Infliximab therapy does not modify MMP-2 and MMP-9 serum concentrations in chronic arthritis

G. Giannelli¹, F. Iannone², F. Marinosci¹, M. Covelli², G. Lapadula², S. Antonaci¹

¹Department of Internal Medicine, Immunology, and Infectious Diseases, Section of Internal Medicine, ²Department of Internal Medicine and Public Medicine, Rheumatology Unit, University of Bari Medical School, Bari, Italy.

Abstract

Objective
Matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) play a key role in tissue remodelling after processes such as joint destruction in rheumatoid arthritis. Their expression may reflect the disease activity and they could therefore represent a useful marker to assess the efficacy of therapy. In this study MMP-2 and MMP-9 serum concentrations were evaluated in patients with chronic arthritis during therapy with the anti-TNFα mAB, infliximab.

Methods
Fifty patients with chronic arthritis, 26 with rheumatoid arthritis and 24 with undifferentiated chronic arthritis, were recruited and treated with infliximab (3 mg/kg). Serum concentrations of MMP-2 and MMP-9 were serially measured by gelatine zymography at baseline and after two and fourteen weeks of infliximab therapy. DAS-28 and ACR response criteria were applied to assess disease activity and clinical improvement. Twenty-four healthy donors were included in the study as controls.

Results
Although therapy with infliximab induced a statistically significant reduction of the DAS-28 score and improvement of the ACR clinical response, MMP-2 and MMP-9 serum concentrations were not modulated during therapy with infliximab.

Conclusions
Our study provides further evidence that blocking TNFα by infliximab is a powerful tool in the management of chronic arthritis. Nevertheless, infliximab does not seem to be able to modify the serum expression of MMP-2 and MMP-9, probably because modification of these enzymes is restricted to the site of joint inflammation and serum detection cannot truly mirror the local situation. Additional soluble factors correlating with joint damage should be investigated as possible markers for monitoring anti-TNFα therapy.

Key words
MMP-2, MMP-9, infliximab, chronic arthritis, TNF-alpha, matrix metalloproteases.
Introduction

There is a growing body of evidence that tumor necrosis factor α (TNFα) blocking agents induce a remarkable clinical benefit in patients with rheumatoid arthritis (RA) and undifferentiated seronegative chronic polyarthritis (SCP). The efficacy of TNFα inhibitors is not confined to inducing symptomatic relief but also alters the key biological mechanisms causing chronic inflammation of the joints. Recently, it has been shown that infliximab, a chimeric monoclonal anti-TNFα antibody, can affect the immunopathological processes occurring in the synovial membrane of patients with RA and SCP. A reduction of TNFα, IL-18, and inflammatory cells has been demonstrated in the synovial membrane in RA patients following infliximab therapy (1). Likewise, serial analyses of synovial biopsies in patients with spondyloarthropathy have shown a decrease of synovial hyperplasia, endothelial activation, and inflammation after TNFα blockade by infliximab (2). Indeed, TNFα inhibitors seem to be able to modify the course of RA disease and prevent joint damage (cartilage breakdown and bone erosions), suggesting that infliximab can hamper the process directly involved in tissue destruction (3).

It has been largely reported that inflammatory cytokines such as TNFα upregulate the expression of matrix metalloproteases (MMPs) (4), a family of enzymes with a proteolytic activity towards a number of different extracellular matrix (ECM) proteins (5). These enzymes, secreted in a latent form, are activated at the cellular surface by the complex membrane type (MT)1-MMP, together with the tissue inhibitor of MMPs (TIMPs) (6-8). TIMPS are also involved in limiting the proteolytic activity so that too extensive and uncontrolled a degradation of the ECM components is avoided; therefore, proteolysis occurs as an imbalance between the proteolytic and inhibitory activity (9, 10). MMP-2 and MMP-9 are two members of this family involved in physiological and pathological conditions such as development, cancer invasion and tissue remodelling (5). In RA synovitis, whereby synovial cells invade the cartilage and the bone tissue, an imbalance between MMP-2 and its inhibitor TIMP-2 has been detected (11). Interestingly, in RA synovitis an increased expression of MMP-2 and MT1-MMP, together with a reduced expression of TIMP-2, correlate with the occurrence of early bone erosions (11).

The goal of this study is to investigate the expression of MMP-2 and MMP-9 serum levels in patients with RA and SPC before and during infliximab therapy.

Patients and methods

Patients

A series of patients with chronic polyarthritis was enrolled in an open nonplacebo study. The study was approved by the local ethics committee and written informed consent was obtained from each patient.

