New approaches to imaging of early rheumatoid arthritis

P.G. Conaghan, D. McGonagle, R. Wakefield, P. Emery

Rheumatology and Rehabilitation Unit, University of Leeds, Leeds, UK.
Philip G. Conaghan, MBBS, FRACP, Senior Lecturer; Dennis McGonagle, MBChb, BA, MRCP, Lecturer; Richard Wakefield, BM, MRCP, Research Fellow; Paul Emery, BA, MA, MBBChir, MD, FRCP, ARC Professor of Rheumatology.

Please address correspondence and reprint requests to: Prof. Paul Emery, Rheumatology and Rehabilitation Research Unit, University of Leeds, 36 Clarendon Road, Leeds LS2 9NZ, UK.
Clin Exp Rheumatol 1999; 17(Suppl. 18): S37-S42.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 1999.

Key words:
Early rheumatoid arthritis, magnetic resonance imaging (MRI), sonography, x-ray, ultrasonography (US), dual x-ray absorptiometry (DXA).

ABSTRACT
Conventional radiology (CR) is a major tool for the diagnosis and assessment of early arthritis. However, CR does not image the primary pathology of rheumatoid arthritis (RA), i.e. the synovium, and is insensitive for radiological erosions. New techniques, particularly magnetic resonance imaging (MRI) and ultrasonography (US) have shown their potential to improve on the sensitivity of CR. This article reviews the current status of this approach in early disease.

Introduction
Conventional radiography (CR) has traditionally provided the marker for both diagnosis and disease therapeutic modification in rheumatoid arthritis (RA): the radiographic bony erosion. However, there are problems with the parameter of erosion in disease measurement: it is present in less than 40% of cases of early RA at presentation (1) and therefore has limited diagnostic utility, and discordance has been reported between clinical disease activity and erosion progression (2). The introduction of newer, multiplanar imaging modalities, such as magnetic resonance imaging (MRI) and ultrasonography (US), that have the ability to image both soft tissue and bone, has resulted in increasing knowledge about both the pathogenesis and treatment response in early RA.

Magnetic resonance imaging
The technology
A number of features have contributed to the increased use of MRI in rheumatology, including better access to scanners, the improved resolution of scanners, and rapid developments in the sequences used for evaluating different tissues. The principles of MRI have been simply explained elsewhere (3), but a brief description follows. The hydrogen protons in human tissues align when placed in an external magnetic field; this is termed longitudinal magnetisation. When excited by an external electromagnetic pulse, they acquire energy or resonance, with a consequent decrease in longitudinal magnetisation and an increase in transverse magnetisation. When this pulse is turned off, the protons will return to their previous low-energy state. The net movement of protons results in an electric current measured as the MR signal.

The appearances of particular tissues depend on their hydrogen proton content. When using common MRI sequences, a T1-weighted (T1W) image results in fat-containing tissues such as bone marrow having a high signal (Fig. 1). On T2W images, both fat and fluid have a high signal. Modern techniques of fat suppression can eliminate this high signal from fat (Fig. 2), thereby making sites of fluid and inflammation easily visible (Fig. 3). One of the tools used for evaluating synovitis is the paramagnetic agent gadolinium-diethylenetriaminepentacetic acid (Gd-DTPA). This agent shortens the relaxation times of adjacent tissues, thereby improving contrast, and its uptake depends on tissue vascularity and capillary permeability, hence identifying the sites of inflammation.

When comparing MRI studies in RA, it is useful to examine the magnet strength (measured in Tesla), the sequences performed (including whether axial or coronal views were included), and the anatomic sites studied, as these all vary considerably. It is also important conceptually to realise that CR shows bright bone because of the calcium content, whereas bright bone on T1W MRI images represents the bone marrow hydrogen content. Thus, “MRI erosion” is not the same pathogenic entity as CR erosion, although, as will be discussed below, they likely represent the same lesion at different points in time.

MRI and bony damage
A number of studies have demonstrated the superior sensitivity of MRI over CR to detect bony damage. Many of these reports involved short duration or early
New approaches to imaging of early RA/ P.G. Conaghan et al.

Fig. 1. Coronal view of a normal hand using a T1-weighted SE sequence.

Fig. 2. Coronal view of a normal hand using a T2 fat-suppressed sequence. Note the low signal from bone marrow.

