Selective pressures for the high prevalence of MEFV variants induced by smallpox infection in the “Old World”: A hypothesis

Sirs. High frequency of the heterozygous carriers of MEFV mutations, which are associated with familial Mediterranean fever, in certain ethnic groups poses an important question of selective advantage against yet unknown fatal infections by a tendency to develop stronger inflammatory response (Fig. 1). Cattan recently discussed the possibility of a lower rate of mortality from tuberculosis conferred by MEFV variants based on mortality records of Tunis in the first half of the 20th century (1). I herein propose that smallpox may be a more likely selective pressure for the MEFV variants.

Smallpox had been one of the most dreadful infections on human life, with a case fatality rate of 20% (2). Historical sources indicate that smallpox was already endemic in Egypt and Mesopotamia by the second century AD. It spread to Northern Europe in the 11th and 12th centuries, and to America much later (2). These records may suggest that smallpox may have acted as a selective pressure longer and increased the MEFV allele frequencies in geographic regions where FMF is prevalent.

Recently, Galvani and Slatkin evaluated the bubonic plague and smallpox as the selective pressures for the chemokine receptor CCR5-A32 allele using an age-structured model (3). They suggested that smallpox may explain better than plague the selective rise of CCR5-A32 allele to current frequencies with a relatively high case fatality rate, the persistence of the infection more continuously since the origin of the allele, the affection of mainly younger people with reproductive potential, and a higher cumulative death toll (3). Their argument about the timing of the appearance of the resistance allele and the number of generations that the disease can drive the allele to its current frequencies can be applied to the MEFV variants. Age of MEFV mutations reaching up to 2500 years can be explained by considering an incomplete dominance model, in which a heterozygous allele confers less protection against disease mortality compared to the carriers of two copies of the resistance alleles and also the presence of more than one variant with varying degrees of protection (3, 4).

The MEFV variants can cause a reduced expression of pyrin, which results in increased activation caspase 1 (also known as interleukin-1β converting enzyme (ICE) and IL-1p). Fovxviruses developed many defense strategies to suppress host immunity, which included serpin protease inhibitors (serpins) interfering with proteolytic activity of ICE, thus inhibiting the IL-1p activation (5). Incitiation of the serpin genes in the vaccinia virus resulted in an increased vaccine safety with attenuated activities without compromising the strength of the immune responses (6). Thus, inherent increased ICE activity resulting from MEFV mutations can be advantageous by conferring decreased smallpox mortality, if not inhibiting the contraction of infection itself.

On the other hand, selective increase of heterozygous carriers of the MEFV mutations due to smallpox or other infections may also constitute a population health problem. MEFV has been known as an autosomal recessively inherited disorder. However, depending on the type or location of the mutations (i.e., ΔM694, complex E148Q-/M694V or H478Y), occasional cases with true autosomal dominant inheritance can be seen (6, 7). Other genetic polymorphisms or accompanying inflammatory disorders can also affect the expression of FMF in heterozygous carriers (8, 9). It can be assumed that depending on the site, intensity, duration or other characteristics of accompanying inflammation, FMF phenotype can be developed in individuals carrying a single MEFV mutation, at least temporarily (Fig. 1).

MEFV mutations can also affect the severity of the accompanying inflammatory condition, as observed in patients with multiple sclerosis and rheumatoid arthritis (10, 11). Pyrin seems to act as negative regulator in the fine-tuning of inflammation through controlling the interleukin-1β converting enzyme (ICE) activity in normal individuals and in carriers of 1 or 2 copies of MEFV variants.

Fig. 1. Proposed model of pyrin activity in fine-tuning of inflammation through controlling the interleukin-1β converting enzyme (ICE) activity in normal individuals and in carriers of 1 or 2 copies of MEFV variants.

References
4. INTERNATIONAL FMF CONSORTIUM: Ancient recessive mutations in a new member of the Kolliker gene family are likely to cause familial Mediterranean fever. Cell 1997; 90: 797-807.

What effect do dietary antioxidants have on the symptoms and structural progression of knee osteoarthritis over two years?

Sirs.

There has been evidence that antioxidant intake may be associated with reduced progression of radiographic knee osteoarthritis (OA). We performed a prospective cohort study to examine the effect of dietary antioxidants on symptoms, cartilage volume and their change over 2 years in subjects with knee OA.

One hundred and thirty-six subjects who fulfilled American College of Rheumatology clinical and radiographic criteria for knee OA (1) entered the study. General health, pain, stiffness, and function were assessed using 36-Item Short-Form Health Survey (SF-36) (2) and Western Ontario

Letters to the Editor