In the spine or in the brain? Recent advances in pain neuroscience applied in the intervention for low back pain

J. Nijs1-3, J. Clark1,2,4,5, A. Malfliet1-3,7, K. Ickmans1-3, L. Voogt1,2,6, S. Don1,2,6, H. den Bandt1,2,6, D. Goubert1,2,7, J. Kregel1,2,7, I. Coppieters1,2,7, W. Dankerts8

1Pain in Motion International Research Group, www.paininmotion.be;
2Dept. of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Belgium;
3Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium;
4Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, UK;
5The Physio Shed, private practice for Physiotherapy, Omokoroa, New Zealand;
6Dept. of Physiotherapy, University of Applied Sciences Rotterdam, The Netherlands;
7Dept. of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Belgium;
8Musculoskeletal Rehabilitation Research Unit, Dept. of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, University of Leuven, Belgium.

Jo Nijs, PT, MT
Jacqui Clark, PT, MT
Anneleen Malfliet, MSc, MT
Kelly Ickmans, PhD, MT
Lennard Voogt, PhD, MT
Sanneke Don, MSc, PT
Hester den Bandt, MSc, PT
Dorien Goubert, PhD, MT
Jeroen Kregel, MSc, PE
Iris Coppieters, PhD, MT
Wim Dankerts, PhD, PT, MT

Please address correspondence to:
Dr Jo Nijs,
Vrije Universiteit Brussel,
Building F-Kima, Laarbeeklaan 103,
BE-1090 Brussels, Belgium.
E-mail: jo.nijs@vub.be

Received and accepted on September 1, 2017.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2017.

Key words:
Pain, low back pain, neuroplasticity, clinical reasoning, exercise therapy

Funding information on page S-113.
Competing interests: none declared.

ABSTRACT
Conservative, surgical and pharmacological strategies for chronic low back pain (CLBP) management offer at best modest effect sizes in reducing pain and related disability, indicating a need for improvement. Such improvement may be derived from applying contemporary pain neuroscience to the management of CLBP. Current interventions for people with CLBP are often based entirely on a “biomedical” or “psychological” model without consideration of information concerning underlying pain mechanisms and contemporary pain neuroscience. Here we update readers with our current understanding of pain in people with CLBP, showing that CLBP is not limited to spinal impairments, but is also characterised by brain changes, including functional connectivity reorganisation in several brain regions and increased activation in brain regions of the so-called ‘pain matrix’ (or ‘pain connectome’). Indeed, in a subgroup of the CLBP population brain changes associated with the presence of central sensitisation are seen. Understanding the role of these brain changes in CLBP improves our understanding not only of pain symptoms, but also of prevalent CLBP associated comorbidities such as sleep disturbances and fear avoidance behaviour. Applying contemporary pain neuroscience to improve care for people with CLBP includes identifying relevant pain mechanisms to steer intervention, addressing sleep problems and optimising exercise and activity interventions. This approach includes cognitively preparing patients for exercise therapy using (therapeutic) pain neuroscience education, followed by cognition-targeted functional exercise therapy.

Introduction
Chronic low back pain (CLBP) is the most common and important clinical, social, economic, and public health problem of all chronic pain disorders across the world (1). It is a complex disorder which is difficult to treat (2-5). The global point prevalence of LBP was estimated at 9.4% in 2010, with the highest prevalence of 15% in Western Europe (3), a significant proportion of whom develop CLBP. The prevalence of CLBP has been shown to be increasing in the United States of America, e.g., from 3.2% in 1992 to 10.2% in 2006 in North Carolina (6). Conservative and pharmacological strategies for CLBP management offer at best modest effect sizes in reducing pain and related disability (7-9), suggesting the need for improvement. Improvement in management of CLBP may emerge from applying contemporary pain neuroscience. Current intervention strategies for people with CLBP are often based on a biomedical (e.g., neuromuscular training, myofascial treatment) or cognitive behavioural model (i.e., graded exposure, graded activity) without accounting for the underlying pain mechanisms and our present understanding of contemporary pain neuroscience (10). Interventions often focus either on input (treating muscles and joints) or output mechanisms (motor control), while there is less attention paid to the well documented impairments in central nociceptive processing mechanisms (11-15). Here we update readers with our current knowledge of pain in people with CLBP, including recent advances in understanding impairments in central nociceptive processing mechanisms (11-15). First, we will show that CLBP is also characterised by differences in the morphology and functionality of the brain. Understanding these brain changes in CLBP improves our understanding not only of pain symptoms, but also of prevalent CLBP comor-
Clinical and Experimental Rheumatology 2017
Recent advances in pain neuroscience for chronic low back pain / J. Nijs et al.

bidities like sleep disturbances and fear avoidance behaviour. The second part of the paper explains how clinicians can apply our current understanding of contemporary pain neuroscience to improve care for people with CLBP. This approach includes identifying relevant pain mechanisms to steer intervention, optimising exercise and activity and addressing sleep problems in people with CLBP.

