Active MMPs captured by \(\alpha_2 \)Macroglobulin as a marker of disease activity in rheumatoid arthritis

I. Tchetverikov1,2, N. Verzijl1, T.W.J. Huizinga2, J.M. TeKoppele1, R. Hanemaaijer1, J. DeGroot1

1Division of Biomedical Research, TNO Prevention and Health, Leiden; 2Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

Objective

The aim of the present study was to analyze \(\alpha_2 \)Macroglobulin/MMP (\(\alpha_2 \)/MMP) complex formation and to investigate whether MMP activity in \(\alpha_2 \)/MMP complexes in serum can be used as a disease marker in rheumatoid arthritis (RA).

Methods

High and low molecular weight (H/LMW) substrates and inhibitors and size exclusion were used to analyze \(\alpha_2 \)/MMP complex formation. LMW fluorogenic substrates were used to quantify the level of MMPs in \(\alpha_2 \)/MMP complexes in the serum of RA patients and healthy controls.

Results

Active MMPs were fully inhibited by LMW inhibitor BB94 in the presence of \(\alpha_2 \), whereas no inhibition was achieved by HMW inhibitor TIMP-1. Size exclusion analysis showed \(\alpha_2 \)/MMP complex formation in buffer and in normal plasma spiked with activated MMPs, which indicated \(\alpha_2 \)/MMP complex formation in the systemic circulation. MMP activity in \(\alpha_2 \)/MMP complexes in the serum of RA patients was significantly higher than in the serum of healthy controls (\(P<0.001 \)). MMP activity levels in the serum of RA patients were correlated with ESR (\(r = 0.72, P<0.001 \)).

Conclusion

In the systemic circulation of RA patients, active MMPs form complexes with \(\alpha_2 \) and can be detected using LMW fluorogenic substrates. MMP activity measurements in serum allow discrimination between RA patients and healthy controls and provide a new tool for the assessment of the disease process in RA.

Key words

Matrix metalloproteases, rheumatoid arthritis, \(\alpha_2 \)Macroglobulin.

Introduction

Matrix Metalloproteinases (MMPs) are Zn$^{2+}$ dependent extra-cellular enzymes that play a key role in normal and pathological remodeling of connective tissues. In rheumatoid arthritis (RA), a chronic disease characterized by poly-articular inflammation leading to loss of cartilage and bone, proMMPs are synthesized and released (1) by synovial fibroblasts, chondrocytes, macrophages, neutrophils and endothelial cells (2). Based on domain structure and substrate specificity, MMPs can be divided into subclasses, e.g. collagenases, gelatinases, stromelysins and membrane-type MMPs. Most of the proMMPs are activated extracellularly and they have the combined ability to degrade all components of articular cartilage (3). Stromelysins (MMP-3, -10 and -11) are believed to play an important role in this enzyme system due to their wide substrate specificity and ability to activate other MMPs. Collagenases (MMP-1, -8 and -13) are capable of degrading intact collagen (one of the main components of articular cartilage), which can be further degraded by gelatinases (MMP-2 and -9). Gelatinases can also degrade other components of the joint tissues such as aggrecan, fibronectin and elastin. Membrane-type matrix metalloproteinases (MMP-14, -15, -16, -17, -24 and -25) have also been shown to degrade various components of joint tissue and to be involved in activation of other MMPs (4).

MMP subclasses have been shown to be increased at the tissue level in inflammatory joint diseases (5). Also in the systemic circulation, antigen levels of proMMPs are increased, indicating their involvement in the disease process (4). Recent research on the use of serum proMMP antigen levels as a marker for disease activity or as a prognostic tool in RA indicates that serum proMMP levels reflect not only the inflammation but also the degradation of articular cartilage (6,7). Although serum proMMP levels correlate with disease progression, they mainly reflect the potential of the proteolytic system to degrade cartilage. Other factors, such as the activation status (conversion of proMMPs into active MMPs) and the inhibitory capacity of the proteolytic system (presence of endogenous inhibitors) co-determine the eventual tissue degradation. Analysis of MMPs and their Tissue Inhibitors (TIMPs) shows a surplus of active MMPs (due to insufficient levels of TIMPs) at the tissue level, which supports the role of the MMP/TIMP imbalance in joint diseases (8-11). Quantification of this MMPsurplus may provide a useful tool for the evaluation of the clinical course of the disease inasmuch as this surplus of active MMPs reflects the actual end-status of the system; i.e., the proteolytic capacity after production, activation and inhibition.

