Timing of onset affects arthritis presentation pattern in antisynthetase syndrome

Abstract

Objective
To evaluate if the timing of appearance with respect to disease onset may influence the arthritis presentation pattern in antisynthetase syndrome (ASSD).

Methods
The patients were selected from a retrospective large international cohort of ASSD patients regularly followed-up in centres referring to AENEAS collaborative group. Patients were eligible if they had an antisynthetase antibody testing positive in at least two determinations along with arthritis occurring either at ASSD onset (Group 1) or during the course of the disease (Group 2).

Results
445 (70%; 334 females, 110 males, 1 transsexual) out of the 636 ASSD we collected had arthritis, in the majority of cases (367, 83%) from disease onset (Group 1). Patients belonging to Group 1 with respect to Group 2 had an arthritis more commonly polyarticular and symmetrical (p=0.015), IgM-Rheumatoid factor positive (p=0.035), erosions at hands and feet plain x-rays (p=0.036) and more commonly satisfying the 1987 revised classification criteria for rheumatoid arthritis (RA) (p=0.004). Features such as Raynaud’s phenomenon, mechanic’s hands and fever (e.g. accompanying findings) were more frequently reported in Group 2 (p=0.005).

Conclusion
In ASSD, the timing of appearance with respect to disease onset influences arthritis characteristics. In particular, RA features are more common when arthritis occurs from ASSD onset, suggesting an overlap between RA and ASSD in these patients. When arthritis appears during the follow-up, it is very close to a connective tissue disease-related arthritis. Also, the different prevalence of accompanying features between these two groups is in line with this possibility.

Key words
antisynthetase syndrome, arthritis pattern, timing of onset
Introduction

Arthritis is a well-established feature of antisynthetase syndrome (ASSD), reported in up to 80% of cases and representing, together with myositis and interstitial lung disease (ILD), the classic clinical triad of the disease (1-4). In ASSD, arthritis may appear either at disease onset (5, 6) or during the follow-up (4), with heterogeneous characteristics from both the clinical, laboratory and radiology point of view (4, 6-8). The differential diagnosis of rheumatoid arthritis (RA) is frequently challenging, especially at disease onset (4) and in patients presenting with an isolated arthritis (5), who are at increased risk for the subsequent occurrence of lacking triad features (5, 9).

Despite better awareness, several questions on arthritis still remain unanswered in this setting. The aim of this study is to evaluate in a large cohort of patients if characteristics of arthritis occurring after ASSD onset (e.g. in the follow-up of these patients) are different from those of arthritis occurring at disease onset.

Methods

Patients

Patients were selected from a retrospective large cohort of ASSD patients regularly followed-up at 48 Rheumatology, Pneumology and Neurology centres from Italy (n=28), Spain (n=9), Germany (n=6), Portugal (n=1), Norway (n=1), Sweden (1), USA (n=1) and Mexico (n=1). Patients were eligible if they had an antisynthetase antibody testing positive in at least two determinations along with arthritis (observed by an experienced rheumatologist in all cases) at the onset or during the disease course and if they signed the informed consent as approved by the local Institutional Ethics Board. Type and characteristics of arthritis and other clinical features, laboratory and instrumental investigations, at onset and during follow-up, were then evaluated. As previously described (4, 5), arthritis occurrence (joint swelling and tenderness required) and its presentation pattern (e.g. symmetrical polyarthritis, oligoarticular/asymmetrical arthritis) were clinically assessed. The majority of patients had hand and feet plain x-rays. ILD was defined instrumentally by a restrictive pulmonary function test (PFT) pattern (FVC ≤80%, FEV1/FVC ≥70%, decreased or normal FEV1, and/or <20% reduction in DLCO), and/or by signs of alveolitis/fibrosis on high-resolution computed tomography (HRCT). PFTs were performed at baseline as part of the assessment of lung involvement in an early arthritis/connective tissue disease and then regularly during the follow-up. Lung HRCT was performed in the case of respiratory symptoms, altered PFTs and when antisynthetase antibodies were found positive. Patients with muscle enzyme elevation (creatine phosphokinase and/or aldolase) and the presence of typical electromyography alterations and/or compatible muscle biopsy findings and/or compatible muscle magnetic resonance, were considered as having muscle involvement. Muscle enzymes were routinely performed at baseline and during the follow-up in all patients, regardless of the occurrence of muscle symptoms.

