Ultrasound imaging for the rheumatologist

VI. Ultrasonography of the elbow, sacroiliac, parasternal, and temporomandibular joints

A. Delle Sedie¹, L. Riente¹, A. Iagnocco², E. Filippucci³, G. Meenagh¹, G. Valesini², W. Grassi³, S. Bombardieri¹

ABSTRACT

Ultrasound (US) examination of the elbow and parasternal joints is very useful to detect synovitis, degenerative changes, intrarticular calcification or soft tissue abnormalities. More recently new fields of research involving the sacroiliac and temporomandibular (TM) joints have evolved. Moreover, important information has been obtained about vascularization of the synovial joint in the sacroiliac region and structural modification such as internal derangement in the TM joint. In this paper, we review and discuss the role of US in the evaluation of elbow, sacroiliac, parasternal and TM joint pathology.

Introduction

Ultrasound (US) is a useful tool for the rheumatologist during consultations with patients presenting elbow symptoms.

In addition the technical improvement over the last few years has led to a growing role for US in the study of sacroiliac (SI), parasternal and temporomandibular (TM) joints which present particular difficulties when imaged sonographically.

In this paper we review and discuss the role of US in the evaluation of elbow, SI, parasternal and TM joint pathology.

Elbow

Indications

US may be successfully used to show joint effusion (1), analyze the features of synovitis in inflammatory diseases (2), assess tendon, bursae (3), ligaments (4) nerves (5, 6) and enthesal (7) involvement in patients with pain and/or swelling of elbow (Table I).

Equipment

The use of high quality equipment is mandatory and high-resolution linear probes (7.5-10 MHz) are recommended (7). Analysing the signs of local hyperemia, colour Doppler (CD) and power Doppler (PD) complete the grey-scale US study.

Scanning technique

The patient is positioned in a chair with the elbow placed on the examination table (8). The joint is kept in full extension with the forearm held in supination whilst performing the anterior scans. The elbow is then flexed to 45° for the lateral scans and 90° for the posterior and medial scans. Dynamic assessment is suggested for a more complete study of elbow pathology.

US imaging of the normal elbow

Joints

Both the humero-radial and humero-ulnar joints are visualized by anterior and posterior scans which show the hyperechoic bony profile of the humerus, radius and ulna (8-10). The capsule bounds the joint cavity and appears as a thin echoic band. A small amount of anechoic synovial fluid is demonstrated within the joint space in healthy subjects. Articular cartilage is visualized as a thin anechoic line with sharp edges bounding the bony surface. Reference ranges are now available in healthy subjects for the bone-capsule distance on multiple scanning planes (11).

Peri-articular tissues

The triceps tendon is visualized by posterior scans. Medial scans show the common flexor tendon and the medial collateral ligament whilst the common...
extensor tendon and lateral collateral ligament are visible on lateral scans. The distal biceps tendon and the annular ligament can be clearly depicted on anterior scans (8-10).

In healthy subjects, bursae are visualised with difficulty as two thin hyper-echoic parallel lines within the context of the peri-articular tissue, but they are more easily identified when they contain trace amounts of fluid.

The ulnar nerve can be identified clearly by US at the level of the cubital tunnel.

US pathologic findings (Table I)

Joints

Effusion and synovitis are detected by grey scale US which reveals anechoic collections and/or synovial proliferation within the joint cavity. It has been reported that a US distance > 2 mm between the capsule and the bone is a probable sign of joint effusion or synovitis when detected on anterior scans (1). In the presence of active synovitis CD and PD demonstrate increased perfusion in the inflamed synovial tissue. Intra-articular loose bodies can be identified within the elbow joint cavity by a multiplanar scanning technique. Irregularities of the bony profile including osteophytes, cortical erosions or fractures may also be identified.

Tendons

Tendonitis (12) of the proximal radial extensors (lateral epicondilitis) and proximal ulnar flexors (medial epicondilitis) are the most frequent soft tissue pathologies of the elbow and are characterized by a thickened and hypo-echoic tendon origin, sometimes associated with calcification and cortical bone abnormalities. Both PD and CD are useful for the demonstration of local hyperemia in cases of tendonitis or enthesopathy. Tendinosis (12) and partial or full thickness tendon tears can be identified.

Bursae

In olecranon and cubital bursitis, fluid distension and/or local synovial proliferation are shown (3, 8). In patients with crystal related arthropathies crystalline masses may be demonstrated within the fluid. PD imaging is useful in providing information about active inflammation.