It has been shown that active, non-TIMP-inhibited MMPs can be entrapped by κ_1Macroglobulin (κ_1M), which results in κ_1M/MMP complex formation in biological fluids (12-15). We hypothesized that in RA the surplus of active MMPs, i.e. the excess of active MMPs over TIMP, will result in an increased level of κ_1M/MMPcomplexes in the systemic circulation which can be quantified using Low Molecular Weight (LMW) fluorogenic substrates (16).

In order to provide evidence of κ_1M/MMP complex formation in the systemic circulation of RA patients, the MMP/TIMP imbalance as it exists in the inflammatory joint disease was mimicked and MMP activity was measured after size exclusion analysis. Furthermore, the use of LMW MMP-specific fluorogenic substrates for detection of κ_1M/MMP complexes in the systemic circulation was investigated. To explore the feasibility of MMP activity measurements as a marker of disease activity, MMPactivity levels in serum of RA patients were determined and compared to an inflammatory marker, ESR.

Patients and methods

Matrix metalloproteinases

ProMMP-13 was kindly provided by Dr. P. Mitchell (Pfizer Central Research, Groton, CT, USA) and was activated by incubation with 2 mM APMA for 2 h at 37°C in MMP buffer (50 mM Tris, 5 mM CaCl$_2$, 250 mM
MMP activity measurements in serum of RA patients / I. Tchetverikov et al.

NaCl, 1 µM ZnCl₂, 0.02% NaN₃ and 0.01% Brij-35, pH 7.5). The amounts of active enzyme were calibrated by active-site titration with TIMP-1 (Oncogene Research Products, Cambridge, MA, USA) as described by others (18).

Fluorescent MMP substrate

Fluorescent MMP substrate. The internally quenched fluorescent peptide substrate Dabcyl-Gaba-Pro-Gln-Gly-Leu-Cys (Fluorescein)-Ala-Lys-NH₂ (TNO211-F) was synthesized according to the method described by Drijfhout et al. (17). TNO211-F is converted by MMP (mainly MMP-2, -8, -9 and -13; and also at lower rate by MMP-1 and -3 (15) and not by other metalloproteinases such as ADAMs or ADAM-TS.

MMP activity measurements

A. Using fluorescent MMP substrate.

MMP activity was measured using 6.25 µM (all concentrations are final) fluorogenic substrate TNO211-F in the presence or absence of 5 µM BB94 (a general MMP inhibitor). TNO211-F is mainly converted by MMP-2, -3, -7, -9, -12 and -13. It is also converted, although at lower rate, by MMP-1 and -9 (15), whereas other metalloproteinases, such as ADAMs, do not cleave TNO211-F (19). Serum samples were diluted (final dilution 1/50) in MMP buffer and EDTA-free Complete™ serum and cysteine proteases inhibitor, Roche, Mannheim, Germany; 1 tablet in 50 ml) was added to all series. The difference in the initial rate of substrate conversion (linear increase in fluorescence in time) between samples with or without BB94 addition was used as a measure of MMP activity. Fluorescence was measured for 6 hrs at 30°C using a Cytofluor 4000 (Applied Biosystems, Foster City, CA, USA).

B. Using High Molecular Weight MMP substrate UKcol.

UKcol is a modified pro-urokinase, which has a general MMP cleavage site. MMP activity was measured using UKcol (final concentration 50 µg/ml) and chromogenic substrate S-2444 (Chromogenix, Mölndal) (20). Color development was recorded in a Multiskan® MCC/340 (LabSystems, Helsinki, Finland) at 405 nm.

MMP-13 solutions were prepared (constant enzyme concentration of 0.5 nM) in buffer containing α₂M, of which the concentration varied from 0 up to 1.7 nM. MMP-13 was incubated for 2 hrs at room temperature with various concentrations of α₂M (MMP-13/α₂M ratios ranging from 0.01 to 100). An aliquot of each ratio (200 µl) was incubated with collagen type I (100 µg/ml). Cleavage of collagen into characteristic TCₐ and TCₙ fragments after overnight incubation at 30°C was visualized by non-reducing SDS-PAGE (10% polyacrylamide gel) and analyzed using TINA software (Isotopenmeßgeräte, GmbH, Germany).

