of eMDHAQ/RAPID3 scores for function, pain, patient global estimate, RAPID3, fatigue, and number of symptoms may appear a great burden, but can be accomplished in a few seconds, sometimes fewer than required to change screens for other functions. Introduction of an eMDHAQ/RAPID3 while anticipating later implementation of HL7 and SMART on FHIR to facilitate direct exchange with an EMR, may be appropriate in many rheumatology settings.

A common eMDHAQ/RAPID3 and RheuMetric would allow pooling of data from many rheumatology sites, facilitating the capacity of any rheumatology office site to contribute to important advances in rheumatology with no extra work on the part of the rheumatologists, staff, or patient, particularly for rare diseases such as polymyositis, vasculitis, etc. for analyses of course and outcomes. A patient option to save the data from a completed eMDHAQ/RAPID3 at a patient-administered, password-protected, HIPAA compliant web site to store past medical history, so the patient can complete only a single general medical history questionnaire for all encounters with health professionals, regardless of EMR, also does not require HL7 and SMART on FHIR.

A third or fourth step would introduce additional value-added features of an eMDHAQ/RAPID3 database (Table IV), including reports to the physician – formatted as a medical record note, reports to the patient – formatted in a patient-friendly format for the patient to amend, correct errors, and update his history for future visits, option for patients to store any medical record information from any source or any EMR at a patient-administered, HIPAA-compliant, password-protected, web site, and “ticker” function for the rheumatology site to contact patients not seen for 6 or 12 months to monitor long-term outcomes, with minimal additional work for no doctors and staff. These features would appear to require seamless transfer involving HL7 and SMART on FHIR, and full implementation may involve decades.

Fig. 6. Report to physician of patient self-reported past-history in a medical record format, available for possible entry into a medical record as entered data rather than narrative transcription (99).
Finally, it is recognised that the pen and paper 2- and 4-page MDHAQ were facilitating clinical care, improving doctor-patient communication, saving time for patients and doctors, facilitating research concerning the natural history of disease, results of therapies and long term outcomes for more than 30 years (21, 22, 77, 106, 129, 149), and remains available for these purposes.

An electronic version and even interchange with the EMR are not required, although these tools can add considerably to the value of the data collected with minimal additional work for a physician and staff.

At the same time, the capacity for HL7 and SMART on FHIR to exchange of data with an EMR has been built into an eMDHAQ/RAPID3, to hopefully resolve a “tower of Babel” approach which characterises current implementation of many electronic versions of MDHAQ and RAPID3, which perpetuate electronic incompatibility similar to EMRs. However, none of these features need be used to implement the basic purpose of MDHAQ/RAPID3 to improve clinical care. The principles of value and feasibility as priorities over technology which have guided MDHAQ/RAPID3 over the years, might also guide eMDHAQ/RAPID3 in the coming years.

References

13. CASTREJON I, MCCOLLUM L, TANROWER MD, PINCUS T: Importance of patient history and physical examination in rheumatoid arthritis compared to other chronic diseases: Results of a physician survey. Arthritis Care Res (Hoboken) 2012; 64: 1250-5.
15. PINCUS T, GIBOFSKY A, WEINBLATT ME: Urgent care and tight control of rheumatoid arthritis as in diabetes and hypertension.

20. PINCUS T, CASTREJON I, YAZICI Y: Documenting the value of care for rheumatoid arthritis, analogous to hypertension, diabetes, and hyperlipidemia: is control of individual patient self-report measures of global estimate and physical function more valuable than laboratory tests, radiographs, indices, or remission criteria? *J Rheumatol* 2013; 40: 1469-74.

23. PINCUS T, OLIVER AM, BERGMAN MF: How to collect a MDHAQ to provide rheumatology vital signs (function, pain, global status, and RAPID3 scores) in the infrastructure of rheumatology care, including some misconceptions regarding the MDHAQ. *Rheum Dis Clin North Am* 2009; 35: 799-812, x.

36. PINCUS T, CASTREJON I: An Evidence-Based Medical Visit for Patients with Rheumatoid Arthritis Based on Standard, Quantitative Scientific Data from a Patient MDHAQ and MDHAQ Report. *Bull NYU Hosp Jt Dis* 2012; 70: 73-94.

