The influence of hydrocortisone on aggrecan metabolism in human articular chondrocyte cultures: Comparison of two different matrices

K.F. Almqvist, L. Wang, C. Broddelez, R. Verdonk1, E.M. Veys, G. Verbruggen

Abstract

Objective

Numerous reports of negative effects as well as protective effects of glucocorticoids on articular cartilage convinced us to study the influence of hydrocortisone on aggrecan synthesis of isolated phenotypically stable human articular chondrocytes cultured in two different matrices.

Methods

Macroscopically normal human articular cartilage was obtained from femoral condyles within 24 hours postmortem. Chondrocytes were isolated and cultured in gelled agarose or in alginate. After 14 days in culture, hydrocortisone was added for 5 days at concentrations ranging from 0.005 \(\mu\)g to 1 mg/ml for the agarose cultures and from 0.005 \(\mu\)g to 1 \(\mu\)g/ml for the alginate culture system. Aggrecan synthesis was measured by the incorporation of \(^{35}\)Sulphate, and the proportion of neosynthesized aggrecan that bound to hyaluronan to form aggrecan aggregates was analyzed by gel chromatography.

Results

At concentrations from 0.005 to 1 \(\mu\)g/ml, hydrocortisone was found to produce a similar dose-dependent stimulation of aggrecan synthesis in both matrices. The synthesis of aggrecans remained at the same level for concentrations of 1 \(\mu\)g/ml up to 100 \(\mu\)g/ml of hydrocortisone. When supraphysiological concentrations of hydrocortisone were added the aggrecan synthesis rate plateau declined. Simultaneously with the increase in aggrecan synthesis, the proportion of low-molecular weight \(^{35}\)S-proteoglycans decreased in favour of \(^{35}\)S-aggrecan aggregates and monomers in the agarose system. The chondrocytes cultured in alginate showed this increase of aggrecan aggregates and monomeric aggrecans in both the cell-associated and the inter-territorial matrix.

Conclusion

Hydrocortisone is a stimulator of aggrecan synthesis by normal human articular chondrocytes cultured in vitro. The two culture systems (agarose and alginate) tested in this experiment showed a comparable aggrecan synthesis rate, increasing under the influence of hydrocortisone at concentrations up to 1 \(\mu\)g/ml. The proportions of \(^{35}\)Sulphate incorporated in aggrecan aggregates and monomeric aggrecan were also higher under the influence of hydrocortisone.

Key words

Chondrocytes, aggrecans, hydrocortisone, glucocorticoids, agarose, alginate.
Introduction
Glucocorticoids are an important therapeutic tool for the medical practitioner. They are administered systemically for their dramatic anti-inflammatory actions in chronic inflammatory joint disease. Intra-articular injections of corticosteroids are commonly used in the local treatment of inflammatory joint diseases. In osteoarthritis (OA), mainly in episodes of inflammatory exacerbations, the local administration of glucocorticoids is a general practice. Nevertheless, the use of corticosteroids in this indication remains controversial. Some authors reported deleterious effects on cartilage. Intra-articular injections of glucocorticoids into the joints of laboratory animals have been shown to result in severe degenerative cartilage changes (1-6). In vivo, hydrocortisone has been reported to provoke a marked decrease in glycerine utilization by rabbit articular chondrocytes, indicating a decline in the protein synthesis rate (7). Chondrocyte anabolism in vitro, including aggregan and type II collagen synthesis, may be suppressed by glucocorticoids (8-10). A decrease in the 35Sulphate-incorporation of human articular cartilage cultured in vitro has also been reported (11).

In spite of these reports of the detrimental action of glucocorticoids, there is evidence of chondroprotective effects of intra-articular corticoids in human OA (12) and in experimental models of OA, such as in the meniscectomized rabbit model (13,14), in the chemically induced cartilage damage in the guinea pig (15), and in the Pound-Nuki dog model of OA (16,17). In mice maintenance of the synthesis of large proteoglycans of articular cartilage by glucocorticoids has been described (18). The protective effect has been ascribed to the suppression of the active form of chondrocyte-derived metalloproteases (stromelysin) by glucocorticoids (12,17,19).