Understanding brain changes in chronic low back pain

Central sensitisation in people with chronic low back pain

Modern pain neuroscience has advanced our understanding about pain, including the role of central sensitisation (or central hyperexcitability) in the presence and amplification of (persistent) pain experiences. Central sensitisation is defined as “an amplification of neural signaling within the central nervous system (CNS) that elicits pain hypersensitivity” (16) and as “an increased responsiveness of nociceptive neurons in the CNS to their normal or subthreshold afferent input” (17). Many people with CLBP lack a clear origin of nociceptive input, or this input is not severe enough to explain the experienced pain severity, related disability and other symptoms. In such patients (estimated at 25% of the CLBP population), central sensitisation often dominates the clinical picture. It is now well-established that sensitisation of the CNS is an important feature in many people with chronic pain, including those with CLBP (15).

Central sensitisation encompasses various related dysfunctions within the CNS, including altered sensory processing in the brain (13). Functional magnetic resonance studies revealed that people with CLBP have functional connectivity reorganisation in several brain regions: increased activation in the medial prefrontal cortex (11, 18-21), cingulate cortex (19, 20, 22), amygdala (19, 20), and insula (22, 23), and a disrupted default mode network connectivity (19, 22-24). When reviewing studies that explored the brain responses to noxious stimuli in people with CLBP, it was concluded that most studies found increased activation in brain regions involved in somatosensory-discriminative, affective, and cognitive processing of pain (the so-called “pain matrix”) (25), including the primary/secondary somatosensory cortex, anterior and posterior cingulate, insula, prefrontal cortices, and the thalamus (14). On a side note, the term ‘pain matrix’ should be used with caution (26), as it remains unclear whether such a ‘limited network’ represents the full perception of pain. Pain perception possibly arises from a spatiotemporal signature of brain network communication that represents the integration of all cognitive, affective, and sensorimotor aspects of pain, referred to as the ‘pain connectome’ (27).

Prospective cohort studies are needed to examine whether such brain alterations were not present before the onset of back pain, and whether they are specific for CLBP only.

Functional brain changes can be treated in people with chronic low back pain

Increasing evidence supports the idea that the functional brain changes found in people with CLBP are not permanent, and can be reversed by effective interventions (28). For instance, one study found changes in the anterior default mode network functional connectivity with the amygdala and periaqueductal gray and increased functional connectivity of the basal ganglia with the right somatosensory cortex following cognitive behavioural therapy, compared with an educational materials intervention in people with chronic musculoskeletal pain (29). The available evidence provides low level evidence favouring both functional and structural changes in prefrontal areas following cognitive behavioural therapy, including increased pain-evoked activation and increased grey matter volume in people with chronic musculoskeletal pain (28).

The respective structural brain changes were associated with intervention-related improvements of coping with pain symptoms, pain management, anxiety, catastrophising, and cognitive speed (28), which underscores the clinical importance of these brain changes. Preliminary evidence was found for a shift of pain-induced activations from more affective brain regions towards sensory-discriminative regions, including the posterior insula and primary somatosensory cortex, following behavioural extinction training (28).

The amygdala as a key target for exercise therapy in people with chronic low back pain

One key brain area involved in the pain (neuro)matrix is the amygdala, often referred to as the fear-memory centre of the brain. The amygdala has an important role in negative emotions, and takes part of the central fear network in the brain, together with the anterior cingulate cortex (30). The amygdala’s role includes negative emotions (e.g. anger), pain-related memories (31) and represents – together with the anterior cingulate cortex – the central fear network in the brain (30). Moreover, the amygdala has been identified as a facilitator of chronic pain development, including sensitisation of CNS pain pathways (30-35). On the other hand, the amygdala, together with the somatosensory cortex and insula, show less activity during pain delivery in case of positive treatment expectations (36).

Another crucial aspect of the amygdala entails its role in the development of pain memories as a result of operant learning processes (37), including memories of painful movements, for which the amygdala closely collaborates with the hippocampus and the anterior cingulate cortex. The development of such a pain memory applies to all movements that once provoked pain, and results in protective behaviours (e.g., antalgic postures, antalgic movement patterns, including altered lumbopelvic motor control, and/or avoidance of particular movements like forward bending) in people with CLBP (38).