37. PINCUS T, YAZICI Y, CASTREJON I: Pragmatic and Scientific Advantages of MD-HAQ/ RAPID3 Completion by All Patients at All Visits in Routine Clinical Care. *Bull NYU Hosp Jt Dis* 2012; 70 (Suppl. 1): 30-6.

58. MONCUR C: Ankylosing spondylitis measures: The Ankylosing Spondylitis Quality of Life (ASQOL) Scale. Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score (BAS-G), Bath Ankylosing Spondylitis Metrology Index (BASM), Dougados Functional Index (DFI), Health Assessment Questionnaire for the Spondylarthropathies (HAQ-S), and Revised Leeds Disability Questionnaire (RLDQ). Arthritis Care Res 2003; 49: S197-209.

69. PINCUS T, FURER V, KEYSTONE E, YAZICI Y, BERGMAN MJ: RAPID3 (Routine Assessment of Patient Index Data 3) severity categories and response criteria: similar results to disease activity score (DAS28) and other RAPID indices that include physician-reported measures. Rheumatology (Oxford) 2008; 47: 345-9.

71. PINCUS T, FURER V, KEYSTONE E, YAZICI Y, BERGMAN MJ, LUIJTENS K: RAPID3 (Routine Assessment of Patient Index Data 3) severity categories and response criteria: similar results to DAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) in the RAPID 1 (Rheumatoid Arthritis Prevention of Structural Damage) clinical trial of certolizumab pegol. Arthritis Care Res (Hoboken) 2011; 63: 1142-9.

77. PINCUS T, SKUMMER PF, GRISANTI MT, CASTREJON I, YAZICI Y: MDHAQ/RAPID3 can provide a roadmap or agenda for all rheumatology visits when the entire MD- HAQ is completed at all patient visits and reviewed by the doctor before the encounter. Bull NYU Hosp J Dis 2012; 70: 177-86.

PINCUS T, WOLFE F: Patient questionnaires for clinical research and improved standard patient care: is it better to have 80% of the information in 100% of patients or 100% of the information in 5% of patients? *J Rheumatol* 2005; 32: 575-7.

PINCUS T, SWERINGEN CJ, BERGMAN M, YAZICI Y: RAPID3 (Routine Assessment of Patient Index Data 3), a rheumatoid arthritis index without formal joint counts for routine care: proposed severity categories compared to disease activity score and clinical disease activity index categories. *J Rheumatol* 2008; 35: 2136-47.

PINCUS T, SWERINGEN CJ, BERGMAN M et al.: RAPID3 (Routine Assessment of Patient Index Data) on an MDHAQ (Multi-dimensional Health Assessment Questionnaire): a comparison with RAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) activity categories, scored in five versus more than ninety seconds. *Arthritis Care Res* (Hoboken) 2010; 62: 181-9.

PINCUS T, TAMARA I, SEGURADO OG, BERGMAN M, KOCH G: Relative efficiencies of physician/assessor global estimates and patient questionnaire measures are similar to or greater than joint counts to distinguish adalimumab from control treatments in rheumatoid arthritis clinical trials. *J Rheumatol* 2008; 35: 201-5.

PINCUS T, STRAND V, KOCH G et al.: An index of the three core data set patient questionnaire measures distinguishes efficacy of active treatment from that of placebo as effectively as the American College of Rheumatology 20% response criteria (ACR20) or the Disease Activity Score (DAS) in a rheumatoid arthritis clinical trial. *J Rheumatol* 2003; 48: 625-30.

SCOTT DL, CHOI EH, GREEVES A et al.: Standardising joint assessment in rheumatoid
142. PINCUS T, SOKKA T, CASTREION I, CUTOLEO M: Decline of mean initial prednisone dosage from 10.3 to 3.6 mg/day to treat rheumatoid arthritis between 1980 and 2004 in one clinical setting, with long-term effectiveness of dosages less than 5 mg/day. Arthritis Care Res (Hoboken) 2013; 65: 729-36.
149. PINCUS T, SOKKA T: Can a Multi-Dimensional Health Assessment Questionnaire (MDHAQ) and Routine Assessment of Patient Index Data (RAPID3) scores be informative in patients with all rheumatic diseases? Best Pract Res Clin Rheumatol 2007; 21: 733-53.