The present study was undertaken to investigate the direct effects of hydrocortisone on the aggregcan metabolism of isolated normal human articular chondrocytes cultured in gelled agarose or in alginate. Human chondrocytes and other mammalian cells are readily grown under monolayer conditions. However, chondrocytes cultured in this manner rapidly dedifferentiate to fibroblasts. These dedifferentiated cells synthesize an extracellular matrix different from that found in human articular cartilage. Agarose and alginate are polysaccharides naturally derived from seaweed. They both mimic the extracellular matrix of articular cartilage. Agarose is a thermally reversible hydrogel that solidifies as a result of hydrogen-bound formation. Chondrocytes cultured in gelled agarose synthesize cartilage-specific collagen and extracellular matrix aggregans, indicating that the cells maintain their phenotype (20,21). This culture method was used because of the experience in our laboratory with this matrix and also because it allows exogenous factors access to the chondrocytes. Alginate is an ionic hydrogel that solidifies in the presence of divalent cations. This matrix also permits the chondrocytes to maintain their phenotype when cultured in vitro, synthesizing macromolecules such as cartilage-specific aggregans and collagens, and to assemble them into a well-ordered matrix as present in the articular cartilage (22-24). The advantage of alginate is the reversibility of the gelled condition of this matrix, allowing the study of the cell-associated matrix (CAM) and of the interterritorial matrix (ITM) surrounding the chondrocytes. The intercellular matrix of cartilage is composed of two compartments (25): the CAM, subdivided into a thin pericellular matrix lying close to the chondrocyte, and adjacent to this a territorial matrix. The ITM forms the largest domain of the intercellular matrix.

Under these two culture conditions chondrocytes produce cartilage-specific aggregans (AG). AG-aggregates and AG-monomers are immobilized in the artificial matrix, while smaller degradation products escape into the nutrient medium (21,25,26). The high reproducibility of the results renders the two models useful to study the influence of drugs on chondrocyte AG metabolism.

Materials and methods
Isolation of articular chondrocytes
Human articular chondrocytes were isolated as described elsewhere (27,28), with a few modifications. Briefly, human articular cartilage was obtained at au-
tissues from femoral condyles of different donors within 24 hours postmortem. All donors had died after a short illness. None of them had received corticosteroids or cytostatic drugs. Visually intact cartilage was harvested and prepared for culture. Cartilage removed from the femoral condyles was diced into small fragments and the chondrocytes were isolated by sequential enzymatic digestion (hyaluronidase, pronase and collagenase) of the extracellular matrix as described in detail (29). Isolated cells were then centrifuged for 10 min. at 800 rpm, washed 3 times in DMEM with 10% FCS, tested for viability (Trypan Blue exclusion test) and counted. More than 95% of the cells were usually viable after isolation.

Cultures in agarose

Chondrocytes were cultured in gelled agarose as previously described (20), with some modifications (21, 29). The cultures were set up in 3.6 ml cryotubes (Nunc). The agarose used was ultra low-gelling temperature agarose (Type IX, gelling at < 15°C and remelting at > 50°C; Sigma). 3% agarose in distilled water was autoclaved twice for 15 min. and stored at 4-8°C prior to use. The cryotubes were coated with 100 µl of this 3% agarose solution and the coating was then allowed to gel at 4-8°C. Chondrocyte suspension cultures were established in 1.5% agarose in DMEM as previously reported (29). Coated cryotubes were filled with 300 µl of chondrocyte/agarose suspension and kept at 4-8°C for 15 min. to allow the agarose to gel. The final cell density was approximately 1.5 x 10^6 chondrocytes per culture. Three ml of the appropriate incubation medium were then added and the cultures were placed in an incubator at 37°C under 5% CO₂ for 2 weeks prior to the start of the experiments, thereby allowing the cells to reach an equilibrium. Nutrient medium plus 50 µg per ml of freshly dissolved ascorbate was replaced 3 times weekly. Three series of cultures were started with chondrocytes obtained from 5 different donors (donor 1-5).

Cultures in alginate gel

Chondrocyte cultures in alginate beads were prepared as described elsewhere (22), with some modifications. Chondrocytes suspended in one volume of double-concentrated Hanks’ balanced salts solution without calcium and magnesium (HBSS; Gibco) were carefully mixed with an equal volume of 2% alginate (low-viscosity alginate from Macrocystis pyrifera; Sigma) in HBSS, autoclaved for 15 min. The final cell concentration was 5 x 10^6 chondrocytes per ml in 1% alginate. The chondrocyte/alginate suspension was then slowly dripped through a 23-gauge needle into a 102 mM calcium chloride solution. The beads were allowed to polymerise for 10 min. at room temperature. The calcium chloride was then removed, the beads were washed 3 times with 0.15 M sodium chloride and finally cultured in 4 ml of DMEM with 10% FCS and 50 µg ascorbate per ml. The nutrient medium was replaced 3 times weekly. The chondrocytes were cultured in a 6-well plate with 1 x 10^6 cells per culture (each well containing 20 alginate beads; ± 50,000 chondrocytes per bead) for 14 days prior to the start of the experiments. Three series of cultures were started with chondrocytes from 3 different donors (donors 6-8).