Fig. 3. Coronal view of the hand (T2 fat-suppressed sequence) from a rheumatoid arthritis patient showing inflammation (high signal) in the second to fourth metacarpophalangeal heads (*).
RA patients. McQueen et al. examined the carpus in 42 patients with RA of a mean duration of 4 months and found CR erosions in 15%, but MRI bony lesions in 45% (4). Jørgensen et al. found MRI erosions in 4 of 15 wrists with normal CR and a similarly short disease duration (5). Forslind et al. (6) demonstrated a marked superiority of the MRI erosion count over the CR erosion count at the knee, but only a small difference at the fifth metatarsophalangeal (MTP) joints, in 30 patients with a mean disease duration of 8 months. Using fat suppression sequences, we have reported (in abstract form only) CR and MRI findings in the second to fifth metacarpophalangeal (MCP) joints of early RA patients (7). Ten radiographic erosions were found in 116 joints examined, whereas MRI demonstrated more than 100 bony abnormalities. This observation highlights the capacity of fat-suppressed MRI to demonstrate areas of bone oedema, which are also demonstrated at the wrist in longer-duration disease (8). Studies in longer-duration RA have also demonstrated the greater sensitivity of MRI at the wrist, finger, and shoulder joints (9-11). These studies in early disease highlight the fact that most patients with RA have bony abnormalities on MRI scanning at presentation. We have also demonstrated that the described MRI bony changes are seen only infrequently in normal controls (12) and seem relatively specific for RA, being less frequent in patients with polyarthritis who have a good prognosis (13).

MRI and synovitis

Synovitis appears to be the primary inflammatory event in RA. The best method to detect synovitis using MRI employs the intravenous contrast agent Gd-DTPA mentioned above. Gd-DTPA synovitis has been correlated with microscopic changes of inflammation in the RA knee, including cellular infiltrates, fibrin deposition, and vascular proliferation (14-16). One of these studies using arthroscopy also found correlations with macroscopic synovitis (15). Different methods may be applied for quantitating synovitis, although again one must be careful when comparing studies using different measurement tools. Assessments may be performed either manually or using semi- or fully-automated software packages. Synovitis may be calculated from the total synovial volume (using multiple sections), from a single section, or from pharmacokinetic parameters such as the rate of Gd-DTPA enhancement or maximal Gd-DTPA enhancement (17-19). MRI synovial volumes may be used to monitor the response to therapy. In the short term, studies of intraarticular corticosteroids in the knee indicate that MRI volumes are a sensitive measure of change in clinical disease activity (18, 20, 21). Similarly, we have demonstrated for early RA that MRI detects reductions in the MCP joint synovial volume after intraarticular corticosteroids (22). Newer studies have demonstrated the usefulness of MRI in the long-term follow-up of treatment (23).

MRI in the diagnosis and prognosis of RA

With studies demonstrating that Gd-enhanced MRI is more sensitive than clinical examination for both early RA (6, 7) and RA of longer duration (24), the possible role for MRI in the screening of early arthritis populations has been raised. There are few published studies in this area, however. One report indicated that addition of the MRI criteria of contrast-enhancing joints in both hands of RA (duration not stated) and non-RA patients to the classification tree format of the American College of Rheumatology criteria resulted in sensitivity and negative predictive values of 100% (25). Importantly, observations based on MRI have suggested two subgroups of inflammatory arthritis: a primary intra-synovial group and an entheseal-based group (26). The consequences of these findings will be relevant in defining MRI-based disease criteria. Although CR-based studies have suggested an uncoupling of synovitis and bone damage, our MRI studies of early RA have suggested a more direct relationship with bone oedema secondary to synovitis detected as the earliest MRI bone change (12). This observation is supported by recent contrast-enhanced MRI studies demonstrating that baseline synovitis scores were highly correlated with subsequent CR damage at 6 and 12 months in both early (27) and more established disease (23, 28). These longer-term studies highlight the usefulness of MRI in assessing treatment response and raise questions regarding the definition of true remission.

Ultrasonography

The technology

Like MRI, changes in ultrasound technology have increased interest in this field for rheumatology, as reflected in recent editorials (29-31). US provides multiplanar imaging with real-time examination and a lack of ionising radiation - all-important advantages over CR. Improved microprocessors, faster digital imaging systems, and high-frequency (7.5 - 20 MHz) transducers have resulted in the clearer visualization of both bone and soft tissues. The transducer is particularly important in image quality: in principle, the higher the frequency of the sonographic wave, the greater the resolution of image, but at the cost of reduced tissue penetration. Linear-array transducers are the most suited for examining linear structures because they emit parallel sonographic waves which, when applied perpendicularly to the structure, allow for maximum reflection. Importantly, the development of new, smaller transducers has allowed better access to the small joints. In general, musculoskeletal pathology results in reduced echogenicity within the target structure (see Figs. 4 and 5).

