Clinical characteristics of Japanese patients with anti-PL-7 (anti-threonyl-tRNA synthetase) autoantibodies

S. Sato¹, M. Hirakata¹, M. Kuwana², K. Nakamura¹, A. Suwa¹, S. Inada³, T. Mimori⁴, Y. Ikeda¹

¹Department of Internal Medicine and ²Institute for Advanced Medical Research, Keio University, School of Medicine, Tokyo; ³Division of Rheumatic Diseases, Tokyo Metropolitan Ohtsuka Hospital, Tokyo; ⁴Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan

Abstract

Objective
The clinical and laboratory features of seven Japanese patients with anti-aminoacyl-tRNA synthetase (ARS) autoantibodies against PL-7 (anti-threonyl-tRNA synthetase) were analyzed and compared with previously published findings.

Methods
Serum samples from 1,135 Japanese patients with various autoimmune diseases were screened for anti-PL-7 antibodies using RNA and protein immunoprecipitation assays. The patients whose sera contained anti-PL-7 antibodies were assessed regarding clinical symptoms and clinical course.

Results
Sera from seven patients were found to have anti-PL-7 antibodies. These autoantibodies were associated with polymyositis/dermatomyositis (PM/DM) and/or interstitial lung disease (ILD). The clinical diagnoses of these seven patients were PM - systemic sclerosis (SSc) overlap (5 patients), DM (1 patient) and idiopathic pulmonary fibrosis (IPF) (1 patient). All patients had ILD with a chronic course and six also had arthritis (85%) and five sclerodactyly (71%).

Conclusions
These results indicate that anti-PL-7 autoantibodies are closely associated with PM-SSc overlap as well as ILD, arthritis and sclerodactyly in our series of Japanese patients.

Key words
Polymyositis/dermatomyositis (PM/DM), interstitial lung disease (ILD), anti-aminoacyl-tRNA synthetases (ARS) antibodies.
Introduction
The aminoacyl-tRNA synthetases are a set of cellular enzymes, each of which catalyzes the formation of aminoacyl-tRNA from a specific amino acid and its cognate tRNA. Autoantibodies to six anti-aminoacyl-tRNA synthetases (anti-ARS) have been identified in patients with inflammatory myopathies, as follows: anti-histidyl (anti-Jo-1), anti-threonyl (anti-PL-7), anti-alanyl (anti-PL-12), anti-glycyl (anti-EJ), anti-isoleucyl (anti-OJ), and anti-asparaginyl (anti-KS) tRNA synthetases (1-10). Among these anti-ARS antibodies, the most common, anti-Jo-1, are found in approximately 20-30% of polymyositis/dermatomyositis (PM/DM) patients (8, 10-11).

Each of these anti-ARS antibodies has been reported to be associated with a similar syndrome. This syndrome is characterized by myositis with a high frequency of interstitial lung disease (ILD) (50-80%) and arthritis (50-90%), as well as an increase (compared with the overall myositis population) of Raynaud’s phenomenon (60%), fever with exacerbations (80%), and the skin lesions of the fingers referred to as “mechanic’s hands” (70%) (1,7). Although the similarity of clinical features in patients with different anti-ARS antibodies is striking, further observation and analysis has shown that there are certain differences in clinical symptoms associated with each of the anti-ARS antibodies.

Hirakata et al. examined clinical features of anti-synthetase syndromes in detail and reported that anti-Jo-1 antibodies are common in patients with myositis, but anti-PL-12 and anti-KS antibodies are found in patients with ILD without any signs of myositis (10). The latter are more likely to have ILD and/or arthritis without clinical evidence of myositis (10,12-13). Anti-PL-7 antibodies are the first non-Jo-1 anti-ARS, found in patients with PM/DM accompanied by ILD, the frequency of which is low (2). In previous studies, this antibody was found in only 3-4% of all patients with PM/DM (2,6,8,14). Targoff et al. reported that patients with anti-PL-7 antibodies had a high incidence of arthritis and ILD (15). However, the presence of anti-PL-7 antibodies and their clinical significance has not been reported in Japanese patients so far.