Quantitative determination of total ³⁵S-labelled proteoglycans synthesized in agarose cultures

Each test consisted of a 5-day incubation period in the absence or presence of hydrocortisone. For the last 48 hours of the test period fresh medium including hydrocortisone and ³⁵Sulphate was added. Hydrocortisone was used since it is the physiologically occurring glucocorticoid, and consisted of a solution of hydrocortisone sodium succinate in phosphate buffered saline with benzyl alcohol q.s. (Solucortef®; Upjohn). The contents of the vials were diluted to the desired concentrations of 0.005 µg/ml to 1 mg/ml.

³⁵S-incorporation in aggrecan was investigated using Na₂³⁵SO₄ as a radioactive precursor. Under most of the in vitro conditions tested by us so far, a large part of the ³⁵SO₄ used by phenotypically stable chondrocytes was incorporated in aggrecan. Considering the amount of pooled culture medium that ultimately was analysed after chromatography, the specific activity of the incubation medium, the decay of ³⁵Sulphate, the labelling period in hours and the numbers of cells per culture, sulphate incorporation was expressed as pg SO₄ incorporated per 1 x 10^6 chondrocytes per hour (30). During the last 48 hours of the incubation period with hydrocortisone 10 µCi/ml of the radioactive label was included in the medium. Newly synthesized ³⁵S-aggrecans partly accumulated in the artificial intercellular agarose matrix. Another part of these ³⁵S-macromolecules escaped to the incubation medium. The agarose was mechanically disrupted and digested in the culture dish using 3 ml of 50 U/ml agarase (agarase 3-glycosaminoglycan-hydrolase from Pseudomonas atlantica; Sigma) in 0.067 M phosphate pH 6.0 in the presence of proteinase inhibitors [0.1 M ε-aminon-caprylic acid, 0.01 M EDTA, 0.005 M benzamidine-chloride and 0.01 M phenylmethylsulphonyl fluoride (31)] at 40°C overnight. The resulting suspension was centrifuged for 10 min. at 1000 rpm. The incubation medium and the supernatant were pooled after -20°C for further chromatography.

After centrifugation, aliquots of pools of combined media and agarose digests were desalted through a Sephadex G25-column (Pharmacia; Uppsala, Sweden) chromatography gel in 0.067 M phosphate (K₂HPO₄/Na₂HPO₄) pH 6.8, containing 0.01 M Na₂SO₄ in order to separate the ³⁵S-labelled aggrecans from free ³⁵Sulphate. The eluted macromolecular fractions were counted for radioactivity. The radioactivity under the curves was related to the total incorporation of ³⁵Sulphate in aggrecans by the respective cultures.

Quantitative determination of total ³⁵S-labelled proteoglycans synthesized in alginate cultures

After a 2-week culture period, as was the case for the agarose cultures, each test consisted of a 5-day (3 days plus 2 days) incubation period in the absence or presence of hydrocortisone. Hydrocortisone was diluted to the desired concentrations of 0.005 µg/ml to 1 µg/ml. Ten µCi/ml of Na₂³⁵SO₄ was included in the incubation medium of the alginate beads during the last 48 hours of hydrocortisone incubation. The culture medium was then aspirated and the alginate beads were washed and dissolved by incubation for...
Pools of the obtained nutrient media and 35S-labelled proteoglycans in the nutrient medium. The resulting suspension was centrifuged at 900 rpm for 10 minutes to separate the cells with their cell-associated matrix [CAM; the pellet (23)] from the constituents of the interterritorial matrix (ITM; the supernatant). The CAM was further extracted by incubation for 48 hours under dissociative conditions with 4 M GuHCl in a 50 mM sodium acetate buffer pH 5.8 (32), at 4°C in the presence of proteinase inhibitors: 0.1 M ε-aminon-caproic acid, 0.01 M EDTA, 0.005 M benzamidine-chloride and 0.01 M phenylmethylsulphonyl fluoride (31). This solution was subsequently centrifuged for 10 min. at 1000 rpm and the dissociated CAM aggrecans were recovered in the supernatant. The suspensions obtained (CAM and ITM) and the nutrient media were desalted using Sephadex G25 chromatography gel in order to separate 35S-labelled aggrecans from free 35S-Sulphate. Fractions containing the 35S-labelled macromolecules were pooled and used for gel permeation chromatography on Sepharose Cl-2B (Pharmacia) in the same buffer. 35S-labelled macromolecules have been shown to elute in three fractions. 35S-aggrecan aggregates and monomers separated from each other in the first 2 peaks (21, 33). Some low-molecular weight material, the exact nature of which has not been investigated (breakdown products; low-hydrodynamic size aggrecan subpopulations) eluted in the third tailing fraction. The radioactivity under the two first curves allowed to calculate the proportions of 35S-aggrecan aggregates and monomers.

