Expression of metalloproteinase-2 (gelatinase A) in labial salivary glands of patients with Sjögren’s syndrome with HTLV-I infection

First Department of Internal Medicine, Nagasaki University School of Medicine; 1School of Allied Medical Sciences, Nagasaki, Japan

Masahiro Tominaga, MD; Kiyoshi Migita, MD; Hideki Nakamura, MD; Yasufumi Ichinose, MD; Takafumi Furuya, MD; Tomoki Origuchi, MD; Yojiro Kawabe, MD; Ayumi Hida, MD; Tatsufumi Nakamura, MD; Katsumi Eguchi, MD.

Please address correspondence and reprint requests to: Katsumi Eguchi, M.D., Chairman and Professor, First Department of Internal Medicine, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.

Received on November 3, 1998; accepted in revised form on February 18, 1999.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 1999.

Key words:
Sjögren’s syndrome, matrix metalloproteinases, HTLV-I, HAM.

ABSTRACT.
Objective
To determine whether gelatinase A (MMP-2) plays a significant role in the pathogenesis of Sjögren’s syndrome (SS) with or without HTLV-I infection.

Methods
We examined 24 patients with SS (14 HTLV-I-seropositive and 8 HTLV-I-seronegative). Labial salivary gland tissue samples were analysed immunohistochemically using anti-MMP-2 monoclonal antibodies.

Results
In normal salivary glands, MMP-2 expression was not detected. All biopsy samples of 8 SS patients with HTLV-I-associated myelopathy (HAM) and 3 of 6 HTLV-I-seropositive SS patients without manifestation of HAM stained positively for MMP-2. However, the other samples were negative for MMP-2.

Conclusion
Our study showed the MMP-2 expression in labial salivary glands of HTLV-I-seropositive SS patients, especially in all SS patients with HAM. The presence of MMP-2 in the salivary glands of these patients suggests that it may play a role in cellular infiltration and destruction in salivary glands of SS.

Introduction
Sjögren’s syndrome (SS) is an autoimmune disease characterised by lymphocytic infiltration and destruction of the salivary and lacrimal glands (1). Although several aetiological mechanisms have been proposed, the pathogenesis of SS remains unknown. Viruses, including retroviruses, have been considered as potential aetiological agents inducing SS (2, 3). We reported previously a high seroprevalence of human T cell lymphoma virus type -I (HTLV-I) in female SS patients, compared with female blood donors residing in Nagasaki, which is heavily endemic for HTLV-I infection (4). These findings suggest a close relationship between HTLV-I infection and SS.

Matrix metalloproteinases (MMPs) are a family of enzymes that degrade most of the macromolecules making up the extracellular matrix (ECM) (5). MMPs are implicated in the pathogenesis of autoimmune diseases and are responsible for tissue destruction. Gelatinase (MMP-2) is capable of degrading type IV and type V collagens, which are major components of the basal lamina and are thought to play an important role in cell migration and tumor cell metastasis (6). In the present study, we examined the expression of gelatinase in the labial salivary glands of SS patients with or without HTLV-I infection.

Materials and methods
Patients
We examined 24 female patients diagnosed as having primary Sjögren’s syndrome using the European Community criteria (7). The mean age of the patients was 60.4 years. Eight had HTLV-I-associated myelopathy (HAM) (mean age, 63.1 yrs.) diagnosed according to the criteria proposed by Osame et al. (8). Six patients who were seropositive for anti-HTLV-I antibody had no clinical manifestations of HAM (mean age 56.5 yrs.). Eight patients were seronegative for anti-HTLV-I antibody (mean age 58.1 yrs.). Three patients with sicca syndrome but who did not fulfill the European Community diagnostic criteria for SS (including no foci on histology) were also examined in this study. Informed consent was obtained from all participating patients and the study was conducted in accordance with the guidelines on human experimentation of our institution.

Monoclonal antibodies
Anti-hMMP-2 monoclonal Ab [Clone No. 42-5D11 (9)] was obtained from Fuji Chemical Co. (Takaoka, Japan). Anti-CD3 mAb(Leu-4) was purchased from Becton Dickinson Monoclonal Center (Mountain View, CA). Anti-CD68 mAb was purchased from DAKO(Glostrup, Denmark).