In the present study, we describe the clinical and laboratory features of Japanese patients with antibodies against anti-PL-7 and review previously published reports from elsewhere.

Patients, materials and methods
Patients and sera
Serum samples were obtained from 1,135 Japanese patients suspected of having connective tissue diseases seen at the current or previous collaborating centers of the authors between 1990 and 2000. These included 120 with PM/DM, 400 with systemic lupus erythematosus (SLE), 192 with systemic sclerosis (SSc), 58 with rheumatoid arthritis (RA), 101 with mixed connective tissue disease (MCTD)/overlap syndrome, 114 with idiopathic pulmonary fibrosis (IPF), and finally, 150 patients who had arthritis or erythema but did not meet the criteria for other connective tissue diseases.

PM/DM was diagnosed based on the criteria of Bohan and Peter (16). The assessment of muscle weakness was performed using a manual muscle test (17). The diagnosis of SSc was based on the criteria for the classification of SSc defined by the American College of Rheumatology in 1980 (18). ILD was considered to be present if an interstitial change was observed on both chest radiography and computed tomography (CT) or a restrictive pattern found on pulmonary function testing in patients with IPF or PM/DM.

Detection of anti-PL-7 antibodies
The immunoprecipitation (IPP) from HeLa cell extracts was performed as previously described (1, 6). For analysis of RNAs, 10 µl of patient sera was mixed with 2 mg of protein A-Sepharose CL-4B (Pharmacia Biotech AB, Uppsala, Sweden) in 500 µl of IPP buffer (10 mM Tris- HCl, pH 8.0, 500 mM NaCl, 0.1% Nonidet P-40) and incubated with end-over-end rotation (Labquake shaker; Lab Industries, Berkeley, CA) for 2 h at 4°C. The IgG-coated Sepharose was washed 4 times.
Clinical characteristics of anti-PL-7 / S. Sato et al.

in 500 µl of IPP buffer using 10-second spins in a microfuge and was re-
uspended in 400 µl of NET-2 buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl, 0.05% Nonidet P-40). This sus-
pension was incubated with 100 µl of extracts, derived from 6x10^6 cells, on the ro-
tator for 2 h at 4°C. The antigen-
bound Sepharose beads were then col-
lected by centrifugation for 10 s in the microfuge, washed 4 times with NET-2 buffer, and re-
suspended in 300 µl of NET-2 buffer. To extract bound RNAs, 30 µl of 3.0 M sodium acetate, 30 µl of 10% SDS, 2 µl of carrier yeast tRNA (10 mg/ml; Sigma, St. Louis, MO) and 300 µl of phenol/chloroform/isooamyl alcohol (50: 50: 1, containing 0.1% 8-
hydroxyquinoline) were added to the Sepharose beads. After agitation in a Vortex mixer and spinning for 1 min, RNAs were recovered in the aqueous phase after ethanol precipitation and dissolved in 20 µl of electrophoresis sample buffer composed of 10 M urea, 0.025% bromphenol blue, and 0.025% xylene cyanol-FF in TBE buffer (90 mM Tris-HCl, pH 8.6, 90 mM boric acid, and 1 mM EDTA). The RNA samples were denatured at 65°C for 5 min and then resolved in 7 M urea-10% polyacrylamide gels, which were then silver-stained (Bio-Rad Labora-
tories, Hercules, CA).

For the protein studies, antibody-coat-
ed Sepharose beads were mixed with 400 µl of [35S] methionine-labeled HeLa extracts derived from 2x10^6 cells, and rotated at 4°C for 2 h. After four washes with IPP buffer, the Sepharose beads were resuspended in SDS - sam-
ple buffer (2% SDS, 10% glycerol, 62.5 mM Tris-HCl, pH 6.8, 0.005% bromophenol blue). After heating (90° C for 5 min), the proteins were frac-
tionated by 10% SDS-PAGE, enhanced with 0.5 M sodium salicylate, and dried. Radiolabeled protein compo-
nents were analyzed by autoradiogra-
phy.

