HLA alleles in Korean patients with Takayasu arteritis

S.-W. Lee¹, O.-J. Kwon², M.-C. Park¹, H.-B. Oh³, Y.-B. Park¹, S.-K. Lee¹

¹Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunodermal Diseases, Brain Korea 21 Project for Medical Science, Graduate School of Yonsei University, Yonsei University College of Medicine; ²Biosowoem Institute of Bioscience and Biotechnology, ³Department of Laboratory Medicine, University of Ulsan College of Medicine, Seoul, Korea.

Sang-Won Lee², MD, Oh-Joong Kwon², PhD, Min-Chan Park³, MD, Heung-Bum Oh³, MD, PhD, Yong-Beom Park¹, MD, PhD, Soo-Kon Lee³, MD, PhD.

This work was supported by the Korea Research Foundation Grant (KRF-2003-E00107).

Please address correspondence and reprint requests to: Yong-Beom Park, MD, PhD, Department of Internal Medicine, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-ku, Seoul, Korea. E-mail: yongbpark@yumc.yonsei.ac.kr

Received on September 8, 2006; accepted in revised form on February 1, 2007. Clin Exp Rheumatol 2007; 25 (Suppl. 44): S18-S22.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2007.

Key words: Human leukocyte antigen (HLA), susceptibility, Takayasu arteritis.

ABSTRACT

In this study, we investigated the HLA allele and haplotype frequencies, and the association of HLA alleles with serious complications and angiographic findings in Korean patients with Takayasu arteritis (TA) compared with healthy controls. Sixty-one patients (56 women, 5 men), diagnosed with TA between January 1995 and December 2005, were studied. Ninety-five healthy men and women were selected as controls. Clinical manifestations were assessed and angiographies were performed at the time of diagnosis in all TA patients. Genotypes of the HLA-A, -B and -DRB1 loci were determined using the polymerase chain reaction-sequencing-based typing (PCR-SBT) method. The mean age at the time of diagnosis of TA was 37.0 ± 12.1 years. Compared with controls, the frequencies of A*3001 (p = 0.048), B*5201 (p = 0.025), and DRB1*1502 (p = 0.046) alleles were significantly higher in TA patients, and the frequency of A*2602 was significantly lower in TA patients when compared with controls (p = 0.047). The haplotype containing A*2402-B*5201-DRB1*1502 was significantly increased in TA patients (χ² = 5.45, p = 0.01). Further, among the serious complications of TA, congestive heart failure (CHF) was found to be associated with B*5201 (OR = 5.94, p < 0.05, 95% CI = 1.04-33.85). These data suggest that A*3001, B*5201, and DRB1*1502 alleles might increase the susceptibility to TA, while A*2602 might protect against TA. Further, our results reveal that the haplotype A*2402-B*5201-DRB1*1502 could be a risk factor for TA, and the allele B*5201 is significantly associated with CHF.

Introduction

Takayasu’s arteritis (TA) is a granulomatous vasculitis of unknown etiology that affects the aorta, its major branches and the pulmonary arteries (1). The incidence of TA varies according to geographical and ethnic background. TA is found in Asian and Latin American countries more frequently than in European and North American countries (2). The reported clinical manifestations of TA vary between countries and ethnic groups (3, 4). In addition, these observations suggest a strong association between TA and genetic background.

Human leukocyte antigen (HLA) has been considered a candidate for a genetic factor determining the susceptibility to TA, because it has a role in regulating immune responses (5). Moreover, HLA alleles which are highly polymorphic show ethnic variation in frequency. This could explain the geographical and ethnic variation associated with the incidence of TA. The HLA alleles B*5201, B*3902, and DRB1*1502 were reported to be associated with TA in Japan (6-8), A31 and B52 in Thailand (9), B5 and its subtypes B51 and B52 in India (10), DRB1*1602 and DRB1*1001 in Colombian Mexisto patients (11), B5, B15, B52 and DR6 in Mexican Mexisto patients (12), and A2, A9, B35 and DR7 in Arabs (13). It was also reported that genetic factors seem to be implicated not only in the susceptibility, but also in the severity and outcome of TA (14). It is, therefore, important to investigate HLA alleles specific to different human populations in order to predict the development and understand the pathophysiology of TA. An association of HLA-Bw52 and B5 with TA in Korean TA patients was reported (15, 16), but there has been no report on the allelic level based on high resolution typing in Korean TA patients. In this study, we investigated the association of the HLA alleles and haplotypes with serious complications and angiographic findings in patients with TA.
Materials and methods

Patients

Sixty-one patients (56 women, 5 men), diagnosed with TA between January 1995 and December 2004, were studied. They all fulfilled the American College of Rheumatology 1990 criteria for the classification of TA (17). The mean age of the patients at the time of diagnosis with TA was 37.0 ± 12.1 years (range 14 to 64 years). Ninety-five healthy men and women were selected as controls. Patient consent and ethical approval were obtained for this study.