Ultrasonographic studies of RA

There are few published studies on US in RA (let alone early RA), and this lack of peer-reviewed studies, together with a lack of recognised guidelines for standardised joint examination and training, have hindered the more widespread use of US. However, recent abstracts presented at international meetings suggest that the area is developing rapidly. In earlier studies, US was found to detect more synovial and bony pathology in established RA when compared to normal wrist and MCP joints (32, 33). Recent studies have concentrated on the validation of the technique and have compared US with arthroscopic and MRI findings. Rubaltelli et al. compared US...
New approaches to imaging of early RA/ P.G. Conaghan et al.

Fig. 4. Longitudinal section through a second metacarpophalangeal joint (M = metacarpal head, P = phalanx) showing synovitis (S) over the dorsal aspect of the joint.

Fig. 5. Longitudinal section through a second metacarpophalangeal joint (M = metacarpal head, P = phalanx) showing a large erosion (small arrowheads) on the radial aspect of the metacarpal head.

synovial thickness with arthroscopic findings in 13 RA (and 14 psoriatic arthritis) knees and found good correlations for the suprapatellar and medial recess compartments (34). A Finnish group compared CR, MRI, computerised tomography (CT) and US for the detection of humeral head erosions, again in longstanding RA (35). They found MRI, CT, and US all to be more sensitive than CR, with MRI and US being superior to CT in detecting small erosions. US was the most sensitive tool for detecting erosions of the greater tuberosity, highlighting once again the benefits of multiplanar access.

In a recent report, Backhaus et al. have compared CR, MRI, scintigraphy, and US in the finger joints of 60 inflammatory arthritis patients, 36 of whom had RA (36). This study confirmed the sensitivity of MRI for detecting bony pathology and found that both US and MRI had high sensitivity for detecting synovitis. Ultrasoundography was found to be more sensitive than MRI for the detection of synovitis, in contrast to other studies (7, 37). We have studied the MCP joints of early RA patients, comparing MRI and US, and found them to be equally sensitive in the detection of inflammatory changes (7).

The potential use of US in the evaluation of the therapeutic response remains exciting, but again there are little published data. Uncontrolled studies of small numbers of inflamed knees of established RA patients have demonstrated that US is useful in detecting longitudinal changes in both synovial thickening and effusions (38-40). Preliminary reports suggest that power Doppler, which can assess tissue hyperaemia more effectively than standard colour Doppler techniques, may also be useful for assessing longitudinal changes in synovial inflammation (41, 42). The sensitivity of power Doppler may be further enhanced by intravascular bubble contrast agents (43).

Other imaging modalities
Imaging modalities other than MRI and US may also have a role in early RA diagnosis and treatment monitoring. Hand bone mineral density (BMD) studies performed using dual x-ray absorptiometry (DXA) have demonstrated significant correlations between this and other sites, with loss of hand BMD occurring before systemic disease (44). Early loss of hand BMD in RA may be predictive of long-term BMD and functional outcome (45). Recent work from our group has suggested that loss of hand BMD may be specific to RA when compared with patients who have limited hand synovitis or arthralgias (46).

Preliminary reports suggest the usefulness of positron emission tomography (PET) scans in assessing the response to treatment in the knee and wrist joints of RA patients (47, 48). The latter of these reports, although describing only 2 patients, found a good correlation between the reduction in MRI synovial volume (post-corticosteroid) and a reduction in synovial metabolism as measured by PET with 18F-flouro-2-deoxyglucose. Another area of modern imaging that offers great promise is the use of radiopharmaceuticals. A radiolabelled anti-E-selectin monoclonal antibody has been reported to localise to the inflamed joints of RA patients (49).

Conclusions
Imaging technology continues to change and is improving rapidly. New hardware, new software, and falling costs will enhance the usefulness and availability of both MRI and US. Automated synovitis estimations and the development of dedicated extremity scanners (50) will improve the usefulness of MRI to clinicians and clinical trialists. Well-designed vali-
New approaches to imaging of early RA/P.G. Conaghan et al.

dation studies are delineating the role for US in the diagnosis and monitoring of early RA, and its real-time advantages make it ideally suited for use in outpatient settings. The application of new imaging techniques to the early diagnosis and evaluation of the treatment response heralds an era in which rheumatologists will be able to better target and reduce synoviots and consequently improve RA patient outcomes.

References
24. JEVITC V, WATT I, ROZMAN B et al.: Contrast enhanced Gd-DTPA magnetic resonance imag-