The onset of ASSD was considered as the time of the first pulmonary, muscular or joint symptom or sign. The onset of clinical features was considered concurrent in cases of less than 3 months of delay after the presentation of manifestations. Patients included in this study were divided into 2 clinical groups: Group 1 – arthritis at disease onset; Group 2 – arthritis after disease onset (ex-novo arthritis, i.e. more than 3 months after the onset of the first non-arthritis triad finding).

Patients were also assessed for the occurrence of accompanying features and related time of appearance. Fever was considered related to ASSD in case of a body temperature ≥38°C for more than 10 days without evidence of other possible causes. Mechanic’s hands were defined as the occurrence of a thickened, hyperkeratotic, and fissured aspect of the radial sides of the fingers of the hands, in absence of any other possible explanations. Raynaud’s phenomenon was defined as the occurrence of a transient finger ischaemia after cold exposure, confirmed by a clinician.

Autoantibody profile
Autoantibodies were considered posi-
Table I. Main demographics and clinical characteristics of patients according to cluster and timing of arthritis appearance with respect to other classic triad findings. If not otherwise stated, percentage are calculated according to the number of patients with available information within the group.

<table>
<thead>
<tr>
<th></th>
<th>Group 1: arthritis at disease onset</th>
<th>Group 2: arthritis after disease onset (ex novo arthritis)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (% of total)</td>
<td>367 (83)</td>
<td>78 (17)</td>
<td></td>
</tr>
<tr>
<td>Median age in years at disease onset (IQR)</td>
<td>51 (41-60)</td>
<td>53 (39-61)</td>
<td>0.940*</td>
</tr>
<tr>
<td>Median follow-up in months (IQR)</td>
<td>6 (2-27)</td>
<td>9 (3-18)</td>
<td>0.107**</td>
</tr>
<tr>
<td>Females (%)</td>
<td>272 (74)</td>
<td>62 (79)</td>
<td>0.337</td>
</tr>
<tr>
<td>Males (%)</td>
<td>94 (26)*</td>
<td>16 (21)</td>
<td></td>
</tr>
<tr>
<td>Anti-Jo-1 positive (%)</td>
<td>304 (83)</td>
<td>62 (79)</td>
<td>0.483</td>
</tr>
<tr>
<td>Non-anti-Jo-1 positive (%)</td>
<td>63 (17)</td>
<td>16 (21)</td>
<td></td>
</tr>
<tr>
<td>Anti-Ro antibodies positive (%)</td>
<td>200 (56)</td>
<td>41 (53)</td>
<td>0.544</td>
</tr>
<tr>
<td>Anti-RO antibodies negative (%)</td>
<td>155 (44)</td>
<td>37 (47)</td>
<td></td>
</tr>
<tr>
<td>Symmetrical polyarthritis (%)</td>
<td>258 (71)</td>
<td>43 (57)</td>
<td>0.015</td>
</tr>
<tr>
<td>Oligoarticular/asymmetrical arthritis (%)</td>
<td>106 (29)</td>
<td>33 (43)</td>
<td></td>
</tr>
<tr>
<td>IgM-RF-positive (%)</td>
<td>94 (27)</td>
<td>11 (15)</td>
<td>0.035</td>
</tr>
<tr>
<td>IgM-RF-negative (%)</td>
<td>257 (73)</td>
<td>62 (88)</td>
<td></td>
</tr>
<tr>
<td>ACPA positive (%)</td>
<td>33 (11)</td>
<td>5 (8)</td>
<td>0.575</td>
</tr>
<tr>
<td>ACPA negative (%)</td>
<td>274 (89)</td>
<td>55 (92)</td>
<td></td>
</tr>
<tr>
<td>Patients with x-rays joint erosions (%)</td>
<td>51 (16)</td>
<td>4 (6)</td>
<td>0.036</td>
</tr>
<tr>
<td>Patients without x-rays joint erosions (%)</td>
<td>273 (84)</td>
<td>63 (94)</td>
<td></td>
</tr>
<tr>
<td>Patients satisfying the 1987 revised ACR classification criteria for RA (%)</td>
<td>241 (69)</td>
<td>37 (51)</td>
<td>0.004</td>
</tr>
<tr>
<td>Patients NOT satisfying the 1987 revised ACR classification criteria for RA (%)</td>
<td>109 (31)</td>
<td>35 (49)</td>
<td></td>
</tr>
<tr>
<td>Fever (%)</td>
<td>91 (26)</td>
<td>25 (33)</td>
<td>0.211</td>
</tr>
<tr>
<td>No fever (%)</td>
<td>261 (74)</td>
<td>51 (67)</td>
<td></td>
</tr>
<tr>
<td>Raynaud’s phenomenon (%)</td>
<td>95 (27)</td>
<td>33 (43)</td>
<td>0.007</td>
</tr>
<tr>
<td>No Raynaud’s phenomenon (%)</td>
<td>254 (73)</td>
<td>44 (57)</td>
<td></td>
</tr>
<tr>
<td>Mechanic’s hands (%)</td>
<td>91 (26)</td>
<td>27 (36)</td>
<td>0.082</td>
</tr>
<tr>
<td>No Mechanic’s hands (%)</td>
<td>258 (74)</td>
<td>48 (64)</td>
<td></td>
</tr>
<tr>
<td>Accompanying features (%)</td>
<td>183 (56)</td>
<td>56 (74)</td>
<td>0.005</td>
</tr>
<tr>
<td>No accompanying findings (%)</td>
<td>144 (44)</td>
<td>20 (26)</td>
<td></td>
</tr>
</tbody>
</table>