Clinical manifestations and angiographic findings

Clinical manifestations were assessed and angiographies were performed at the time of diagnosis in all patients with TA. A life threatening or disabling condition attributed to TA was defined as a serious complication, including cerebrovascular accident (CVA), congestive heart failure (CHF), valvular heart disease (VHD), ischemic heart disease (IHD), and retinopathy (18). Angiographic findings were classified according to the International Takayasu’s Arteritis Conference of 1994 (19). Types of arteriogram are as follows: type I, involvement of the main branches from the aortic arch; type IIa, involvement of the ascending aorta, aortic arch and its branches; type IIb, involvement of the ascending aorta, aortic arch and its branches, thoracic descending aorta; type III, involvement of the thoracic descending aorta, abdominal aorta, and/or renal arteries; type IV, involvement of the abdominal aorta and/or renal arteries; and type V, the combined features of type IIb and IV.

High-resolution HLA genotyping

Whole blood was collected from 61 TA patients and 95 healthy controls, and stored at -20°C until use. DNA was extracted from the blood samples using the LaboPass Blood mini Kit (Cosmogenetech, Seoul, Korea). In short, the whole blood sample was mixed with 20μl of proteinase K and 200μl of BL solution, incubated at 56°C for 10 minutes, transferred to a column with 200μl of ethanol, and then centrifuged at 10,000 rpm for 1 minute. The column was then washed with 300μl BW solution, and treated with 500μl NW solution. Genomic DNA was eluted with 200μl tertiary distilled water, and used as the template for polymerase chain reaction (PCR).

High resolution HLA genotyping was performed. Alleles of the HLA-A, -B, and -DRB1 loci were genotyped using the PCR-sequencing-based typing (PCR-SBT) kit (Biosewoom, Inc., Seoul, Korea). The genes of HLA-A, -B, and -DRB1 were amplified by PCR. For SBT, exon 2 and exon 3 of both HLA-A and -B, and exon 2 of HLA-DRB1 were sequenced directly. Sequencing was performed using the BigDye™ Terminator v3.1 Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, CA) and purified by the WizardMagneSil™ Sequencing Reaction Clean-Up System (Promega, CA, USA). The purified products were electrophoresed on an ABI PRISM® 3730xl Genetic Analyzer (Applied Biosystems, Foster City, CA). Sequences were analyzed with the HLA analysis program (Biosewoom, Inc., Seoul, Korea).

Statistical analysis

The SAS/genetic module in SAS version 9.1 (SAS Institute Inc., NC, USA) was used for statistical analysis. The allele frequencies of HLA-A, -B, and -DRB1 in the patient and control groups were compared using the chi-square test.
statistics. The haplotype procedure in the program was used to compare the haplotype frequency between patients and controls. Low-frequency alleles (< 3%) and haplotypes (< 2%) both in the patient and control group were not analyzed in order to reduce the number of comparisons with inadequate power. Odds ratio (OR) was assessed using binary logistic regression test in SPSS package for Windows version 11.5. The level of significance was set at 0.05.

Table II. HLA DNA-types in patients with Takayasu arteritis.