Comparison between aggrecan synthesis by chondrocytes cultured in agarose and in alginate

In order to investigate the correlation between aggrecan synthesis in the agarose and the alginate culture system, chondrocytes from a 23-year-old male were cultured in 3-fold and in parallel in these 2 matrices (donor 9). The cultures were incubated for 5 days with two different concentrations of hydrocortisone (0.2 µg/ml and 1 µg/ml) at day 14. A quantitative determination of the total 35S-labelled proteoglycans in the agarose system was performed as described above. A quantitative determination of the total 35S-labelled proteoglycans in the alginate culture system was obtained by adding the values for 35S-labelled proteoglycans in the CAM, in the ITM and in the nutrient medium.

Chromatography of proteoglycans on Sepharose CL-2B analysis of the 35S-aggrecan subpopulations

Pools of the obtained nutrient media and digests were desalted through a Sephadex G25 chromatography gel in order to separate 35S-labelled aggrecans from free 35S-Sulphate. Factors containing the 35S-labelled macromolecules were pooled and used for gel permeation chromatography on Sepharose Cl-2B (Pharmacia) in the same buffer. 35S-labelled macromolecules have been shown to elute in three fractions. 35S-aggrecan aggregates and monomers separated from each other in the first 2 peaks (21, 33). Some low-molecular weight material, the exact nature of which has not been investigated (breakdown products; low-hydrodynamic size aggrecan subpopulations) eluted in the third tailing fraction. The radioactivity under the two first curves allowed to calculate the proportions of 35S-aggrecan aggregates and monomers.

Statistics

The experiments were conducted in 3-fold. Mean values and one standard deviation (1SD) were calculated. Statistical analysis was carried out by the unpaired two-tailed Mann-Whitney U-test to determine whether variables were significantly different (p < 0.05) in the respective experiments. The Spearman rho-test was used for the correlation of the aggrecan synthesis in the two culture systems in one of the donors.

Results

Aggrecan synthesis in agarose culture

The influence of hydrocortisone on 35S-aggrecan synthesis by human articular chondrocytes cultured in agarose is shown in Table I. Hydrocortisone doses ranging from 0.005 µg to 1 µg/ml induced a dose-dependent response result in the first 3 donors. The lowest concentration of hydrocortisone (0.005 µg/ml) augmented 35S-incorporation in donors 1 and 2: 35S-incorporation increased by ±40% in 2 out of 3 donors. All of the higher doses resulted in a statistically significant and dose-dependent stimulation of aggrecan synthesis.

The hydrocortisone concentration was increased to 5 µg/ml in donor 4 and to 1 mg/ml in donor 5. In donor 4, a plateau was reached at 1 µg/ml: for doses of 1 µg/ml, 2.5 µg/ml and 5 µg/ml an increase to nearly 200% of the control situation was observed. In donor 5, for concentrations of 500 µg/ml and 1 mg/ml, 35S-incorporation dramatically decreased. However, only for the highest concentration of hydrocortisone (1 mg/ml) was the 35S-incorporation not significantly different from the control situation.

Table I. Effects of hydrocortisone on aggrecan synthesis by chondrocytes cultured in agarose (pg SO4 incorporated per hour per 10^6 cells).

<table>
<thead>
<tr>
<th>Donor</th>
<th>Baseline aggrecan synthesis (absolute amounts)</th>
<th>% Change (relative amounts)</th>
<th>Mean changes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor 1</td>
<td>Donor 2</td>
<td>Donor 3</td>
<td>Donor 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100% (6)</td>
<td>100% (5)</td>
<td>100% (7)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>138% (1)</td>
<td>137% (3)</td>
<td>105% (11)*</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>187% (16)</td>
<td>122% (2)</td>
<td>123% (4)</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>177% (8)</td>
<td>181% (6)</td>
<td>162% (1)</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>246% (8)</td>
<td>212% (8)</td>
<td>183% (3)</td>
</tr>
<tr>
<td>2.5 µg/ml</td>
<td>246% (8)</td>
<td>188% (6)</td>
<td>205% (12)</td>
</tr>
<tr>
<td>5 µg/ml</td>
<td>212% (8)</td>
<td>194% (6)</td>
<td>189% (5)</td>
</tr>
<tr>
<td>10 µg/ml</td>
<td>183% (3)</td>
<td>189% (5)</td>
<td>122% (7)</td>
</tr>
<tr>
<td>100 µg/ml</td>
<td>183% (3)</td>
<td>189% (5)</td>
<td>122% (7)</td>
</tr>
<tr>
<td>500 µg/ml</td>
<td>183% (3)</td>
<td>189% (5)</td>
<td>122% (7)</td>
</tr>
<tr>
<td>1 mg/ml</td>
<td>183% (3)</td>
<td>189% (5)</td>
<td>122% (7)</td>
</tr>
</tbody>
</table>