RF: Rheumatoid factor; **ACPA:** anticyclic citrullinated peptide antibodies; **ILD:** interstitial lung disease.

*plus one transsexual, †number of accompanying findings ever presented, concomitantly or before arthritis occurrence. Median time from disease to arthritis onset in group 2 (interquartile range): 20 months (10-46 months).

Statistical analysis: *Independent sample t-test, **Welch-test. Other: Chi square test.

titive after two testing confirmations along with at least one positivity obtained in the leading reference/tertiary centre. In leading centres, besides antisynthetase antibodies, other additional anti-extractable nuclear antigen specificities and IgM-RF and ACPA were tested by well-validated methods (Appendix).

Statistical analysis Descriptive data were reported or considered as absolute and relative frequencies, mean and standard deviation, median and interquartile range (IQR) based on the type of the variable distribution. Comparison between groups was firstly tested by chi-square test, t-test or Mann-Whitney test, based on the variable type and distribution. Analyses were performed using STATA software package (2009, release 11; StataCorp, TX, USA).

Results In our cohort of 636 ASSD, 445 patients (70%; 334 females, 110 males, 1 transsexual) had arthritis. In these patients, the median (IQR) age at disease onset was 51 (41–60) years, the diagnostic delay was 7 (2–23) months and the duration of follow-up 79 (36–149) months. Anti-Jo-1 antibodies were positive in 366 (82%) patients, non-anti Jo-1 antibodies in 79 (18%). Within non-anti-Jo-1 positive patients, 33 (42%) were anti-PL-7 positive, 29 (37%) anti-PL-12, 9 (11%) anti-EJ and 5 (4%) anti-OJ. Also, 4 patients (5%) had a double positivity (1 OJ/EJ and 3 PL-7/PL-12). Anti-Jo-1 and non-anti-Jo-1 positive patients were equally distributed between the two clinical groups (p=0.489). In particular, Group 1 included 303 (83%) anti-Jo-1 and 63 (17%) non-anti-Jo-1 positive patients, Group 2, 62 (79%) anti-Jo-1 and 16 (21%) non-anti-Jo-1 positive patients.