With these assays, anti-ARS, anti-sig-
nal recognition particle, anti-Mi-2, anti-SSA, anti-SSB, anti-U1-RNP, anti-Scl-70, anti-PM-Scl and anti-Ku autoantibodies are detectable in compara-
tion with corresponding standard sera (1). We also examined antici-
 tromere antibody by ELISA (Medical & Biological Laboratories Co., Ltd. Nagoya, Japan).

Clinical features

Clinical information was retrospective-
ly assessed in all PM/DM patients as well as non-PM/DM patients positive for anti-PL-7 antibodies. Clinical find-
ings included clinical symptoms, serum creatine kinase (CK) level, electromyo-
gram (EMG), muscle biopsy, chest radi-
ograph and chest CT. The resolution of the myositis symptoms was defined as having both improvement of muscle weakness on a manual muscle test and the normalization of serum CK level. The two groups of PM/DM patients with or without anti-PL-7 antibodies were compared. Moreover, our cases were compared with those previously reported in the literature.

Statistical analysis

All comparisons between the two pa-
tient groups were performed using the χ^2 test. Significance level was set at 5%.

Results

Identification of anti-PL-7 antibodies

Of the 1,135 sera tested, samples from seven patients were found to immuno-
precipitate a characteristic identical pattern of tRNAs. Representative exam-
ple patterns are shown in Figure 1. This pat-
tern of tRNAs was clearly distinguish-
able from those precipitated by the five other described anti-synthetases and identical in mobility and appearance to anti-PL-7 standard serum (Fig. 1a). The same sera also immunoprecipitated a protein band from [35S] methionine-
labeled HeLa cell extracts migrating at 80 kDa. This was clearly different from those immunoprecipitated by sera reactive with the other described anti-syn-
thetases (Fig. 1b). Thus, it is concluded that they contained anti-PL-7 antibodi-
ies.

Clinical features of patients with anti-PL-7 antibodies

Clinical features of the 7 patients with anti-PL-7 antibodies are summarized in Table I. Five patients were clinically diagnosed as having PM-SSc overlap syndrome and the other two as DM and IPF. Six (86%) had muscle weakness and arthritis. Four (57%) had Ray-
naud’s phenomenon. It was of note that 5 patients had scleroderma: the extent of skin thickness was diffuse sclero-
derma in 2 (29%), proximal scleroderma in one (14%) and sclerodactyly alone in 2 (29%). Although two (29%) had mechanic’s hands, sclerodactyly of these patients was clearly distinguished from mechanic’s hands. All 7 patients were diagnosed as having ILD from the results of chest radiography and chest CT or pulmonary function testing. One patient had anti-SS-A antibodies and another had anticentromere antibodies.

Characteristics of myositis in patients with anti PL-7 antibodies

The characteristics of 6 patients suffering from myositis are summarized in Table II. Only one patient manifested a DM rash and was accordingly diag-

osed as having DM. The maximum level of CK (IU/l) was relatively low throughout the clinical course (maxi-
mum CK was 2,830 IU/l, seen in pa-
tient #1). EMG was performed in all 6 myositis patients and all showed a my-
ogenic pattern: low-amplitude poly-
phasic units of short duration and rest-
ing fibrillation, complex repetitive dis-
charges and positive sharp waves in needle EMG. The muscle biopsy re-
vealed atrophic fibers, active necrosis with regeneration and infiltration of lymphocytes in all 3 patients tested. The administration of prednisolone (PSL) alone without other immunosuppres-
sant in 5 resulted in an improve-
ment of both muscle strength and ser-
um CK value in all. One patient had no PSL medication due to concomitant tuberculosis infection. PSL was tapered gradually and 3 patients maintained in-
active myositis by continuing on a low dose of PSL. Two patients (#1 and #3) died of cardiac failure and respiratory failure due to bacterial infection. The duration of the disease was 159 months and 44 months in these latter patients. All 7 PM/DM patients had ILD, classi-
fied as chronic course. The symptoms of ILD preceded muscle involvement in 5 patients.