<table>
<thead>
<tr>
<th>HLA alleles</th>
<th>Patients (N = 61) N(%)</th>
<th>Controls (N = 95) N(%)</th>
<th>p value</th>
<th>HLA alleles</th>
<th>Patients (N = 61) N(%)</th>
<th>Controls (N = 95) N(%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*0101</td>
<td>2 (1.6)</td>
<td>4 (2.1)</td>
<td>NS</td>
<td>A*4403</td>
<td>7 (5.7)</td>
<td>17 (8.9)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0201</td>
<td>25 (20.5)</td>
<td>29 (15.3)</td>
<td>NS</td>
<td>B*4601</td>
<td>3 (2.5)</td>
<td>11 (5.8)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0203</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>B*4801</td>
<td>3 (2.5)</td>
<td>6 (3.2)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0205</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>B*5001</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0206</td>
<td>11 (9.0)</td>
<td>12 (6.3)</td>
<td>NS</td>
<td>B*5101</td>
<td>7 (5.7)</td>
<td>21 (11.1)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0207</td>
<td>4 (3.3)</td>
<td>7 (3.7)</td>
<td>NS</td>
<td>B*5102</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0215</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>B*5201</td>
<td>10 (8.2)</td>
<td>5 (2.6)</td>
<td>0.025</td>
</tr>
<tr>
<td>A*0301</td>
<td>2 (1.6)</td>
<td>2 (1.1)</td>
<td>NS</td>
<td>B*5401</td>
<td>9 (7.4)</td>
<td>10 (5.3)</td>
<td>NS</td>
</tr>
<tr>
<td>A*0302</td>
<td>3 (2.5)</td>
<td>0 (0)</td>
<td>0.030</td>
<td>B*5502</td>
<td>4 (3.3)</td>
<td>5 (2.6)</td>
<td>NS</td>
</tr>
<tr>
<td>A*1101</td>
<td>13 (10.7)</td>
<td>22 (11.6)</td>
<td>NS</td>
<td>B*5601</td>
<td>1 (0.8)</td>
<td>1 (0.5)</td>
<td>NS</td>
</tr>
<tr>
<td>A*1102</td>
<td>1 (0.8)</td>
<td>0 (0)</td>
<td>NS</td>
<td>B*5701</td>
<td>1 (0.8)</td>
<td>0 (0)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2402</td>
<td>23 (18.9)</td>
<td>41 (21.6)</td>
<td>NS</td>
<td>B*5801</td>
<td>6 (4.9)</td>
<td>12 (6.3)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2408</td>
<td>1 (0.8)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>B*5901</td>
<td>1 (0.8)</td>
<td>3 (1.6)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2420</td>
<td>1 (0.8)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>B*6701</td>
<td>0 (0)</td>
<td>4 (2.1)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2601</td>
<td>4 (3.3)</td>
<td>10 (5.3)</td>
<td>NS</td>
<td>DRB1*0101</td>
<td>10 (8.2)</td>
<td>13 (6.8)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2602</td>
<td>0 (0)</td>
<td>6 (3.2)</td>
<td>0.047</td>
<td>DRB1*0301</td>
<td>4 (3.3)</td>
<td>7 (3.7)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2603</td>
<td>1 (0.8)</td>
<td>0 (0)</td>
<td>NS</td>
<td>DRB1*0403</td>
<td>2 (1.6)</td>
<td>3 (1.6)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2610</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>DRB1*0404</td>
<td>2 (1.6)</td>
<td>6 (3.2)</td>
<td>NS</td>
</tr>
<tr>
<td>A*2910</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
<td>DRB1*0405</td>
<td>8 (6.6)</td>
<td>12 (6.3)</td>
<td>NS</td>
</tr>
<tr>
<td>A*3001</td>
<td>9 (7.4)</td>
<td>5 (2.6)</td>
<td>0.048</td>
<td>DRB1*0406</td>
<td>3 (2.5)</td>
<td>11 (5.8)</td>
<td>NS</td>
</tr>
<tr>
<td>A*3004</td>
<td>1 (0.8)</td>
<td>3 (1.6)</td>
<td>NS</td>
<td>DRB1*0407</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
</tr>
<tr>
<td>A*3101</td>
<td>8 (6.6)</td>
<td>10 (5.3)</td>
<td>NS</td>
<td>DRB1*0408</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>NS</td>
</tr>
<tr>
<td>A*3303</td>
<td>12 (9.8)</td>
<td>32 (16.8)</td>
<td>NS</td>
<td>DRB1*0410</td>
<td>0 (0)</td>
<td>5 (2.6)</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: not significant.
Results
Patients’ characteristics
Forty-one patients (67.2%) were less than 40 years old when diagnosed with TA. The most common systemic symptom was headache (54.1%), followed by general weakness (42.6%), and fatigue (37.7%). A blood pressure difference in either upper or lower extremities (80.3%) was the most frequent vascular manifestations. Hypertension was found in 32 patients (52.5%). Nineteen of 61 patients had angiographic type I (31.1%), 8 type IIa (13.1%), 3 type IIb (4.9%), 6 type III (9.8%), 7 type IV (11.5%), and 18 type V (29.5%).

