Endothelial nitric oxide synthase polymorphisms in biopsy-proven erythema nodosum from a defined population


1The Centre for Integrated Genomic Medical Research, School of Epidemiology, and Health Sciences, the University of Manchester, Manchester, United Kingdom; 2The Endocrinology and Metabolism Research Centre, Tehran University of Medical Sciences, Tehran, Iran; 3Rheumatology and Dermatology Divisions, Hospital Xeral-Calde, Lugo, Spain; 4The Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain.

Mahsa M. Amoli, MD, PhD: Hugo Lopez-Agreda, MD; Miguel A. Gonzalez-Gay, MD, PhD; Oscar Suarez-Amor, MD; Javier Martin, MD, PhD; William E.R. Ollier, PhD.

Please address correspondence to: Miguel A. Gonzalez-Gay, MD, PhD, Rheumatology Division, Hospital Xeral-Calde, c) Dr. Ochoa s/n, 27004 Lugo, Spain.
E-mail: miguelaggay@hotmail.com

Received on October 2, 2006; accepted in revised form on February 26, 2007.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2007.

Key words: Erythema nodosum, sarcoidosis, eNOS polymorphism, disease susceptibility, genetic association.

ABSTRACT

Objective. To assess the potential influence of endothelial nitric oxide synthase (eNOS) polymorphisms in the susceptibility to and clinical expression of a series of patients diagnosed with biopsy-proven erythema nodosum (EN).

Methods. Ninety-seven unselected patients from Northwest Spain with biopsy-proven EN were studied. Patients and ethnically matched controls were genotyped by PCR based techniques for a variable number tandem repeat polymorphism in intron 4, a T/C polymorphism at position -786 in the promoter region and a polymorphism in exon 7 (298Glu/Asp or 5557G/T) of the eNOS gene.

Results. No differences in allele or genotype frequencies for any of the individual eNOS polymorphisms were observed between biopsy-proven patients with EN and controls. It was also the case when patients with EN secondary to sarcoidosis were compared with the remaining patients or controls. In the group of patients with EN, no linkage disequilibrium between these polymorphisms was found. Also, no significant differences in haplotype frequencies were observed between patients and controls.

Conclusions. Our present results do not support a role for eNOS polymorphisms in the susceptibility to and clinical expression of EN.

Introduction

Erythema nodosum (EN), the most frequent type of the panniculitis, is a self-limiting hypersensitivity cutaneous reaction consisting of inflammatory, tender, warm nodular lesions, usually bilaterally distributed and located on the anterior aspects of the shins, ankles and knees (1, 2). It may be idiopathic, secondary to a wide variety of diseases, such as infections, sarcoidosis, inflammatory bowel diseases, connective tissue and other autoimmune disorders and malignancies, observed during pregnancy or associated to different medications (1, 2).

Nitric oxide (NO) has been implicated in the pathogenesis of autoimmune rheumatic diseases such as rheumato-
Patients and matched controls \((n = 118)\) were from the Lugo region in Galicia (Northwestern Spain). Information on the characteristics of this well-defined, stable and ethnically homogeneous, mixed rural and urban, white population living in the region of Lugo, central Galicia, has been described elsewhere (12-14).

EN secondary to sarcoidosis was defined when sterile noncaseating granulomas were obtained in tissue biopsies. In those cases presenting with typical Löfgren’s syndrome (EN and bilateral hilar adenopathy with or without peripheral arthritis), the presence of a tissue biopsy showing noncaseating granulomas was not required if after a follow-up of at least 1 year there was no other condition responsible for the occurrence of EN (8-11). Informed consent was obtained to perform this study.

Genotyping
DNA from patients with EN and controls was extracted from anticoagulated blood collected in EDTA using a commercially available DNA extraction kit (Bioline™, London UK). As previously described (6, 15), patients and controls were genotyped by PCR based techniques for a variable number tandem repeat polymorphism in intron 4, a T/C polymorphism at position -786 in the promoter region and single nucleotide polymorphisms in exon 7 (298Glu/Asp or 5557G/T) of the eNOS gene.

Statistical analyses
Strength of association between EN and eNOS alleles or genotypes was estimated using odds ratios and 95% confidence intervals. Levels of significance were determined using contingency tables by either chi-square or Fisher exact analysis. Statistical significance was defined as \(p < 0.05\). Estimated haplotype frequencies and testing for linkage disequilibrium (LD) between pairs of polymorphisms in cases and controls were calculated using the EHPLUS program, which provides log likelihood, chi-square and the number of degrees of freedom.

Results
No significant differences in the allele and genotype distribution between patients with EN and controls were observed (Table I). Also, no significant differences were observed when patients with sarcoidosis were compared with the remaining EN patients or controls. (Table I).

Pairwise LD and estimate haplotype frequencies were determined in patients with EN and controls. In the control group a marginally significant LD (Chi square 7.5, \(p = 0.05\)) was found between eNOS promoter (-786) and exon 7 polymorphism. However, this was not statistically significant in the patient’s group. Likewise, no significant difference in pairwise LD was observed in patients with EN compared with controls using log likelihood. Moreover, no significant differences in haplotype frequencies were seen in patients with EN compared to controls. Similarly, haplotype frequencies for the combination of the three eNOS polymorphisms did not yield significant LD in the patient’s group (data not shown).

Discussion
This study constitutes the first attempt to determine the potential implication of three functional polymorphisms in eNOS in the susceptibility to EN. The clinical heterogeneity of conditions presenting with EN may explain the negative association observed between eNOS polymorphisms in this series of patients with biopsy-proven secondary EN. Due to this, the main importance of this study is the lack of role of eNOS polymorphisms in patients with primary (idiopathic) EN from Northwestern Spain.

Polymorphisms in eNOS have been associated with the development of vascular and autoimmune diseases. In this regard, association between eNOS
polymorphisms and coronary atherosclerosis and ischemic cerebrovascular disease has been previously reported (16, 17). Also, the polymorphism of the exon 7 (Glu/Asp 298) was associated with susceptibility to Behçet’s disease and scleroderma (7, 18). In keeping with Salvarani et al. (5), association between biopsy-proven giant cell arteritis and eNOS polymorphisms was also observed in the Lugo region of Northwestern Spain (6).

The lack of association of EN with eNOS polymorphisms do not exclude a potential association of this condition with INOS polymorphisms. With respect to this, association with iNOS but not with eNOS polymorphisms has been observed in individuals with Henoch-Schönlein purpura (15, 19) or rheumatoid arthritis (20) from the Lugo region of Northwestern Spain. Due to this, studies aimed to determine the potential association of iNOS polymorphisms with biopsy-proven EN are required to further elucidate the role of NO polymorphisms in the pathogenesis of EN.

References