Preparing for such ‘dangerous’ movements is enough to evoke an activation of the fear-memory centre in the brain and hence to produce pain (without peripheral nociceptive input), and employ an altered (protective) motor control strategy (39). Even visualisation of such ‘dangerous’ movements can trigger feelings of discomfort and pain, together with increased activation of pain.
and memory related areas of the brain (40, 41). Exercise therapy can address this by applying the ‘exposure without danger’ principle (37), which is further explained below.

Gliial overactivity as an underlying mechanism of central sensitisation in people with chronic low back pain

Despite our increased understanding of the mechanisms explaining (hyper-sensitivity) symptoms in people with CLBP, there is much to learn about the development of (chronic) LBP, including the aetiological mechanisms underlying central sensitisation as a facilitator of chronicity and severe disability (42) in this population. The question is, why do some pain people with LBP develop central sensitisation while others do not? Or is central sensitisation innate? Recent studies indicate that glial cells, to a greater extent than neurons, might play a key role in answering this question (43).

Glia are non-neuronal cells that reside within the nervous system. An increasing number of studies suggest that aberrant glial activation might explain the establishment and/or maintenance of central sensitisation, and persistent pain (44-48). In the acute or subacute phases of injury and pain, glial activation likely plays an adaptive role, as it favours tissue healing and restoring homeostasis. Glial activation produces inflammatory mediators and when glial activation does not resolve, and becomes chronic, it can become pathogenic leading to collateral damage of nearby neurons and other glia (49) (i.e., gliopathy). Such increased glial activation has been found in people with CLBP (47). Prospective cohort studies are needed to examine whether such glial activation is genetic, innate or specific for CLBP. Aberrant glial activity has the potential to initiate central sensitisation through several mechanisms. Activated microglia have been identified as a major source for the synthesis and release of brain-derived neurotrophic factor, which is responsible for increasing neuronal excitability by causing disinhibition in dorsal horn neurons in the spinal cord (50, 51). Aberrant glial activity is accompanied by increased TNF-α availability, which in turn induces long-term potentiation (52) and consequent enhanced synaptic efficacy (53) and pain sensitisation (52). Long-term potentiation and enhanced synaptic efficacy are possibly coordinated by glial overactivity and are (partly overlapping) key mechanisms underlying increased excitability of the CNS (54-56) and the formation of (maladaptive) pain memories (38, 57) in people with chronic pain and central sensitisation.

Poor sleep, glial overactivity and central sensitisation in people with chronic low back pain

Poor sleep is one possible trigger for glial overactivity. Sleep deprivation results in low-grade inflammatory responses (58-60), including increased levels of IL-6, prostaglandin E2 (59, 60) and nitric oxide (61) possibly mediated by cerebral microglia (61). This may in part explain why a single night of total sleep deprivation in healthy people can induce generalised hyperalgesia and increase state anxiety (62, 63). Taken together, poor sleep sustains the underlying mechanisms of central sensitisation in people with CLBP, a notion that may require addressing during intervention (43).

Applying modern pain neuroscience for a better management of chronic low back pain

From what is presented above, it becomes clear the CLBP entails much more than spinal changes (summarised in Figure 1). The application of contemporary pain neuroscience to clinical practice for a better management of people with CLBP requires three important considerations, discussed here. Firstly, identification of relevant pain mechanisms in people with CLBP is explained; secondly issues relating to the retraining of pain memories using cognition-targeted functional exercise therapy for people with CLBP will be discussed; thirdly, interventions that target sleep disturbances in people who have CLBP and comorbid insomnia.

Identifying relevant pain mechanisms in chronic low back pain

Available evidence indicates that central sensitisation is present in a subgroup of the CLBP population (42, 64, 65). This potentially impacts upon clinical practice, as CLBP patients with a predominant central sensitisation pain type require intervention targeted at the CNS rather than the lower back region (15, 66, 67). Therefore awareness is growing that people with CLBP should be stratified clinically as experiencing either predominantly nociceptive, neuropathic or central sensitisation pain (42, 68) in order to target intervention strategies appropriately. A practical guide is available elsewhere (69), and is summarised below.