Donor 1: 2-year-old male; donor 2: 58-year-old male; donor 3: 65-year-old male; donor 4: 54-year-old female; donor 5: 61-year-old female. Data are presented as mean values of 3 cultures. Coefficient of variations are in brackets. Stimulation of 35S-incorporation is statistically significant (p < 0.05) for all concentrations tested in all 5 donors, except for the lowest concentration in donor 3 (p*). The highest concentration in donor 5 (p).
matography was performed on the pools of combined agarose digests and supernatant media obtained from the culture of each donor, in order to determine the influence of hydrocortisone on the quality of the newly synthesized aggrecans. The proportions of the aggrecan subtypes of the control situation in donor 4 are shown in Figure 1A. 36% of the 35S-labelled molecules are AG aggregates, while 64% are monomers and low molecular weight products. Under the influence of hydrocortisone at concentrations from 0.2 µg/ml the percentage of AG aggregates increased, while there were fewer monomers and low-molecular weight products. Higher concentrations of hydrocortisone (1 µg/ml to 5 µg/ml) did not further increase the proportion of newly synthesized AG aggregates, (Fig. 1B -E).

Aggrecan synthesis in alginate culture

The influence of hydrocortisone on the accumulation of aggrecans in the different extracellular compartments investigated in the alginate culture system are listed in Table II. Compared to the control situation aggrecan synthesis was significantly increased when the chondrocytes were incubated with 0.005 µg/ml up to 1 µg/ml of hydrocortisone. This was true for the CAM and ITM. Donor 6, when incubated with 0.005 µg/ml of hydrocortisone, showed a 21% increase in aggrecan synthesis in the CAM when compared to the control situation, while donors 7 and 8 showed increases of 82% and 25%, respectively. This dose-dependent increase was present at all the higher concentrations of hydrocortisone. Similar increases of aggrecan synthesis were also apparent in the ITM. In the nutrient medium this increase was not seen. In contrast, 35S-activity remained unaltered, possibly due to a lesser escape of aggrecan aggregates and monomers into this compartment when incubated with hydrocortisone.

Comparison of aggrecan synthesis in the two different matrices

Aggrecan synthesis in the agarose culture model incubated with 0.2 µg/ml and 1 µg/ml of hydrocortisone was 163% and 186%, respectively, compared to the control situation. In the alginate culture sys-

Fig. 1. Representative CL-2B profiles of 35S-labelled macromolecules, synthesized in the absence of hydrocortisone (control) and in the presence of 0.2 µg/ml, 1 µg/ml, 2.5 µg/ml and 5 µg/ml of hydrocortisone. The donor was a 54-year-old female. Numbers represent percentages of aggregates (AGGR), monomers (MO) plus low-molecular weight products (low-mol weight AG). AG = aggrecans.
Hydrocortisone and aggrecan metabolism in human chondrocyte cultures / K.F. Almqvist et al.

Table II. Effects of hydrocortisone on aggrecan synthesis by chondrocytes cultured in alginate (pg SO_4 incorporated per hour per 10^6 cells).