α₂M sandwich ELISA

To determine human α₂M levels a two-step ELISA was used. First, high binding ELISA plates (EIA/RIA Stripwell™ Plate, Corning Incorporated, NY, USA) were coated with sheep anti-mouse F(ab’) fragments (1.3 µg/ml, Jackson Laboratory) for 48 hr at 4-8°C. The plates were washed 3 times with PBS/0.5% Tween-20 and blocked with PBS/0.5% Tween-20/1% BSA for 1 hr at 37°C in a plate incubator (LabSystems, Helsinki, Finland). α₂M specific monoclonal antibodies #5850-1004 (ANAWA Trading, SA, USA) were bound to the F(ab’) fragments overnight at 4°C. A sample aliquot (100 µl) was added and incubated for 2 hrs at 37°C in the plate incubator. The plates were washed 5 times with PBS/0.5% Tween-20/1% BSA and 100 µl secondary antibody #5850-0304 (α₂M specific sheep-anti-mouse polyclonal, HRP-conjugated; ANAWA Trading, SA, USA) was added and incubated for 2 hrs at 37°C. Color reagent (100 µl) was added and the reaction was stopped after 15 min. by the addition of 10% H₂SO₄. The yellow colored product was measured using a Multiskan® MCC/340 (LabSystems, Helsinki, Finland) at 450 nm wavelength.

FPLC

Human plasma or purified human α₂M (Sigma-Aldrich Corp., St. Louis, MO, USA) in MMP buffer were spiked with 10 nM (final concentration) active MMP-13. Samples were incubated for 1 hr at room temperature and analyzed by the FPLC system (Superose® 6HR 10/30 column; Pharmacia Fine Chemicals, Uppsala, Sweden). The optical density was measured using a spectrophotometer at 280 nm. Fractions of 0.5 ml were collected and MMP activity was measured using the TNO211-F substrate as described above. α₂M levels were determined using the α₂M sandwich ELISA as described above. The same fractions were measured for MMP activity using High Molecular Weight substrate UKcol, as described above.

MMP activity in α₂M/MMP complexes versus ESR in serum samples of early arthritis clinic patients

For this study, a selection was made from the Early Arthritis Clinic (EAC) cohort, that was started at the Department of Rheumatology of the Leiden University Medical Center, The Netherlands in 1992 and described in detail by Lard et al. (21). From this large population-based inception cohort 50 patients with a diagnosis RA according to the 1987 ACR criteria (22) were selected. Serum samples used in the present study were prepared after blood collection and were stored at -20°C prior to analysis. MMP activity in α₂M/MMP complexes was measured as described above, the erythrocyte sedimentation rate (ESR) was determined upon blood collection.

Statistical analysis

Differences between the groups were analyzed with the (un)paired Student’s t-test. Correlations were sought by calculating the correlation coefficients with SPSS software (Chicago, IL, USA). P < 0.05 was considered statistically significant.

Results

MMP-13 mediated degradation of HMW substrates in the presence or absence of α₂M

In biological fluids, α₂M inhibits serine, cysteine, aspartic and metalloproteinases (15) by molecular trapping (13, 23, 24). MMPs entrapped within the...
αM molecules lose their ability to degrade any natural substrates such as collagen type II (15). In the present work MMP-13 was used to study MMP activity in the presence or absence of αM because of its high activity towards both HMW (Collagen type I and UKcol) and LMW (fluorogenic peptides) substrates. To confirm the inhibitory ability of αM towards MMPs, the degradation of the natural HMW MMP substrate, collagen type I, was studied. Collagen type I breakdown by MMP-13 was analyzed by SDS-PAGE in the presence or absence of αM. MMP-13 solutions were prepared in buffer containing αM. Three possible test conditions were achieved: (a) an excess of activated MMP-13 over αM, and MMP-13; and (c) an excess of αM over MMP-13. Active MMP-13 degraded collagen type I into the characteristic high molecular weight (HMW) MMP substrate, collagen type I, and UKcol is inhibited by αM.