Following identification of red flags, excluding the possibility of a back disorder with neuropathic pain is often the first step (70, 71) that can be taken by applying international guidelines for...
the stratification of neuropathic pain (72, 73). Examples of a back disorder with neuropathic pain include radicular pain with several patho-anatomical dysfunctions in case of compression of the dorsal root ganglion (direct) or the spinal nerve (indirect) (17). Possible dysfunctions that could induce such compression include foraminal stenosis (e.g., due to osteophytes), prolapsed intervertebral disk, radiculitis (e.g., caused by a viral infection like herpes zoster), etc. Although the presence of neuropathic pain does not exclude a predominant central sensitisation underlying mechanism, if neuropathic pain is excluded two options remain: predominantly either nociceptive or central sensitisation LBP. To differentiate between predominant nociceptive and central sensitisation LBP, clinicians are advised to use the algorithm presented in Figure 2. This algorithm guides the clinician through the screening of three major stratification criteria (69):

1) the severity of LBP must be disproportionate to the nature and extent of the injury or pathology (i.e., tissue damage or structural impairments which might cause nociceptive LBP);
2) the pain pattern lacks a neuroanatomically distribution, e.g., one that is not neuroanatomically plausible for the presumed sources of (lumbar) nociception;
3) a score of 40 or higher on part A of the Central Sensitisation Inventory (CSI) (74), which assesses symptoms common to central sensitisation, with the total score ranging from 0 to 100 and a recommended and validated cutoff score of 40 (75, 76).

In addition to the above guide for stratification of LBP patients according to the dominant pain mechanism, thorough clinical examination including the use of screening questionnaires is required (78), but is beyond the scope of the present paper.

Optimising exercise and activity interventions for people with chronic low back pain
Applying contemporary pain neuroscience to exercise interventions for people with CLBP includes preparing patients for exercise therapy using (therapeutic) pain neuroscience education. Pain neuroscience has taught us that pain is often present without tissue damage, is often disproportionate to tissue damage, and that tissue damage (and nociception) does not per se result in the feeling of pain. Pain neuroscience education intends to transfer that knowledge to patients, allowing them to understand their pain and hence to cope effectively with their pain. The main goal of pain neuroscience education is to improve the patient’s pain beliefs and decrease the threatening nature of pain, including possible acute pain flares following exercises or daily physical activity. Guidelines for enabling clinicians to apply pain neuroscience education in clinical practice are available (79, 80), and imply the use of an information leaflet, an explanatory handbook [e.g., Explain Pain (81)] and websites (retrainpain.org) designed specifically for explaining pain to patients with persistent pain. Preceding therapeutic exercise interventions with a preparatory phase using pain neuroscience education enhances deep learning and reconceptualisation of pain(10, 38) with the intention of improving exercise outcomes. Mounting evidence supports the use of pain neuroscience education for the intervention of CLBP (82-85), although at present effect sizes are often small and it remains to be examined whether effects are independent from socioeconomic status and cultural background.

The pain neuroscience education prepares the CLBP patient for cognition-targeted exercise therapy (10) that aims at systematic desensitisation. This includes graded and repeated exposure to fearful movements in order to generate a new memory of safety in the brain, and to replace or bypass the old and maladaptive movement-related pain memories (38). Hence, such an approach directly targets the brain circuitries orchestrated by the amygdala detailed above. The mechanism of long-term potentiation of brain synapses is crucial for (re)learning and developing new (pain/movement-related) memories, and hence for altering pain memories in the brain (38). Part of these intervention principles are in line with graded exposure in vivo (86), a cognitive behaviour intervention that has yielded good outcomes in people with CLBP (87, 88).

Whether such a combined approach of pain neuroscience education with cognition-targeted exercise therapy is superior over standard evidence based care in people with CLBP is currently under investigation (89), but preliminary results are promising.
Insomnia is an important yet seldom addressed comorbidity within current interventions for CLBP. Indeed, people suffering from CLBP are eighteen times more likely to experience clinically defined insomnia (91). If present, insomnia contributes substantially to CLBP severity and related disability (91). Whether insomnia or the back pain is the chicken or the egg (cause and effect) probably varies from patient to patient, but regardless of that, if insomnia is left untreated, it represents a barrier for effective CLBP management (92).