Frequencies of several clinical mani-
Fig. 1. (a) Immunoprecipitation (IPP) of nucleic acids with anti-PL-7 sera and controls. Urea (7 M) and 10% PAGE of phenol-extracted immunoprecipitates from HeLa cell extracts were developed with silver stain. TNA, total nucleic acids, with the 5.8 and 5.0 S small ribosomal RNAs and the tRNA region indicated. Sera used for IPP include: lanes 1-5, the anti-synthetase sera indicated, with antibodies to Jo-1 (histidyl-tRNA synthetase), PL-12 (alanyl-tRNA synthetase), EJ (glycyl-tRNA synthetase), OJ (isoleucyl-tRNA synthetase), PL-7 (threonyl-tRNA synthetase); lanes 6-12, anti-PL-7 sera as indicated; and lane 13, control serum (NHS, normal human serum). The tRNA pattern with anti-PL-7 sera is easily distinguishable from that of the other anti-synthetases. (b) IPP of proteins with anti-PL-7 sera and controls. Autoradiogram of 10% SDS-PAGE of immunoprecipitates from [35S] methionine-labeled HeLa cell extracts. Mr, molecular weight markers of the sizes indicated to the left (kDa). The sera used for IPP are the same as those in (a). The same characteristic pattern of 80 kDa protein bands was seen with each of the seven anti-PL-7 sera. The pattern was clearly different from the bands immunoprecipitated by sera against the other anti-synthetases.

Table I. Clinical features of patients with anti-PL-7 antibodies.

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/ gender</td>
<td>51/ male</td>
<td>59/ female</td>
<td>32/ female</td>
<td>53/ female</td>
<td>51/ female</td>
<td>64/ female</td>
<td>57/ female</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>DM</td>
<td>PM-SSc</td>
<td>PM-SSc</td>
<td>PM-SSc</td>
<td>PM-SSc</td>
<td>IPF</td>
<td>PM-SSc</td>
</tr>
<tr>
<td>Fever</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>Arthritis</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>Raynaud’s phenomenon</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Extent of scleroderma</td>
<td>None</td>
<td>Proximal scleroderma</td>
<td>Sclerodactyly alone</td>
<td>Diffuse scleroderma</td>
<td>Diffuse scleroderma</td>
<td>None</td>
<td>Sclerodactyly alone</td>
</tr>
<tr>
<td>Digital pitting scar</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>Mechanic’s hands</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>ILD</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Hypergammaglobulinemia</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Sjögren’s syndrome</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Other autoantibodies</td>
<td>(-)</td>
<td>(-)</td>
<td>Anti-SSA</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>Anti centromere</td>
</tr>
</tbody>
</table>

PM: polymyositis; DM: dermatomyositis; SSc: systemic sclerosis; ILD: interstitial lung disease.
festations were compared between anti-PL-7-positive and negative PM/DM patients (Table III). The frequencies of ILD and sclerodactyly were found to be significantly higher in antibody-positive patients.

Comparison of the clinical features of patients with anti-PL-7 antibodies in the present study and those in the literature

The clinical features of patients with anti-PL-7 antibodies reported in the English-language literature were reviewed (2, 13, 15, 16, 19, 20). A summary of clinical data including our study is shown in Table IV. The frequencies of arthritis, myositis, and Raynaud’s phenomenon in our series is similar to those of previously reported patients with anti-PL-7 antibodies. On the other hand, the occurrence of sclerodactyly in our series is greater compared with previous reports from North America and the United Kingdom.