MMP-13 mediated degradation of LMW substrate in the presence or absence of αM

To investigate whether LMW fluorogenic substrates could be used to detect MMPs in the presence of αM, conversion of TNO211-F (a LMW fluorogenic substrate) by MMP-13 was studied in buffer in the presence or absence of αM and in normal human serum (contains endogenous αM) spiked with MMP-13. As shown in Figure 1 (MMP-13 and MMP-13/αM: "no inhibitor"), MMP-13 mediated TNO211-F conversion was detectable in buffer in the absence and presence of αM. Possible explanations for the lower TNO211-F conversion rate by MMP-13 in the presence of αM are a slow diffusion rate of the substrate into the αM/MMP complexes, lower substrate availability (protein binding) or lower MMP-13 activity inside αM. MMP-13 spiked to serum was also able to degrade LMW substrate TNO211-F (Fig. 2, MMP-13 and MMP-13/αM: "no inhibitor"). Furthermore, the inhibitory activity of HMW MMP inhibitor TIMP-1 and LMW MMP inhibitor BB94 towards MMPs in the presence of αM was analyzed. MMP-13 was incubated in buffer in the presence or absence of αM or in normal human serum and its activity was measured using LMW fluorogenic substrate TNO211-F. Incubations with BB94 and TIMP-1 in buffer showed that MMPs are effectively inhibited by BB94, both in the presence and absence of αM (Fig. 1, MMP-13, MMP-13/αM: "BB94"), TIMP-1 fully inhibited MMPs in the absence of αM, but no inhibition was achieved in the presence of αM (Fig. 1, MMP-13, MMP-13/αM: "TIMP-1"). Subsequently, similar inhibition experiments were performed with active MMP-13 spiked to normal human serum. Again, all spiked MMPs were effectively inhibited by BB94 whereas no inhibition by TIMP-1 was found (Fig. 2, MMP-13, MMP-13/αM: "BB94" and "TIMP-1").

This pattern of substrate conversion shows that the presence of αM in the solution prior to the addition of the inhibitor prevents MMP/TIMP-1, but not MMP/BB94 complex formation. Altogether, these findings suggest that in fluids that contain αM active MMPs are mostly present in the form of αM/MMP complexes.
Fig. 3. Fractionation by 100 kDa cut-off filters: Activity measurements of MMP-13 spiked to buffer or normal human plasma.

Activated MMP-13 (final concentration of 0.2 nM) was pre-incubated in buffer in the presence or absence of α2M or in normal human plasma for 1 hr at 30°C. Solutions were ultra-filtrated at 1000 g for 10 min and MMP activity was determined using TNO211-F in the flow-through and supernatant, the total MMP activity was set at 100%. 70% of the MMP-13 activity in buffer was found in the <100 kDa fraction, indicating the passage of free MMP-13 through the filtration membrane. In the buffer containing α2M, 100% of MMP-13 activity was recovered in the >100 kDa fraction; the same pattern was seen for MMPs spiked to plasma, indicating α2M/MMP-13 complex formation in plasma.

Analysis of α2M/MMP complex formation: size exclusion analysis

Fractionation by 100 kDa cut-off filters. To confirm that active MMPs indeed form complexes with α2M in the systemic circulation, another approach was used: size separation analysis. Based on the estimated MW of α2M/MMP complexes of ~775 kDa and the MW of activated MMP-13 of 48 kDa, a 100 kDa cut-off filter was used. Free MMPs should pass the filtration membrane, whereas HMW α2M/MMP-13 complexes should not. Solutions were ultra-filtrated and MMP activity was determined using LMW substrate TNO211-F in <100 kDa and >100 kDa fractions.

When dissolved in buffer in the absence of α2M (Fig. 3, MMP-13), the majority of the MMP-13 activity was detected in the <100 kDa fraction showing that free active MMP-13 was indeed ultra-filtrated. MMP activity in the >100 kDa fraction may be explained by aggregate formation of activated MMP-13 molecules which prevents passage through the membrane. When active MMP-13 was incubated with α2M prior to ultra-filtration (Fig. 3, MMP-13/α2M, all MMP activity was found in the >100 kDa fraction. As such this data indicates that ultrafiltration provides an adequate tool for discrimination between free and α2M entrapped MMPs.

Filtration of human control plasma spiked with MMPs (Fig. 3, MMP-13/plasma) resulted in 100% activity measured in the >100 kDa fraction, showing the same pattern as was obtained with MMPs in α2M containing buffer. Altogether, these results support the
hypothesis that the surplus of active MMPs in the systemic circulation is entrapped in α2M.

FPLC size exclusion analysis: α2M/MMP-13 complex formation.

As another size-exclusion approach to determine whether active MMPs are indeed entrapped in α2M, FPLC size exclusion analysis of MMP-13 spiked human plasma was performed. The Superose 6 column was first calibrated with α2M (MW 725 kDa) and albumin (MW 69 kDa). The elution position of α2M was determined by α2M ELISA (Fig. 4A). As expected, α2M (725 kDa) eluted earlier than albumin (determined by protein absorption at 280 nm, confirmed by ELISA).