Cognitive behavioural therapy for insomnia (CBT-I) is the standard evidence-based care for treating chronic primary insomnia (93), but evidence supporting the use of CBT-I in people with CLBP is scarce. A proof of concept study found that CBT-I was successful in improving sleep and the extent to which pain interfered with daily functioning in people with CLBP, with moderate to large effect sizes and clinically important improvements (94). CBT-I typically includes changing negative thoughts about sleep, sleep hygiene, sleep restriction therapy, and teaching relaxation skills (94-96). Improving thoughts about sleep includes “decatastrophisation” to address the perception of dire consequences of sleep loss (94). Sleep hygiene implies promoting good sleep habits and may include stimulus control to establish a strong association between the bedroom and sleep by allowing for sleep to occur uniquely in association with the bedroom (94). Some authors propose sleep restriction therapy in which the amount of time spent in bed is limited to an amount equal to their average sleep time for a week (92). This has been shown to enhance homeostatic sleep drive (93) in which the mechanisms which induce sleep are made more efficient. Once sleep becomes more efficient, total sleep time is incrementally increased on a week-to-week basis (92). Relaxation skills can be applied to improve falling asleep and learn people to adequately cope with high levels of arousal before falling asleep (96).

CBT-I cannot be a standalone intervention for CLBP, but instead should provide an added value to available evidence-based intervention for CLBP. The results from 2 small scale pilot trials supports combining CBT-I with a more pain management-focused (cognition-targeted) intervention for chronic pain: the combined approach was feasible to deliver and produced significant improvements in sleep, disability from pain, pain interference, depression and fatigue (92, 97). Importantly, the combined intervention appeared to have a strong advantage over more pain management-focused (cognition-targeted) intervention alone and modest advantage over CBT-I alone in reducing insomnia severity in chronic pain patients (92). The gains in insomnia severity and pain interference were maintained at one- and six-months follow-up (97).

Taken together, increasing evidence supports the application of CBT-I for people with CLBP with comorbid insomnia as a way of applying our current understanding of pain neuroscience, including the role of insomnia in sustaining central sensitisation, to clinical practice. Still, larger multicentre trials and collecting outcome data in usual care are required to confirm these promising findings.

Conclusions
It is now well established that CLBP is not limited to spinal impairments, but can also be characterised brain changes. The latter include functional connectivity reorganisation in several brain regions and increased activation in brain regions of the so-called “pain matrix”. Increasing evidence supports the idea that these functional brain differences found in people with CLBP are not permanent, and can be reversed by effective interventions (28). Understanding these brain changes in CLBP improves our understanding not only of pain symptoms, but also of prevalent CLBP comorbidities like sleep disturbances. Poor sleep sustains the underlying mechanisms of central sensitisation in people with CLBP, which can be addressed by including CBT-I in a comprehensive intervention programme. The brain changes seen in people with CLBP are in line with the presence of central sensitisation in a subgroup of the CLBP population. Identifying relevant pain mechanisms in people with CLBP and addressing them is a promising approach to improving outcomes of CLBP.

Addressing sleep problems for a comprehensive management of chronic low back pain
Insomnia is an important yet seldom addressed comorbidity within current interventions for CLBP. Indeed, people suffering from CLBP are eighteen times more likely to experience clinically defined insomnia (91). If present, insomnia contributes substantially to CLBP severity and related disability (91). Whether insomnia or the back pain is the chicken or the egg (cause and effect) probably varies from patient to patient, but regardless of that, if insomnia is left untreated, it represents a barrier for effective CLBP management (92). Cognitive behavioural therapy for insomnia (CBT-I) is the standard evidence-based care for treating chronic primary insomnia (93), but evidence supporting the use of CBT-I in people with CLBP is scarce. A proof of concept study found that CBT-I was successful in improving sleep and the extent to which pain interfered with daily functioning in people with CLBP, with moderate to large effect sizes and clinically important improvements (94). CBT-I typically includes changing negative thoughts about sleep, sleep hygiene, sleep restriction therapy, and teaching relaxation skills (94-96). Improving thoughts about sleep includes “decatastrophisation” to address the perception of dire consequences of sleep loss (94). Sleep hygiene implies promoting good sleep habits and may include stimulus control to establish a strong association between the bedroom and sleep by allowing for sleep to occur uniquely in association with the bedroom (94). Some authors propose sleep restriction therapy in which the amount of time spent in bed is limited to an amount equal to their average sleep time for a week (92). This has been shown to enhance homeostatic sleep drive (93) in which the mechanisms which induce sleep are made more efficient. Once sleep becomes more efficient, total sleep time is incrementally increased on a week-to-week basis (92). Relaxation skills can be applied to improve falling asleep and learn people to adequately cope with high levels of arousal before falling asleep (96). CBT-I cannot be a standalone intervention for CLBP, but instead should provide an added value to available evidence-based intervention for CLBP. The results from 2 small scale pilot trials supports combining CBT-I with a more pain management-focused (cognition-targeted) intervention for chronic pain: the combined approach was feasible to deliver and produced significant improvements in sleep, disability from pain, pain interference, depression and fatigue (92, 97). Importantly, the combined intervention appeared to have a strong advantage over more pain management-focused (cognition-targeted) intervention alone and modest advantage over CBT-I alone in reducing insomnia severity in chronic pain patients (92). The gains in insomnia severity and pain interference were maintained at one- and six-months follow-up (97). Taken together, increasing evidence supports the application of CBT-I for people with CLBP with comorbid insomnia as a way of applying our current understanding of pain neuroscience, including the role of insomnia in sustaining central sensitisation, to clinical practice. Still, larger multicentre trials and collecting outcome data in usual care are required to confirm these promising findings.