<table>
<thead>
<tr>
<th></th>
<th>Donor 6</th>
<th>Donor 7</th>
<th>Donor 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Cell-associate matrix (CAM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline aggrecan synthesis (absolute amounts)</td>
<td>6682 (5)</td>
<td>2084 (10)</td>
<td>4462 (6)</td>
</tr>
<tr>
<td>% Change (relative amounts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100% (5)</td>
<td>100% (10)</td>
<td>100% (6)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>121% (1)</td>
<td>182% (7)</td>
<td>125% (4)</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>177% (4)</td>
<td>254% (7)</td>
<td>183% (3)</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>193% (4)</td>
<td>315% (3)</td>
<td>232% (2)</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>214% (2)</td>
<td>367% (4)</td>
<td>252% (3)</td>
</tr>
<tr>
<td>Mean changes (%)</td>
<td>100% (6)</td>
<td>143% (4)</td>
<td>205% (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Inter-territorial matrix (ITM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline aggrecan synthesis (absolute amounts)</td>
<td>7029 (7)</td>
<td>10648 (6)</td>
<td>12364 (3)</td>
</tr>
<tr>
<td>% Change (relative amounts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100% (7)</td>
<td>100% (6)</td>
<td>100% (3)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>115% (1)</td>
<td>130% (2)</td>
<td>118% (2)</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>119% (3)</td>
<td>127% (2)</td>
<td>122% (2)</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>139% (4)</td>
<td>142% (2)</td>
<td>132% (6)</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>226% (2)</td>
<td>147% (2)</td>
<td>135% (6)</td>
</tr>
<tr>
<td>Mean changes (%)</td>
<td>121% (2)</td>
<td>123% (2)</td>
<td>138% (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Nutrient medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline aggrecan synthesis (absolute amounts)</td>
<td>11319 (1)</td>
<td>5043 (4)</td>
<td>4180 (3)</td>
</tr>
<tr>
<td>% Change (relative amounts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100% (1)</td>
<td>100% (4)</td>
<td>100% (3)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>114% (2)</td>
<td>105% (3)</td>
<td>98% (2)</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>103% (10)</td>
<td>97% (5)</td>
<td>109% (8)</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>100% (2)</td>
<td>97% (6)</td>
<td>118% (2)</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>100% (2)</td>
<td>100% (5)</td>
<td>129% (3)</td>
</tr>
<tr>
<td>Mean changes (%)</td>
<td>100% (3)</td>
<td>106% (2)</td>
<td>103% (8)</td>
</tr>
</tbody>
</table>

Donor 6: 25-year-old male; donor 7: 40-year-old male; donor 8: 24-year-old male. Data are presented as mean values of 3 cultures. Coefficient of variations are in brackets. Stimulation of ITM and nutrient medium together induced a strong correlation in aggrecan synthesis between the agarose and the alginate culture system was found, with a correlation coefficient of 0.95 and a p-value of 0.007 (Fig. 2).

Influence of hydrocortisone on aggrecan subpopulations in alginate cultures

As in the agarose model, Sepharose Cl-2B gel permeation chromatography performed on the CAM of 3 alginate cultures from 3 different donors (donors 6, 7 and 8) after the dissociative condition showed significantly higher percentages of aggrecan in aggregates and in the monomeric form when pre-incubated with hydrocortisone. This was true at all concentrations of hydrocortisone used when compared with the control (Table III-A). In the ITM a significant increase of aggrecan in aggregates and in the monomeric form was also present, although the concentration of hydrocortisone that induced a significant increase was donor-dependent (Table III-B). In the nutrient medium, only the monomeric form of aggrecan showed an increase when the chondrocytes were pre-incubated with hydrocortisone but, as for the ITM, a donor-dependent difference in hydrocortisone concentration was required for a significant increase (Table III-C).

Discussion

These results demonstrate an important stimulatory effect of hydrocortisone on aggrecan synthesis by normal human articular chondrocytes. Data on the influence of glucocorticoids on human cartilage are scarce. AG synthesis was slightly reduced by hydrocortisone, 72.5 to 725 µg/100 ml, in one experiment on osteoarthritic cartilage organ explants (11). In another study, hydrocortisone was shown to inhibit sulphated glycosaminoglycan synthesis in human cartilage explants harvested from femoral heads during surgery (34). However, the drug effects in this experiment were found to vary significantly from one femoral head to another, probably due to the heterogeneity of the chondrocyte populations in the different samples and their different viability.

These problems are avoided when homogeneous cell populations of isolated chondrocytes in suspension cultures are used. The agarose and alginate culture model is a valid system for studying both the anabolism and catabolism of normal chondrocytes (21, 35). To investigate the influence of all concentrations of hydrocortisone in one experiment, too large a number of chondrocytes would have been required. The different test concentrations of hydrocortisone were therefore divided over several donors. Hydrocortisone doses in the present experiments were similar to physiological and therapeutic serum levels. 0.2 µg/ml is the normal morning serum peak level (8.00 a.m.). In vitro cultures of chondrocytes in agarose produced a dose-dependent response in aggrecan synthesis when in-
Hydrocortisone and aggrecan metabolism in human chondrocyte cultures / K.F. Almqvist et al.

Hydrocortisone and aggrecan metabolism in human chondrocyte cultures / K.F. Almqvist et al.

This increase reached a plateau at higher doses (up to 100 µg/ml) with approximately 200% of aggrecan synthesis when compared with the control situation. Only with supratherapeutic levels of 500 µg to 1 mg/ml did the plateau begin to decline, probably due to the toxic effects of hydrocortisone at these megadoses.

When chondrocytes were incubated with hydrocortisone at concentrations of 0.005 µg/ml to 1 µg/ml this dose-dependent response in aggrecan synthesis was also seen in the CAM and in the ITM of the alginate culture system. However, in the nutrient medium of the latter culture matrix no change in the 35S-aggrecans was found with increasing hydrocortisone concentrations.