After calibration, active MMP-13 dissolved in buffer in the presence or absence of α2M was analyzed. All fractions were collected and MMP activity was measured using LMW fluorogenic substrate TNO211-F (Fig. 4B). Albumin was spiked to all solutions to serve as a reference point. FPLC analysis of the MMP-13 in buffer showed a major peak of enzyme activity at the tail of the albumin peak. An additional peak of enzyme activity eluted earlier than albumin (MW > 100 kDa), which may be explained by aggregate formation of active MMP-13 molecules as was also seen in the experiment using the 100 kDa cut-off filters (Fig. 3). Activity of MMP-13 in α2M-containing buffer was found in the fractions at the α2M position. Similarly, enzyme activity in plasma spiked with MMP-13 showed an MMP activity peak at the α2M and α2M/MMP-13 elution position. To investigate whether the MMPs are indeed in complex with α2M and therefore are not able to breakdown HMW substrates, all fractions were measured for MMP activity using HMW substrate UKcol (20). No MMP mediated UKcol conversion was detected at the elution position of α2M/MMP complexes where it was detectable with LMW substrate TNO211-F, suggesting α2M/MMP complex formation.

Altogether these findings show a shift in MMP activity into the HMW fraction, i.e. to the α2M elution position, after incubation of MMPs with α2M. MMP activity levels in serum of RA patients and healthy controls.

To establish the feasibility of MMP activity measurements to discriminate between normal and pathological situations, MMP mediated TNO211-F substrate conversion was determined in serum of RA patients and healthy controls (n = 8 and n = 15, respectively). MMP activity could be detected in both populations, but was significantly increased in serum of RA patients as compared with healthy controls (P < 0.001 RA vs. controls), indicating a measurable surplus of active MMPs in the systemic circulation in this pathological situation (Fig. 5).

Furthermore, to investigate the feasibility of MMP activity measurements as a marker of disease activity in RA, MMP activity in serum of 50 RA patients was compared to ESR. The analysis showed a significant correlation between the two parameters (r = 0.72, P < 0.001, Fig. 6).

To study the potential clinical use of MMP activity measurements for the evaluation of the treatment efficacy, MMP activity was determined in serum of leflunomide-treated RA patients (n = 4) at baseline and after 16 weeks of treatment. Leflunomide has previously been shown to influence the MMP/TIMP balance in favor of TIMP in vitro (26). If this is the case in vivo as well, leflunomide would be expected to decrease the surplus of active MMPs in the circulation of these patients. In this pilot experiment, all 4 patients showed a 40% decrease in MMP activity levels after 16 weeks of treatment (mean ± SD; from 0.038 ± 0.007 to 0.022 ± 0.014), P = 0.015).

Discussion

The present study shows that MMP activity can be measured in the systemic circulation using Low Molecular Weight fluorogenic substrates. Further analysis showed that measured MMP activity originates from α2Macroglobulin/MMP (α2M/MMP) complexes. The results of this study also show that MMP activity measurements in serum of RA patients may provide an interesting new tool for evaluation of the disease process in RA.

It has previously been shown that activated MMPs can form complexes with α2M in biological fluids (13, 15, 24). In general, α2M acts as a proteinase scavenger and can inhibit serine, cysteine, aspartic and metalloproteinases by molecular trapping. After proteinases are enclosed in α2M, they are rapidly
MMP activity measurements in serum of RA patients / I. Tchetverikov et al.

eliminated from the circulation (23). MMPs entrapped within the α,M molecule lose their ability to break down natural HMW substrates such as collagen type II (15), but are still capable of degrading LMW peptide substrates, provided that the substrate reaches the active site of the MMPs in α,M/MMP complexes (23). Our results on the degradation of a natural substrate of MMPs (collagen type I) or a modified HMW protein substrate (UKcol) confirm these findings. Neither collagen type I nor UKcol was degraded by MMPs in the presence of α,M, whereas full degradation was achieved in the absence thereof. On the contrary, LMW fluorogenic substrates were easily degraded by MMPs in the presence or absence of α,M, as such demonstrating the feasibility of using LMW fluorogenic substrates for MMP activity detection in the presence of α,M. Previously we have shown that MMP activity measured in the systemic circulation using LMW fluorogenic substrates is likely to originate from α,M/MMP complexes (Beekman et al., 1999). In the present study, we provided further evidence of α,M/MMP complex formation in the systemic circulation using size exclusion analysis. According to our working hypothesis, activated MMP form stable complexes with α,M (approximate MW of 725 kDa). Using 100 kDa cut-off filters we showed that after spiking of activated MMP into buffer in the presence of α,M, MMP activity is indeed found in the HMW (> 100 kDa) fraction, indicating α,M/MMP complex formation. Similar results were seen after the filtration of normal human plasma, which was spiked with activated MMP-13. Furthermore, MMP activity was measured after size separation by FPLC. This analysis showed a switch of MMP activity from the LMW fraction to HMW fractions after incubation of activated MMPs in buffer in the presence of α,M. The same pattern of MMP activity distribution was found in normal human plasma spiked with activated MMPs. Moreover, the results showed that MMPs in the HMW fraction were still active towards a LMW substrate and not towards the HMW synthetic substrate UKcol. Taken together, these results confirm that in the systemic circulation activated MMPs are present in the form of α,M/MMP complexes.