Conclusions
It is now well established that CLBP is not limited to spinal impairments, but can also be characterised brain changes. The latter include functional connectivity reorganisation in several brain regions and increased activation in brain regions of the so-called “pain matrix”. Increasing evidence supports the idea that these functional brain differences found in people with CLBP are not permanent, and can be reversed by effective interventions (28). Understanding these brain changes in CLBP improves our understanding not only of pain symptoms, but also of prevalent CLBP comorbidities like sleep disturbances. Poor sleep sustains the underlying mechanisms of central sensitisation in people with CLBP, which can be addressed by including CBT-I in a comprehensive intervention programme. The brain changes seen in people with CLBP are in line with the presence of central sensitisation in a subgroup of the CLBP population. Identifying relevant pain mechanisms in people with CLBP and addressing them is a promising approach to improving outcomes of CLBP.
CLBP is required to steer intervention. In addition to addressing comorbidities like insomnia, applying our current understanding of pain neuroscience to the management of people with CLBP includes optimising exercise interventions. This includes preparing patients for exercise therapy using (therapeutic) pain neuroscience education, followed by cognition-targeted exercise therapy (10) that aims at systematic desensitisation, or graded, repeated exposure to generate a new memory of safety in the brain, replacing or bypassing the old and maladaptive movement-related pain memories (38).

For the application of contemporary pain neuroscience to clinical practice for a better management of people with CLBP, three important issues were discussed here: the clinical recognition of predominant central sensitisation pain, the application of exercise therapy and treating insomnia in people with CLBP. Space limits hinder a more comprehensive coverage of other ways to implement contemporary pain neuroscience in the management of CLBP. Other issues that hold great potential to diminish the sensitivity of the nervous system include pre- and post-surgical pain neuroscience education (85), the incorporation of (mindfulness-based) stress management (stress is another established glia activator (53)), and pharmacological targeting of neurotrophic factors (e.g., brain-derived neurotrophic factor) (98). Importantly, intervention for people with CLBP should also aim at modifying lifestyle factors such as sedentary behaviour, and behavioural factors such as fear avoidance beliefs and maladaptive pain behaviour.

Further research is required, and is ongoing, to test the validity and clinical utility of the suggested approach of applying recent advances in pain neuroscience in the intervention for people with CLBP. In addition to CLBP, this approach may have utility across a range of musculoskeletal disorders with similar CNS changes, comorbidities and cognitive-behavioural issues.

Funding

A. Malfliet is a PhD research fellow funded by the Research Foundation Flanders (FWO), Belgium. K. Ickmans and D. Goubert are post-doctoral researchers funded by the Applied Biomedical Research Programme, Institute for the Agency for Innovation by Science and Technology, Belgium (IWT-TBM project no. 150180). I. Coppieters is a post-doctoral researcher funded by the Research Foundation Flanders (FWO), Belgium (FWO project no. G007217). I. Kregel is a PhD research fellow funded by the Applied Biomedical Research Programme, Institute for the Agency for Innovation by Science and Technology, Belgium (IWT-TBM project no. 130246). J. Nijs is holder of the Chair ‘Exercise immunology and chronic fatigue in health and disease’ funded by the Berekuyl Academy/European College for Decongestive Lymphatic Therapy, the Netherlands.

References

28. **Kregel J, Coppeliers I, DePauw R et al.:** Does conservative treatment change the brain in patients with chronic musculoskeletal-
Recent advances in pain neuroscience for chronic low back pain / J. Nijs et al.

1. SCHMID J, THEYSOHN N, GASS F
2. KIM JY, KIM SH, SEO J

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.
Recent advances in pain neuroscience for chronic low back pain / J. Nijs et al.