Case 1 (patient #5)
This 51-year-old woman noticed dyspnea on exertion in 1995, after which symptoms progressively worsened. Her general practitioner identified an abnormal lung shadow in the chest radiogram. She was admitted to the Keio University Hospital in October 1995. She had dyspnea on exertion, and muscle weakness predominantly in the proximal muscle. She also had diffuse scleroderma and Raynaud’s phenomenon. The CK level was elevated (1,663 IU/l). Myopathic changes detected by EMG mainly in proximal muscles and active necrosis with regeneration seen in a muscle biopsy specimen suggested the presence of myopathy. %VC was 59% and %DLco was 43% on lung function testing, indicating restricted respiratory impairment. A chest radiograph showed bilateral reticular shadow and infiltration. The chest CT revealed interstitial fibrosis and infiltration accompanied by air-bronchogram. A diagnosis of PM/SSc overlap syndrome was established based on proximal muscle weakness, elevated muscle enzymes, typical EMG and muscle biopsy findings and diffuse scleroderma. Treatment with 50 mg/day of PSL was started, resulting in improvement of clinical symptoms including muscle weakness, and dyspnea on exertion, and decrease in CK levels. However, dyspnea worsened again when the dose of PSL was tapered to 11 mg/day. In October 1997, she was re-admitted to our hospital and the dose of PSL was increased to 40 mg/day. %VC improved from the baseline (60%) to the level after treatment (74%). PSL was gradually tapered and she is now taking 10 mg/day of PSL. Although moderate dyspnea on exertion has persisted, she has no muscle weakness and serum CK level is within the normal range.

Case 2 (patient #7)
A 57-year-old woman developed dyspnea on exertion and had a non-productive cough in 1994. She was admitted to the Keio University Hospital in November 1994 due to worsening dyspnea. Chest radiography revealed a reticular shadow in both lower lung fields. A chest CT also showed bilateral interstitial fibrosis. The pulmonary function test showed a decreased %VC (59%) and decreased %DLco (35%). A diagnosis of ILD was made, and PSL 40 mg/day was initiated, resulting in improvement of respiratory symptoms. The dose of PSL was tapered and discontinued in November 1995. In August 1997, she gradually devel-

<table>
<thead>
<tr>
<th>Clinical and laboratory findings</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#7</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM rash</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Maximum CK level (IU/l)</td>
<td>2,830</td>
<td>748</td>
<td>930</td>
<td>1,682</td>
<td>1,665</td>
<td>1,005</td>
</tr>
<tr>
<td>EMG findings</td>
<td>Myogenic*</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Myopathy</td>
<td>Myopathy</td>
</tr>
<tr>
<td>Muscle biopsy</td>
<td>Myopathy</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Atrophy</td>
<td>(+)</td>
<td>n.d.</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Necrosis with regeneration</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Infiltration of lymphocytes</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Initial dose of PSL (mg/day)</td>
<td>60</td>
<td>(-)</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Duration of treatment (mos.)</td>
<td>159</td>
<td>(-)</td>
<td>44</td>
<td>24</td>
<td>110</td>
<td>93</td>
</tr>
<tr>
<td>Efficacy of PSL for myositis</td>
<td>(+)</td>
<td>n.d.</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Present status</td>
<td>Death</td>
<td>Alive</td>
<td>Death</td>
<td>Alive</td>
<td>Alive</td>
<td>Alive</td>
</tr>
</tbody>
</table>

*Low amplitude, resting fibrillation, positive sharpe wave (denervation potentials) were present. DM: dermatomyositis, CK: creatine kinase, EMG: electromyogram, PSL: prednisolone.