Clinical, laboratory and radiologic findings of all patients are shown in table 1. Whereas the 1987 revised ACR classification criteria for RA (10) were tested in the majority of patients, we could test only 78 (18%) for the new 2010 ACR/EULAR classification criteria for RA (11), reason that lead us to not include the obtained result in the study. Even if this study was not aimed at comparing the inter-centre variability, arthritis characteristics were equally distributed between the different centres involved and between different referral areas (data not shown). Regarding treatments, the majority of group 2 patients were on immunosuppressants when arthritis appeared. All 78 patients (100%) were on low dose prednisone (< 5mg/day), 35 (45%) on azathioprine, 12 (15%) on mycophenolate mofetil, 8 (10%) on cyclosporine, 4 (5%) on cyclophosphamide and 1 (1%) on hydroxychloroquine.

Figure 1 shows the cluster of triad findings presented at disease onset in the 2 Groups.

Discussion To date, this is the largest study ever to address arthritis assessment in ASSD, and the first to include a large number of non-anti-Jo-1 positive patients. Our findings indicate that arthritis in ASSD occurs mainly at disease onset and to a lesser extent during the follow-up. Furthermore, we found that arthritis characteristics are heterogeneous within the syndrome and influenced by its timing of onset. In particular, RA-like clinical, laboratory and radiologic features are...
Fig. 1. Cluster of triad findings in different groups. Inner circles: Group 1, triad findings occurring concomitantly to arthritis at disease onset. Group 2, triad findings presented before the appearance of arthritis. MYO: myositis; ILD: interstitial lung disease.

Appendix

List of kits/methodologies used

Anti synthetase antibodies
- INNO-LIA, Immunogenetics Ghent, Belgium
- ELIA Jo-1, Phadia, Freiburg, Germany
- ELIA CTD screen, Phadia, Freiburg, Germany
- Zenit RA Jo-1, Menarini Diagnostic, Firenze, Italy
- QUANTA Flash Jo-1, Inova Diagnostics, Werfen Groupe San Diego, USA
- ENA-abs, Euroimmun, Lübeck, Germany
- Dot Blot Miostiris/Esclero Pales Medical, Barcelona, Spain
- ELISA ORG 514, ORGENTEC, Mainz, Germany
- Myositis Profile Eurolime Blot test kit, Euroimmun, Lübeck, Germany
- DotDiver ANAcyto 10, GA Generic Assays GmbH, Berlin, Germany
- MYOSITIS PROFILE - 12 Ag, AL AD-MYOS12D ALIFAX Srl, Padua, Italy BD

Anticyclic citrullinated peptide antibodies
- Aeskulisa 3166 CCP, Aesku.system GmbH & Co, Wendelsheim, Germany
- Anti-CCP EDIA, Eurodiagnostica, Malmö, Sweden
- Quanta Flash (CIA) CCP3, INOVA Diagnostics a Werfen Company, San Diego
- Zenit RA CCP, Menarini Diagnostic, Firenze, Italy
- ELIA CCP, Phadia, Freiburg, Germany (Torino)
- Anti-CCP Ab’s, Roche Diagnostics, Mannheim, Germany
- anti-CCP2 ELISA, Immunoscan RA, Euro-Diagnostica, Malmö, Sweden

Rheumatoid factor IgM antibodies
- Nephelometry
- Reuma Latex test, Sclavo diagnostics International, Sovicille, Italy
- ELIA RF IgM, Phadia, Freiburg, Germany
- RF Ab’s, Roche Diagnostics, Mannheim, Germany
- RF IgM, (K6078) Vista 1500, Siemens Healthcare Diagnostics

more likely observed in patients presenting arthritis from disease onset and to a lesser extent in those presenting with an *ex-novo* arthritis during the follow-up. Conversely, we first observed that ASSD accompanying findings (e.g. fever, Raynaud’s phenomenon and mechanic’s hands) are significantly less frequent in the clinical Group 1 (arthritis at disease onset) when compared to Group 2 (arthritis after disease onset -*ex-novo arthritis*).

We have recently published a study focused on the evolution of the concept of articular involvement in ASSD (5). In this paper, we have shown how this concept steadily changed over time, from the simple term of polyarthralgia reported in the first studies, to that of symmetrical polyarthritis described in the last ones. Furthermore, we showed that the overlapping aspects between ASSD and RA are common in anti-Jo-1 positive patients presenting with arthritis from disease onset in general and with an isolated arthritis in particular (4, 5).