Nerves

In cubital tunnel syndrome US can visualise swelling (6, 13, 14) and lengthening (5) of the ulnar nerve. Similar findings may be shown in the intersosseous nerve in supinator syndrome. US can differentiate between the various causes of ulnar neuropathy at the elbow (i.e. retrocondylar compression, tumours, nerve dislocation and hyper-mobile nerves).

Other findings

The ulnar collateral ligament is frequently the target of pathology and US can demonstrate interruption of the fibres, hypoechoic foci, thickening and calcification. Subcutaneous nodules (tophi or rheumatoid nodules) may be present in the olecranon region. US can discern their structure, dimensions and relationship to adjacent tissues.

US can assess also fluid content, dimensions and degree of extension of synovial cysts, especially frequent in patients with rheumatoid arthritis or amyloidosis.

Limits

The paucity of acoustic windows (the inner part of the joint is not accessible to the acoustic beam) is the most overriding obstacle to elbow US. This problem is more often evident in patients with disease limiting elbow joint motion and resulting in marked distortion of the local anatomy.

US-guided procedures

US is now an invaluable imaging modality which is enabling the rheumatologist to approach elbow pathology in new and innovative ways, particularly in the execution of fluid aspiration, local therapeutic injections and biopsies. However, to date no standardised method of US guided injection of the elbow have been reported in the literature.

Table I. Pathological findings – elbow joint.

<table>
<thead>
<tr>
<th>Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint effusion: appearance of a hypo-anechoic collection within the joint space and joint capsule distension</td>
</tr>
<tr>
<td>Synovitis: intra-articular synovial proliferation with possible contemporaneous evidence of joint effusion, with or without local increased perfusion (CD or PD)</td>
</tr>
<tr>
<td>Osteophytes: irregularities of the bony profile at the joint margins</td>
</tr>
<tr>
<td>Erosions: cortical defect with an irregular floor (both in longitudinal & transverse scans)</td>
</tr>
<tr>
<td>Intra-articular loose bodies: demonstration of foreign material with variable echogenicity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tendons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial-thickness tear: discontinuity of fibres with focal hypo-anechoic area and/or focal thinning</td>
</tr>
<tr>
<td>Full-thickness tear: complete hypo-anechoic defect within the tendon, extending entirely through it or absence of the tendon</td>
</tr>
<tr>
<td>Tendinosis: focal or diffuse hypocoechoicity and thickening with or without Doppler signal</td>
</tr>
<tr>
<td>Enthesopathy/enthesitis: entheseal thickening and/or hypoechogenicity and/or Doppler signal and/or calcification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcification</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hyperechoic areas or lines with possible acoustic shadowing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bursae</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Distension of the wall and presence of fluid collection within</td>
</tr>
<tr>
<td>• Synovial proliferation within the bursa with or without local hyperemia (Doppler)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synovial cysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hypo-anechoic bodies with definite wall often extending on the anterior aspect of the forearm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nerves</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In neuropathy: swelling; increased diameters/length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nodules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tophi: echoic, heterogeneous oval or round masses with possible internal calcification rheumatoid nodules: echoic, homogeneous masses, sometimes confluent</td>
</tr>
</tbody>
</table>
Sacroiliac joints

Indications
Sacroilitis is a frequent manifestation of spondyloarthropathy. To date, very few papers on US evaluation of SI joints have been published (15-17). However, the use of contrast enhanced CD US seems to be a very sensitive technique in the detection of active sacroilitis (15).

Equipment
As for other joints, the use of high quality equipment is mandatory and high-resolution linear probes (7.5-10 MHz) are recommended. CD or PD systems are necessary to obtain information about local vascularization. The CD US is performed using a Doppler frequency of 2.5-5 MHz (16) and microbubble contrast agents for CD US may be used.

Scanning technique
US evaluation is performed with the patient in the prone position, starting with a grey-scale US examination to identify the bony spinous processes in the midline and the posterior part of the SI joints (16). Examination of the contralateral side is recommended.

US imaging of the normal sacroiliac joint
With the probe in transverse position, the posterior contour of the sacrum is visualized as an echogenic line, while the sacral spinous process is shown as a concave curve at the midline, with sacral wings, represented by a regular echogenic line laterally. The SI joint is visualized as a hypoechoic cleft between two echogenic lines (sacrum and iliac bone) (16, 17).