In the present study the low coefficients of variation (in general less than 10%)

Table III. Influence of hydrocortisone on aggrecan subpopulations of chondrocytes cultured in alginate. Dose-dependent response experiments.

A. Cell-associate matrix (CAM)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>% Aggregates</th>
<th>% Monomers</th>
<th>% Low MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>32 (6)</td>
<td>28 (10)</td>
<td>29 (4)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>37 (5)*</td>
<td>34 (4)*</td>
<td>36 (4)*</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>39 (5)*</td>
<td>35 (5)*</td>
<td>38 (3)*</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>39 (5)*</td>
<td>38 (4)*</td>
<td>39 (7)*</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>40 (4)*</td>
<td>38 (8)*</td>
<td>42 (6)*</td>
</tr>
</tbody>
</table>

B. Inter-territorial matrix (ITM)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>% Aggregates</th>
<th>% Monomers</th>
<th>% Low MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>32 (3)</td>
<td>30 (10)</td>
<td>31 (8)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>33 (5)</td>
<td>36 (3)*</td>
<td>35 (7)</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>36 (3)*</td>
<td>38 (4)*</td>
<td>41 (4)*</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>36 (2)*</td>
<td>40 (6)*</td>
<td>39 (6)*</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>43 (4)*</td>
<td>40 (5)*</td>
<td>41 (6)*</td>
</tr>
</tbody>
</table>

C. Nutrient medium

<table>
<thead>
<tr>
<th>Concentration</th>
<th>% Aggregates</th>
<th>% Monomers</th>
<th>% Low MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1 (60)</td>
<td>1 (36)</td>
<td>1 (30)</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>1 (27)</td>
<td>1 (33)</td>
<td>1 (29)</td>
</tr>
<tr>
<td>0.05 µg/ml</td>
<td>1 (27)</td>
<td>2 (27)</td>
<td>1 (20)</td>
</tr>
<tr>
<td>0.2 µg/ml</td>
<td>1 (46)</td>
<td>1 (20)</td>
<td>1 (18)</td>
</tr>
<tr>
<td>1 µg/ml</td>
<td>1 (38)</td>
<td>1 (22)</td>
<td>1 (20)</td>
</tr>
</tbody>
</table>

Donor 6: 25-year-old male; donor 7: 40-year-old male; donor 8: 24-year-old male. Percentage of aggrecan subpopulations [aggrecan aggregates, monomeric form of aggrecans and low-molecular weight proteoglycans (low MW)] are presented as mean values of 3 cultures. Coefficient of variations are between brackets. The cell-associated matrix (CAM), the inter-territorial matrix (ITM) and the nutrient medium were investigated.

*: a significant difference (p < 0.05) when compared to the control situation.
in both matrices plead for the high re-
producibility of chondrocyte suspension
cultures. As already reported, a differ-
ence in the aggrecan synthesis rate de-
pending on the age of the donor was pre-
sent in the control situation (30). The
aggrecan synthesis rate is decreased in
an ageing population after maturity has
been reached. These results can be ex-
tapolated to in vivo synthesis rates.
However, it may be assumed that articular
chondrocytes keep their age-related in vivo synthesis properties in this cul-
ture condition.
Aggrecan synthesis in the two matrices, when stimulated with 0.2 µg/ml and 1 µg/ml, showed a strong correlation as demonstrated by the high correlation co-
efficient.
Simultaneously with an enhancement of AG-synthesis, hydrocortisone augment-
ed the fraction of large AG (AG aggregates and AG monomers) released by the chondrocytes cultured in the two types of matrices. These findings are in agree-
ment with earlier observations (18). Tri-
amicinolone enhances the synthesis of large proteoglycans not only in normal but also in arthritic cartilage of C57Bl mice in vivo (36). Stimulation of glycos-
aminoglycan synthesis by hydrocorti-
sone in vitro has been reported in rabbit chondrocytes (37).
Osteoarthritis occurs with an inflamma-
tion in the surrounding synovia. In this synovium an infiltration of lymphomye-
loid cells is seen, of which some types produce substances which are extremely
harmful to the joint tissues. Glucocor-
ticoids inhibit the infiltration of these lymphomyeloid cells in the synovia, and
thus reduce the effects of cytokines and suppress the metalloproteinase activity
in cartilage and synovium.
The reluctance to use intra-articular ster-
oid injections is mainly based on animal
models indicating that these drugs may
produce substances which are extremely
harmful to the joint tissues. Glucocor-
tisone inhibits the infiltration of these
lymphomyeloid cells in the synovia, and
then reduce the effects of cytokines and
suppress the metalloproteinase activity
in cartilage and synovium.