Thirty-eight patients (62.3%) had a total of 62 serious complications. CHF was found in 21 patients (34.4%), IHD, CVA, VHD, and retinopathy were found in 17 (27.9%), 11 (18.0%), 8 (13.1%), and 5 (8.2%) patients, respectively. Table I shows the demographic features, clinical manifestations, and angiographic types at the time of diagnosis of TA.

HLA alleles in patients with TA
Compared with the HLA allele frequencies in controls, the frequencies of A*3001 (p = 0.048), B*5201 (p = 0.025), and DRB1*1502 (p = 0.046) alleles were significantly higher in TA patients. However, the frequency of A*2602 allele in TA patients was significantly lower than in controls (p = 0.047) (Table II). Seven out of 8 TA patients with DRB1*1502 allele also had B*5201 allele.

Haplotype frequency in patients with TA
Only one haplotype, A*2402-B*5201-DRB1*1502 (5.7% vs. 1.6%), showed significant difference between patients and healthy controls (p=5.45, p = 0.01). A*3001 containing haplotype, A*3001-B*1302-DRB1*0701, was also increased in patient group (7.4% vs. 2.6%), but not statistically significant. Other haplotypes did not exhibit any significant difference between the two groups.

Association of HLA alleles with serious complications and angiographic findings
We investigated the association between HLA alleles and serious complications and angiographic findings. Since DRB1*1502 was highly linked to B*5201, we divided TA patients into 3 groups according to whether they have A*3001, B*5201, or not. Six patients were A*3001(+) and B*5201(-), 7 patients A*3001(-) and B*5201(+), and 45 patients A*3001(-) and B*5201(-). Three TA patients with A*3001(+) and B*5201(+) were excluded to evaluate the independent effect of each HLA allele on clinical manifestations. CVA, CHF, VHD, IHD, and retinopathy and angiographic types were analyzed and compared among the 3 groups. The frequency of CHF in the A*3001(-) and B*5201(+) group was significantly increased in comparison with the other two groups. Other serious complications and angiographic findings exhibited no significant association with differences in allele frequencies among the 3 groups. CHF was observed significantly more frequently in TA patients with B*5201 than in those without this allele (OR = 5.94, p < 0.05, 95% CI = 1.04–33.85).

Discussion
Our data suggest that A*3001, B*5201, and DRB1*1502 alleles are associated with the disease. B52 and DRB1*1502 alleles were reported to be associated with Japanese patients (8), however, A*3001 allele has not previously been reported. The B*3902 allele, which was reported to be associated with TA in Japanese patients (6), showed no significant association in our patient cohort. By contrast, several HLA alleles have been reported to be less frequent in TA patients than in healthy controls; DRB1*0405 was reported to be negatively associated with TA in Japanese patients (5), and DR1 in North American ones (20). It is noteworthy that the A*2602 allele was not detected in patients with TA, but was identified in 6 healthy controls in this study. The A*2602 allele was, therefore, inversely associated with TA, suggesting that either A*2602 itself might control susceptibility to TA, thereby providing protection against the development of TA in the general population.

Linkage disequilibrium results in a stronger association than expected between HLA alleles within a haplotype. Therefore, the enhanced possibility of a haplotype including HLA alleles associated with susceptibility to TA could increase the incidence of the disease. In this study, seven TA patients shared both the B*5201 and DRB1*1502 alleles, and this observation suggests that there might be a strong linkage-disequilibrium between the two alleles in the Korean population, similar to the Japanese population (21). In this study, one haplotype containing A*2402, B*5201, and DRB1*1502 showed a significant frequency difference between patients with TA and healthy controls. Therefore, this haplotype could be postulated as a risk factor for development of TA.

The genetic association of serious complications with a specific HLA allele or haplotype has been reported. Pulmonary and aortic valve disorders were observed more frequently in TA patients with the B52-Dw12 haplotype (21, 22). In this study, CHF was observed significantly more frequent in TA patients with B*5201 than in those without. This suggests that there is a significant association between the allele B*5201 and the presence of CHF in patients with TA.

In conclusion, our data suggest that A*3001, B*5201, and DRB1*1502 alleles might increase the susceptibility to TA, while A*2602 might protect against TA. Further, our results reveal that the haplotype A*2402-B*5201-DRB1*1502 could be a risk factor for TA, and the allele B*5201 is significantly associated with CHF in Korean patients.

References
5. WEYAND CM, GORONZY JJ: Molecular ap-
proaches toward pathologic mechanisms in giant cell arteritis and Takayasu’s arteritis.

Curr Opin Rheumatol 1995; 7: 30-6.