Immunohistochemical method
Labial salivary glands were obtained under local anaesthesia, and fixed in 4% paraformaldehyde (PFA) in PBS (pH 7.4). Cryosections (5-7 µm) were cut and mounted on glass slides. The binding of mouse monoclonal antibody (MMP-2)
was detected by the labelled-streptavidin-biotin method (HISTOFINE staining kit, Nichirei Co., Tokyo), as described previously (10). Color was developed using 3,3-diamino-benzidin and H$_2$O$_2$. The slides were counterstained with haematoxylin. Negative control sections were treated with normal mouse IgG. All specimens were evaluated with a microscope using x200 magnification power. All infiltrated cells were counted and the number of cells positive for MMP-2 was graded as follows: (-) 0%; (+) 0 - 20%; (++) > 20% (Table I).

Results

Expression of matrix metalloproteinases

Immunohistochemical staining by anti-MMP-2 on the normal salivary glands was carried out. As shown in Figure 1B, MMP-2 was not localized in normal salivary gland tissues. Also no positive staining was noted in control sections stained with murine monoclonal IgG in the place of anti-MMP-2 mAb (Fig. 1A). Salivary gland tissues from 24 SS patients with or without HTLV-I infection were examined immunohistochemically using specific antibody against MMP-2. Labial salivary gland from SS patients with HAM were positively stained with anti-MMP-2 monoclonal antibodies. MMP-2 was mainly stained in the mononuclear cells infiltrating in the interstitium of the salivary gland (Fig. 1D). In contrast, staining with anti-MMP-2 mAb was not observed in salivary gland specimens from SS patients with or without HTLV-I infection.

Table I shows the MMP-2 expression of salivary gland specimens in SS patients with or without HTLV-I infection. MMP-2 staining of salivary glands was detected in all 8 SS patients with HAM and 3 of 6 HTLV-I-seropositive SS patients. No MMP-2 staining of salivary glands was observed in all 10 HTLV-I-seronegative SS patients.

Discussion

We have demonstrated in this study the presence of MMP-2 in the labial salivary glands of SS patients with HAM as well as in those of HTLV-I-seropositive SS patients by immunohistochemical analysis. In contrast, MMP-2 was not present in the salivary glands of HTLV-I-seron-
MMP-2 expression in HTLV-I positive SS / M. Tominaga et al.

In SS, migration of lymphocytes to salivary glands could be triggered by antigen challenge (11). MMP-2 degrades type IV collagen, a major component of the basal lamina, and may enhance the penetration and transmigration of antigen-stimulated lymphocytes through the subendothelial basal lamina (12). Thus, it is likely that the high expression of MMP-2 promotes infiltration and accumulation of lymphocytes and macrophages in the extra-lymphoid tissues. In HTLV-I Tax transgenic mice, lymphocytic infiltration is observed in salivary glands, and the histological findings resemble those in SS patients (13). HTLV-I tax gene upregulates inflammatory cytokine genes by activating NF-κB, a transcriptional factor (14). Production of these cytokines may result in lymphocyte activation, and migration to the salivary glands (15). HTLV-I-infected lymphocytes and macrophages are known to secrete large amounts of cytokines including IL-2, IFN-γ, TGF-β (16) which are known to induce MMP-2 production from lymphoid and fibroblastic cells (17). Therefore, it is possible that HTLV-I infection may contribute to increased MMP-2 expression in lymphocytes and macrophages via these cytokines, and cause the infiltration and destruction of salivary glands. In this regard, Azuma et al. (18) recently reported the presence of a positive relationship between activation of MMP-2 and NF-κB activity in salivary glands of SS patients.

In summary, our data demonstrated that MMP-2 was predominantly expressed in salivary glands of HTLV-I-seropositive patients with SS. These data suggest that HTLV-I-infection could contribute to MMP-2 expression by salivary infiltrating cells and suggest a potential role for MMP-2 in lymphocyte trafficking process as well as destruction of the connective tissue of salivary glands in HTLV-I seropositive patients with SS.

References

8. OSAME M, MATSUMOTO M, USUKU K, et al.: Chronic progressive myelopathy associated with elevated antibodies to human T-lymph-