A total of 50 patients were recruited; 26 patients fulfilled the American College of Rheumatology 1987 revised criteria for RA (12) and 24 patients had undifferentiated seronegative chronic polyarthritis (SCP) according to the European Spondylarthropathy Study Group criteria (13). Demographic and clinical data of the patients are described in Table I. Furthermore, 90% of RA patients had articular erosions at standard plain X-rays. The inclusion criteria were (1) resistance to 2 or more DMARDs (disease modifying anti-rheumatic drugs) after at least 6 months administration; (2) “active disease” as measured by the Disease Activity Score (DAS), including 28 joints (DAS-28) (14). This composite index takes into account the number of swollen joints, the number of tender joints, patients’ global assessment of disease activity measured on a visual analogue scale (VAS, range 0-100 mm) and the erythrocyte sedimentation rate (ESR, mm/1st hour). A DAS28 score ranging from 2.6 to 3.2 defines low disease activity, from 3.2 to 5.1 moderate activity, and > 5.1 high activity. All patients were screened for tuberculosis by chest X-ray and skin Mantoux’s test prior to the treatment.

All patients received methotrexate (range 10-15 mg/week) for more than 4 weeks. Stable dosages of steroids
(prednisone equivalent, range 5-10 mg/day) and NSAIDs (non-steroidal anti-inflammatory drugs) were reached at least 4 weeks before enrolment. The above therapy was continued unchanged throughout the study. Infliximab (3 mg/Kg) was infused at weeks 0, 2, 6, 14. The efficacy of the therapy was assessed on the basis of the ACR 20%, 50%, and 70% clinical response (15).

Serum samples were collected prior to infusion at weeks 0, 2, 14 and stored at −20°C until use. Serum samples of twenty-four healthy donors (HD) were included in the study as controls.

Methods

All the samples were normalized for protein concentration as measured by the bicinchoninic acid method (Pierce Chemical Co, Rockford, IL). MMP-2 and MMP-9 were analyzed by gelatine zymography as previously reported (16). The gels were incubated overnight, stained with Coomassie blue, and destained with a Methanol Acetic acid solution until gelatinolytic areas appeared evident as unstained bands in a blue stained gel. The quantification of both latent and active gelatinases was performed as described (17). Briefly, HT1080 conditioned medium containing known concentrations of MMP-2 and MMP-9 was used with serial dilutions to obtain a standard curve. Serial dilutions of the sample were loaded in each gel, yielding a linear relationship between sample dilution and gelatinolytic activity. In each experiment, a standard curve of HT1080 conditioned medium was loaded into the gels, and then gelatin zymography results were acquired and quantified with an image-analysis-software system (Image Master 1D Prime, Pharmacia Biotech, UK).

Statistical analysis

For statistical comparison the Kruskall-Wallis test was used. Correlation analysis was carried out using Spearman’s test for non-parametric data. The significance level was set at p < 0.05.

Results

The evaluation of DAS-28 showed a median disease activity of both RA and SCP patients at the baseline of 6.3 and 5.5, respectively; after two weeks it had decreased to 3.5 (p < 0.01) and to 2.8 (p < 0.01), respectively (Fig. 1). A sustained reduction was observed after 14 weeks (RA: median 3.3 p < 0.01; SCP: median 2.4 p < 0.01) (Fig. 1). Consistently, infliximab induced a rapid therapeutic effect according to ACR response criteria in both RA and SCP patients. Specifically, after two weeks, the percentage of RA patients with an ACR20, 50, 70 was 61%, 38%, 12%, respectively, while after fourteen weeks the percentage of patients with ACR20, 50 and 70 was 69%, 54%, 27%, respectively (Fig. 2). A similar pattern of response was observed in SCP patients both after 2 weeks (62% ACR 20, 45% ACR 50, and 30% ACR 70) and after 14 weeks (79% ACR 20, 62% ACR 50, and 58% ACR 70) (Fig. 2). A significant difference was observed between RA (p < 0.05) but not SCP (p > 0.05) at baseline levels and HD as

Table I. Clinical and demographic data of the patients (mean ± SD).