US pathologic findings (Table II)

Joint effusion
Increased perfusion is detected by CD US (16) and contrast enhanced CD US is significantly better than an unenhanced technique to diagnose active sacroilitis (15). Arslan et al. used unenhanced CD US to demonstrate perfusion around or inside the SI joint in 48% of patients with sacroilitis, but also in some patients with osteoarthritis and in controls (16).

Limits
SI joints are examined in a very incomplete manner because their anatomical configuration does not allow good US beam penetration.

US-guided procedures
Local therapeutic injections may be executed under US guidance. Pekkafalci et al. (17) described a US guided technique which allowed them to have a 76.7% of success in positioning the needle in the sacroiliac joint (increased to 93.5% in the last injections).
US imaging of normal parasternal joints

The sternoclavicular joint is identified lateral to the manubrium sternum and both the sternum and the clavicle are visualized as hyperechoic lines with posterior acoustic shadowing. The medial part of the clavicle is positioned more anterior and superior with respect to the sternum and has a rounded configuration. A hypoechoic space between the two bony structures represents the joint space (18).

The appearance of the sternocostal joint is quite similar to the sternoclavicular joint but the costal cartilage is normally viewed as a homogeneously hypoechoic oval-shaped area without posterior acoustic shadows in longitudinal scans, while in transverse scans it appears as a ribbon-shaped homogeneous hypoechoicinity (19).

US pathologic findings (Table II)

Joint

Effusion is detected as an anechoic or hypoechoic intracapsular collection (12) and synovitis as echogenic tissue proliferating within the joint cavity. PD US may demonstrate an increased per-

Elbow, sacroiliac, parasternal & temporomandibular joint US / A. Delle Sedie et al.

Temporomandibular joint

Indications

Sonographic examination has been widely used in the study of internal derangement of the TM joint. This term refers to an abnormal position of the articular disc relative to the mandibular condyle and the articular eminence (20-25). In addition osteoarthritic changes (23, 26-28) and those found in rheumatoid arthritis (RA) (29, 30) have been investigated using US. The results of the study published by Melchiore et al. and Manfredini et al. in RA and psoriatic arthritis patients emphasize that TM joint US evaluation may play a role in the clinical assessment of rheumatic patients, most of all in the assessment of joint effusion.

Equipment

US TM joint examination requires high quality equipment and high-resolution linear probes (7.5-15 MHz) (20-23, 25, 30).

Scanning technique

Different positions are described in the US assessment of TM joint, with the patient sitting in an upright position with the head in the natural position (23, 29, 30) or supine on the examination table (25, 27, 28). The transducer is placed against the patient’s face, overlying the zygomatic arch and the TM joint, parallel to the long axis of the mandibular ramus and then tilted until the optimal visualization is obtained (23, 24, 26-28). The scans are obtained both in the open-mouth and in close-mouth positions. Transverse and longitudinal scans are recommended and dynamic assessment is suggested in the study of the disc displacement.

US pathologic findings (Table II)

Joint

Effusion is detected as an anechoic collection within the articular capsule. It has been reported that at US distance >2 mm between the capsule and the bone is a probable sign of joint effusion (32). Irregularities of the bony profile including osteophytes or cortical erosions may also be identified. Recent studies show a high concor-
dance between US and magnetic resonance imaging for TM joint effusion (29) and degenerative changes (22).

Disc position may be abnormal with displacement at closed-mouth and/or at open-mouth position, with or without reduction of the internal derangement.

Muscles

An increment in muscle thickness has been described in patients with temporomandibular disorder, probably due to muscle edema (31).

Limits

The size of the acoustic window is perhaps the greatest obstacle to TM US. The medial part of the joint is not accessible to the acoustic beam and therefore medial disc displacements cannot be visualised. The disc is always difficult to see, and during static scanning, the US beam must be kept in exactly the same orientation to the discal surface to prevent discal anisotropy (24, 28). Finally, the upper TM joint compartment may be filled with fluid or fibrous tissue (maximally in long-time disc displacement), resulting sometimes in difficulties differentiating between disc displacement and fibrous structures.

US-guided procedures

Intrarticular injections of TM joint are usually performed but no data are reported about US-guided procedures into such joints.

Link

For further ultrasound images, go to: www.clinexpneumatol.org-ultrasound

References

4. MILLER TT, ADLER RS, FRIEDMAN L: Sonography of injury of the ulnar collateral liga-