References
1. SALTER RB, GROSS A, HAAL JB: Hydrocorti-
sone arthropathy: an experimental investiga-
2. BENTLEY G, GOODFELLOW JW: Disorgan-
zation of the knees following intra-articular
3. MOSKOWITZ RW, DAVIS W, SAMMARCO J,
MAST W, CHASE SW: Experimentally induced
corticosteroid arthropathy. Arthritis Rheum
4. BEHrens F, SHEPARD N, MITCHELL N: Alter-
ation of rabbit articular cartilage by intra-
articular injections of glucocorticoids. J Bone
5. KAHLBEN DA: Degenerative joint disease fol-
lowing chondrocyte injury-chemically induced
osteoarthrosis. In VERBRUGGEN G and VEYS
EM (Eds.): Degenerative Joints, Vol. 2. Else-
6. MURRAY RC, DEBIOWES RM, GAUGHAN EM,
ZHUF CF, ATHANASIOU KA: The effects of in-
tra-articular methylprednisolone and exercise
on the mechanical properties of articular car-
tilage in the horse. Osteoarthritis Cart 1998;
6: 106-14.
7. MANKIN HJ, CONGER KA: The acute effect of
intraarticular hydrocortisone on articular car-
8. SILBERMANN M, VON DER MARK K, MAOR
G. VAN MENXEL M: Dexamethasone impairs
growth and collagen synthesis in condylar car-
9. HILL DJ: Effects of cortisol on cell prolifera-
tion and proteoglycan synthesis and degrada-
tion in cartilage zones of the calf costochon-
deral growth plate in vitro with and without
rat plasma somatomedin activity. J Endocrinol
10. PAPACHRISTOU G, ANAGNOSTOUD S, KAT-
SORHIS T: The effect of intraarticular hydro-
cortisone injection on the articular cartilage
of rabbits. Acta Orthop Scand 1997 (Suppl. 275);
11. PELLETIER JP, CLOUTIER JM, MARTEL-
PELLETIER I: In vitro effects of tiaprofenic
acid, sodium salicylate and hydrocortisone on
the proteoglycan metabolism of human osteo-
arthritis cartilage. J Rheumatol 1989; 16: 646-
55.
12. PELLETIER JP, MARTEL-PELLETIER J, CLOU-
TIER JM, WEOSSNER JR: Proteoglycan-de-
grading acid metalloproteinase activity in hu-
man osteoarthritic cartilage, and the effects of
intraarticular steroid injections. Arthritis Rheum
13. COLOMBO C, BUTLER M, HICKMAN L, SEL-
WYN M, CHART J, STEINETZ B: A new model of
osteoarthritis in rabbits. II. Evaluation of
anti-osteoarthritic effects of selected antihemo-
matic drugs administered systemically. Arthri-
new model of osteoarthritis in rabbits. III. Eval-
uation of anti-osteoarthritic effects of se-
lected drugs administered intraarticularly. Arthri-
15. WILLIAMS JM, BRANDT KD: Triamcinolone
hexaamidone protects against fibration and
osteophyte formation following chemically
induced articular cartilage damage. Arthritis Rheum
16. PELLETIER JP, MARTEL-PELLETIER J: Pro-
tective effects of corticosteroids on cartilage
lesions and osteophyte formation in the Pond-
Nuki dog model of osteoarthritis. Arthritis Rheum
17. PELLETIER JP, MINEAU F, RAYNAUD JP,
WOESSNER JF, GUNJA-SMITH Z, MARTEL-
PELLETIER I: Intra-articular injections with
methylprednisolone acetate reduce osteoarth-
rhetic lesions in parallel with chondrocyte stro-
melins synthesis in experimental osteoar-
18. VAN DER KRAAN PM, VITTERS EL, POSTMA
NS, VERBUNT J, VAN DEN BERG WB: Mainte-
nance of the synthesis of large proteoglycans
in anatomically intact murine articular carti-
lage by steroids and insulin-like growth factor
19. PELLETIER JP, MARTEL-PELLETIER J: Car-
tilage degradation by neutral proteoglycan-
es in experimental osteoarthitis. Suppression by
steroids. Arthritis Rheum 1985; 28: 1393-
401.
20. BENYA PD, SCHAFFER JD: Differrentiated chondrocytes re-express the differentiated col-
lagen phenotype when cultured in agarose gels.
21. VERBRUGGEN G, VEYS EM, WEME N et al.: The
synthesis and immobilisation of cartilage-
40. LEE SW, TSOU AP, CHAN H et al.: Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. *Proc Natl Acad Sci USA* 1988; 85: 1204-8.