At that time, due to the limited number of patients developing an *ex-novo* arthritis during the follow-up, we left a relevant question unanswered: is arthritis phenotype different in patients in whom joint involvement appears *ex-novo* during the follow-up? With the increased number of centres participating in the AENAEAS collaborative group, in the present study we have reached a number of patients that may be large enough to answer this question. Furthermore, we enlarged the spectrum of analysis by including also a relevant number of patients with other antisyntethase antibodies specificities. First of all, in this study we confirmed that it is often difficult to perform a differential diagnosis between ASSD and RA at disease onset because of several clinical, laboratory and radiology similarities. However, the most interesting results we disclosed was that *ex-novo* arthritis is more frequently oligoarticular and asymmetrical with respect to that appearing at disease onset. Conversely, IgM RF positivity and the radiographic evidence of joint erosions were more commonly observed in Group 1 with respect to Group 2. Furthermore, the 1987 ACR revised classification criteria for RA were less frequently satisfied in patients from Group 2 when compared to Group 1. Unfortunately, we were able to test only a limited number of patients with the 2010 new classification criteria for RA, without the possibility of drawing conclusions. From the serological point of view, anti-Ro antibodies were equally distributed among groups, thus without other implications to that of potential ASSD markers, at least for arthritis aspects.

If we consider the treatments ongoing when arthritis appeared, in the majority of cases, the drugs used are not considered effective from the articular point of view along the entire spectrum of rheumatic conditions. We may suppose that the influence of these treatments...
on arthritis presentation pattern (and on joint erosions) was minimal. Our results indicate that arthritis in ASSD is a heterogeneous condition, with different characteristics that are linked to the timing of the appearance of arthritis. In particular, patients presenting ex-novo arthritis during the follow-up less frequently have laboratory, clinical and radiology features typical of RA, suggesting that different mechanisms may drive arthritis occurrence in the different phases of ASSD. Another factor supporting this hypothesis is that the typical accompanying findings of ASSD were rare in Group 1 and more common in Group 2. As recently suggested by the members of the French “Club Rhumatisme et inflammation” (8), we think that an overlap between RA and ASSD may occur in the first phases of the disease, whilst a “true” ASSD-related arthritis during the follow-up.

Another interesting observation derived from the evaluation of Group 1 was that the association between arthritis and ILD was observed in 157 patients (44% of the group), 56 of them (15% of the group) without concomitant myositis. Since ILD frequently occurs at RA onset (12), arthritis in ASSD is frequently “RA-like” (4, 5, 8), and ILD is a common manifestation of ASSD (2, 3, 13-18), we think that some patients diagnosed with RA with lung involvement could be in fact not diagnosed ASSD.

The study has some limits. In particular, the main criticism is related to its retrospective design. It is well known that these studies are intrinsically associated with an increased risk of incompleteness (19, 20). In fact, arthritis serological, radiology and clinical data were available in the majority of cases but not in all cases. Another potential limitation is that anti-synthetase antibodies were assessed using different commercially available kits in different centres. Nevertheless, when considering these limitations, we have to take into account that so far no prospective studies that address ASSD are available, and that other multicentre studies previously performed had the same problems that we have discussed (2, 9, 21, 22). Another bias is that we checked only few patients for the newly available RA classification criteria (11) and not for the new 2010 ACR/EULAR classification criteria for RA. This bias could be overcome in the incoming prospective part of the AENEAS project. Finally, we cannot exclude that some of the patients included in Group 1, who had an isolated arthritis at disease onset, could have presented an asymptomatic ILD or myositis. We think that this limitation could be resolved only in the case of a very early identification of anti-synthetase antibodies and of a very early diagnosis of ASSD. However, we think that thanks to the results obtained by the AENEAS collaborative group (4, 5) and by the French “Club Rhumatisme et inflammation” (2, 8, 21) the sensibility of clinicians in the early diagnosis of ASSD in arthritis patients could steadily increase in the next years.

In conclusion, we have shown that heterogeneity is a typical hallmark of arthritis in ASSD, that differences found in our series may indicate different phenotypes of the disease and that arthritis pathogenesis in ASSD is complex and potentially different in various disease phases.