In addition, the results of the present study show that MMP activity levels in the systemic circulation of RA patients are increased when compared to those in healthy controls. As such, these findings are in line with the current view on the pathological process in RA. Martel-Pelletier et al. (8) suggested, that at the tissue level, the differential regulation of MMP and TIMP synthesis by IL-1 may promote cartilage degradation in RA by creating an imbalance between the level of MMPs and their tissue inhibitors. If this situation is reflected in the circulation, the excess of activated MMPs will result in α,M/MMP complex formation, which could explain the increased levels of α,M/MMP complexes found in the serum of RA patients.

It can be questioned where the increased MMP levels present in the systemic circulation found in this study originate from. Firstly, it is possible that MMPs are produced as a systemic response to the joint inflammation (27). Secondly, a leakage of MMPs may occur from the inflamed joints into the systemic circulation (28). Based on measurements of MMP activity in plasma after spiking with active MMPs we conclude that the surplus of active MMPs will be entrapped in α,M regardless their origin. Additional studies are needed to investigate the origin of the MMPs in complexes with α,M, i.e. to investigate whether the MMPs present in the systemic circulation of RA patients represent the local situation in the inflamed joint.

Nowadays, serum MMP antigen levels are used to study the status of the proteolytic system, which is directly involved in joint tissue degradation. Correlations have been found between antigen levels of proMMP-3 and the development of radiological damage in early arthritis (8), proMMP-2 levels and joint erosion during early synovitis (29), and proMMP-1 levels and the number of new joint erosions (30). However, the proMMP antigen levels represent mainly the potential of the proteolytic system to degrade joint tissues. The present study shows that MMP activity measurements in α,M/MMP complexes in the systemic circulation may in fact reflect the end status of the proteolytic system, e.g. the end status of the system after production, activation and inhibition of MMPs. Moreover, the results of the present study show that MMP activity levels in the circulation are correlated with an inflammatory marker, ESR, which is widely used to assess the disease activity. These results imply that activity of the proteolytic system is related to the inflammatory process in RA. Further studies will give insight into the association between cartilage degradation and systemic MMP activity levels.

Assessment of MMP activity in serum of leflunomide-treated RA patients indicates, to our knowledge for the first time, the effect of therapy on net MMP activity. MMP activity in serum was significantly reduced after 16 weeks of leflunomide treatment, implicating lower amounts of α,M/MMP complexes present in the systemic circulation, i.e. lower surplus of active MMPs. These findings are consistent with in vitro experiments showing a decrease in MMP and an increase in TIMP production by Leflunomide, leading to lower surplus of active MMP (26). In conclusion, the present study shows that MMPs form complexes with α,M in the systemic circulation of RA patients and that levels of α,M/MMP complexes are also increased in patients with higher inflammatory activity, as shown by correlation between α,M/MMP levels and ESR. Our data provide a sufficient basis for further exploration of α,M/MMP activity measurements as a biomarker for disease activity in RA.

Acknowledgments

We wish to thank Benno van El for his expert opinion and Mrs. Elly de Wit for her excellent technical assistance.

References

2. NAGASE H, OKADA Y: Proteinases and matrix degradation. In KELLEY WN, HARRIS ED, RUDDY S and SLEDGE CB (Eds.): Text -
MMP activity measurements in serum of RA patients / I. Tchetverikov et al.

26. DEAGE V, BURGER D, DAYER JM: Exposure of T lymphocytes to leflunomide but not to dexamethasone favors the production by monocyte cells of interleukin-1 receptor antagonist and the tissue-inhibitor of metalloproteinases-1 over that of interleukin-1beta and metalloproteinases. Eur Cytokine Netw 1998; 9: 663-8.