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>RA</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>50</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Age (yrs.)</td>
<td>44.6 ± 15</td>
<td>44.7 ± 15</td>
<td>44.5 ± 16</td>
</tr>
<tr>
<td>Female/male</td>
<td>35/15</td>
<td>23/3</td>
<td>12/12</td>
</tr>
<tr>
<td>Disease duration (yrs.)</td>
<td>9.9 ± 7</td>
<td>9.8 ± 7</td>
<td>10.1 ± 8</td>
</tr>
<tr>
<td>DAS 28 score</td>
<td>6.02 ± 1.4</td>
<td>6.4 ± 1.3</td>
<td>5.5 ± 1.4</td>
</tr>
</tbody>
</table>

RA: rheumatoid arthritis; SCP: seronegative chronic polyarthritis.
regarding MMP-2. Serum concentrations of MMP-2 (Fig. 3A) were similar in the RA and SCP patient groups, but no statistically significant differences were observed in either group during infliximab treatment. In particular, in SCP patients, median MMP-2 was 857.0 ng/ml at baseline, 740.0 ng/ml after 2 weeks, and 751.0 ng/ml after 14 weeks (p > 0.05). In RA patients, median MMP-2 was 1134.0 ng/ml at baseline, 1153.0 ng/ml after 2 weeks, and 1056.0 ng/ml after 14 weeks (p > 0.05).
gards MMP-9 serum concentrations. However, a significant difference was observed between RA (p < 0.05), SCP (p < 0.05) and HD as regarding MMP-9 (Fig. 3B). In particular, in SC patients, median MMP-9 was 444.0 ng/ml at baseline, 313.0 ng/ml after 2 weeks, and 305.0 ng/ml after 14 weeks (p > 0.05). In RA patients, median MMP-9 was 320.0 ng/ml at baseline, 313.0 ng/ml after 2 weeks, and 341.0 ng/ml after 14 weeks (p > 0.05). No statistically significant correlation was found between MMP-2 and MMP-9 disease activity (DAS-28) at any time of treatment (data not shown). (Fig. 5).

Finally, no correlation was found between both MMP-2 and MMP-9 and baseline disease activity including bone erosions.

Discussion

The molecular mechanisms underlying the bone erosion tissue damage occurring in RA and SC are not fully understood, although growing evidence suggests that an imbalance between MPPs and TIMPs likely takes place (11). MMP-2 and MMP-9 proteolytic activity is required to break down ECM proteins tissue boundaries allowing the invasion of synovial cells and hence bone erosion. Recently, a reduction of MMPs and TIMPs likely takes place (11). In RA patients, MMP-2 and MMP-9 serum concentrations failed to correlate with the clinical response to therapy and/or to the therapeutic efficacy of the treatment (11).

This could justify the fact that in our study and others the MMP-2 and MMP-9 serum concentrations failed to correlate with the clinical response to therapy and/or to the therapeutic efficacy of the treatment (11). Nevertheless, the study by Klimmek et al., represents a potential important finding that should be more extensively investigated and confirmed.

In conclusion, our study provides further evidence that blocking TNFα by infliximab is a powerful tool in the management of chronic arthritis. Nevertheless, infliximab does not seem to be able to modify the serum expression of MMP-2 and MMP-9, probably because modification of these enzymes is restricted to the site of joint inflammation and serum detection cannot truly mirror the local situation. More studies are needed to assess whether serum evaluation of the proteolytic imbalance is useful to further clarify mechanistic aspects of bone erosion in RA patients, and additional soluble factors correlating with joint damage should be investigated as possible markers for monitoring anti-TNFα therapy.

References

1. VON OOSTERHOFT H, LEVARIHT EW, SONT

2. KRUTHOF IE, BAETEN D, VAN DEN BF,

3. QUINN MA, CONAGHAN PG, O'Connor PI

4. CHU SC, YANG X, LEE KI, HSIEH Y, WU

5. GIANNELLI G, ANTONACI S: Gelatinases and

6. VISSE R, NAGHIEH H, Matrix metalloprotei-

7. SATO H, TAKINO T, KINOSHI T et al.: Cell

8. STRONGIN AY, COLLIER I, BANNIKOV G, MARMIER BL, GRANT GA, GOLDBERG GI: Mechanism of cell surface activation of gelatinase A induced by expression of membrane-type 1-matrix metalloproteinase (MT1-

9. BASTAUM CE, WEIR Z: Focalized protein

11. GOLDBACH-MANSKY R, LEE JM, HOX-

15. FELSON DT, ANDERSON JJ, BOERS M et al.: American College of Rheumatology. Preliminary definition of improvement in rheuma-

16. GIANNELLI G, BERGAMINI C, FRANSSVEA E, MARINOSCI F, QUARANTA V, ANTONACI S: Human Hepaticellular Carcinoma (HCC) cells require both alpha-Sialic integrin and matrix metalloproteinases activity for migra-