Authors’ affiliations
1Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander, Spain;
2Division of Rheumatology, University and IRCCS Policlinico S. Matteo Foundation, Pavia, Italy;
3Dept. of Internal Medicine, Vall d’Hebron General Hospital, Barcelona, Spain;
4Dept. of Rheumatology, Oslo University Hospital (OUH), Norway;
5Interstitial Lung Disease and Rheumatology Units, Instituto Nacional de Enfermedades Respiratorias, Ismael Costo Vilegas, México City, México;
6ACURA Centre for Rheumatic Diseases, Baden-Baden, Germany;
7Division of Rheumatology, Dept. of Clinical and Experimental Medicine, University of Pisa, Italy;
8Dept. of Internal Medicine V, Division of Rheumatology, University of Heidelberg, Germany;
9Division of Rheumatology, Dept. of Medicine (DIMED), University of Padova, Italy; 10Interdisciplinary Dept. of Medicine (DIM), Rheumatology Unit, University of Bari, Italy;
11Rheumatology Unit, University and AO Spedali Civili, Brescia, Italy;
12ACURA Rheumatology Center, Bad Kreuznach, Germany;
13Rheumatology Unit, Azienda Sanitaria di Firenze, S. Giovanni di Dio Hospital, Florence, Italy;
14Immunology and Allergy Laboratory, S. Giovanni di Dio Hospital, Florence, Italy;
15Dept. of Internal Medicine and Medical Specialties-Rheumatology, Sapienza University of Rome, Italy;
16Dept. of Internal Medicine, Rheumatology and Clinical Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain;
17Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico di Modena, Italy;
18Dept. of Rheumatology, University Hospital Ramón y Cajal, Madrid, Spain;
19Research Laboratory and Academic Division of Clinical Rheumatology, Dept. of Internal Medicine, University of Genoa, Italy;
20ASST Bergamo Ovest, UOC Medicina, Ospedale di Treviglio, Italy;
21Land University, Skane University Hospital, Dept. of Clinical Sciences Lund, Rheumatology, Lund, Sweden;
22Rheumatology Unit, Santa Chiara Hospital, Trento, Italy;
23Division of Rheumatology, Mauriziano Hospital, Turin, Italy;
24Tulane University Lung Center Tulane/UMC Scleroderma and Sarcoidosis Patient Care and Research Center New Orleans, LA, USA;
25Systemic Autoimmune Diseases Unit, Hospital Clínico San Cecilio, Granada, Spain;
26Dept. of Rheumatology, University of Salamanca, Spain;
27Division of Rheumatology, Hospital Ramón y Cajal, Madrid, Spain;
28Tulane University Lung Center Tulane/UMC Scleroderma and Sarcoidosis Patient Care and Research Center New Orleans, LA, USA;
29Systemic Autoimmune Diseases Unit, Hospital Clínico San Cecilio, Granada, Spain;
30Clinic of Rheumatology, Dept. of Medical and Biological Sciences (DSMB), Santa Maria della Misericordia Hospital, Udine, Italy;
31Rheumatology Unit, Luigi Sacco University Hospital, Milan, Italy;
32Rheumatology Unit, Dept. of Medicine, University of Perugia, Italy;
33Rheumatology Unit, Dept. of Rheumatology and Clinical Immunology, St. Josef Krankenhaus, University Clinic, Essen, Germany;
34Rheumatology Unit, Ospedale Guglielmo da Saliceto, Piacenza, Italy;
Arthritis subsets in antisynthetase syndrome / M.A. González-Gay et al.

References

4. CAVAGNA L, NUNO L, SCIREE CA et al.: Clinical spectrum time course in Anti Jo-1 positive antisynthetase syndrome: results from an international retrospective multicenter study. Medicine (Baltimore) 2015; 94: e1144.

22. CONNORS GR, CHRISTOPHER-STINE L, ODDIS CV, DANOFF SK: Interstitial lung disease associated with the idiopathic inflammatory myopathies: what progress has been made in the past 35 years? Chest 2010; 138: 1464-74.