<table>
<thead>
<tr>
<th>Clinical and laboratory findings</th>
<th>Anti-PL-7(+)</th>
<th>Anti-PL-7(-)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male / female</td>
<td>1 / 5</td>
<td>36 / 83</td>
<td>NS</td>
</tr>
<tr>
<td>Fever (%)</td>
<td>3 (50)</td>
<td>59 (50)</td>
<td>NS</td>
</tr>
<tr>
<td>Arthritis (%)</td>
<td>6 (100)</td>
<td>73 (61)</td>
<td>NS</td>
</tr>
<tr>
<td>ILD (%)</td>
<td>6 (100)</td>
<td>52 (44)</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Raynaud’s phenomenon (%)</td>
<td>4 (67)</td>
<td>35 (29)</td>
<td>NS</td>
</tr>
<tr>
<td>Sclerodactyly (%)</td>
<td>5 (83)</td>
<td>17 (14)</td>
<td>P < 0.005</td>
</tr>
</tbody>
</table>

* PM/DM: polymyositis/dermatomyositis, ILD: interstitial lung disease.
opened muscle weakness and polyarthralgia. In January 1998, the patient was re-admitted. She had sclerodactyly and digital pitting scar as well as muscle weakness and polyarthralgia. Blood tests revealed an elevated CK level (1005 IU/l). The EMG showed myopathic changes. A muscle biopsy revealed chronic inflammatory cell infiltrates in the endomysium, indicating myopathy. The diagnosis of PM-SSc overlap syndrome was made and administration of PSL 30 mg/day was reinstated. The muscle weakness and arthralgia were improved markedly and the CK level normalized in 1998.

Discussion

In the present study, we found 7 patients who had anti-PL-7 autoantibodies among 1,135 patients suspected to have CTD. With regard to clinical symptoms, the features of these patients with anti-PL-7 appeared to reside within the spectrum of the “anti-synthetase syndrome” that has been noted in other patients with anti-ARS antibodies (13). However, it should be noted that the frequency of sclerodactyly in our series was significantly higher than in our PM/DM patients without anti-PL-7 antibodies or anti-PL-7 antibody-positive patients previously reported in the English-language literature. In addition, 2 patients had diffuse scleroderma and one had proximal scleroderma. In fact, 5 of 7 (71%) patients were diagnosed as having PM-SSc overlap syndrome. Anti-PL-7 antibodies are likely to be associated with PM-SSc overlap syndrome in Japanese patients. It is thought that there could be certain racial difference in frequencies of autoantibodies. For instance, anti-PM-ScI antibodies known to be associated with PM-SSc overlap were detected in Caucasian SSc patients but not in Japanese SSc patients (21). Because the number of patients with anti-PL-7 is limited, further studies are required to confirm our hypothesis.

Refractory myositis with anti-ARS antibodies has been reported (22). However the degree of myositis of our cases was relatively mild. Treatment with corticosteroid alone resulted in the resolution of muscle weakness and the normalization of serum CK level successfully in all patients although 2 died from complications unrelated to myositis.

Arthritis and chronic ILD are characteristics of anti-ARS seropositive patients (7, 8) and these features were frequently detected in our series of patients with anti-PL-7 antibodies. It is known that certain patients with PM/DM have ILD preceding the appearance of muscle symptoms (1,8,23). Although patient #6 was diagnosed with IPF at this point, the possibility remains that muscle symptoms may arise in the future. Therefore, continuous careful follow-up observation will be necessary to monitor future muscle involvement.

In conclusion, clinical features detected in 7 Japanese patients with anti-PL-7 antibodies are essentially consistent with anti-ARS syndrome previously reported, such as high frequencies of arthritis, chronic ILD and relatively mild PM/DM for which corticosteroid therapy is effective. An additional clinical manifestation unique to anti-PL-7-positive patients is concomitant scleroderma, and anti-PL-7 are likely to be associated with PM-SSc overlap syndrome in Japanese patients. The detection of anti-PL-7 antibodies may be useful in the diagnosis and disease classification of patients with connective tissue diseases.

Acknowledgement

We would like to thank Ms Mutsuko Ishida for assisting with the RNA immunoprecipitation assay.

References

Clinical characteristics of anti-PL-7 / S. Sato et al.

(in Japanese).

