Ultrasound imaging for the rheumatologist
XII. Ultrasound imaging in sports medicine

Abstract
The present review discusses the most frequent sport-related conditions which can present to rheumatologists and the available evidence base for using ultrasonography (US) in such scenarios. From a rheumatological perspective, sports-related pathology is mainly characterised by sub-acute and chronic over-use and stress-related disorders involving tendons, ligaments, muscles, joints and enthesis. Major acute injuries are less frequently assessed in a standard rheumatological setting. The present review discusses the most frequent sport-related conditions which can present to rheumatologists and the available evidence-base for using US in such scenarios.

Clinical applications
US is a valuable imaging tool for several applications in sports medicine. Apart from being less expensive and more widely accessible than magnetic resonance imaging (MRI), US has many other advantages compared with MRI in specific clinical settings. Firstly, spatial resolution provided by the latest generation US equipment is superior to that obtained by standard MRI. This can be crucial in the evaluation of tendon integrity (10). Secondly, real time US imaging allows for a more accurate assessment of both muscle and tendon lesions. US examination during muscle contraction is very helpful in distinguishing full-thickness from partial-thickness tendon tears. Furthermore, specific movements of the subject under examination may be essential for revealing muscle herniation, tendon or nerve dislocation and impingement syndromes (7, 11). Thirdly, during US examination it is possible to obtain an exact comparison between US findings and tenderness elicited by probe compression (sono-palpation). Finally, US is a suitable imaging technique for short-term follow-up of soft tissue changes and therapy monitoring (12, 13).

In patients with acute or chronic pain syndromes potentially related to tendon involvement, US assessment should be regarded as the first line investigation.

Key words: Ultrasonography, sport-related pathology, tendons, muscles, ligaments.

Introduction
There are currently a growing number of clinical indications for using ultrasonography (US) in musculoskeletal disease (1-6). US can also accurately detect a wide spectrum of pathologies in athletes performing various types of sports activities (7-9). Whilst basic tissue lesions are commonly identified in sports medicine, some US abnormalities can be specific to different activities. Interpretation of these US findings may be difficult due to the superimposition of acute and chronic lesions and concomitant repair process in the anatomical region under examination (7).

From a rheumatological perspective, sport-related pathology is mainly characterised by sub-acute and chronic overuse and stress-related disorders involving tendons, ligaments, muscles, joints and enthesis. Major acute injuries are less frequently assessed in a standard rheumatological setting.

Competing interests: none declared.
Power Doppler assessment has a key role in the detection of even minimal inflammatory involvement at any level of the affected area. An initial rapid assessment of tissue perfusion may be very useful to detect specific areas of interest that should be carefully assessed by high-frequency greyscale US to evaluate morpho-structural changes. Since most tendons are superficially located, high-frequency linear probes (not less than 13 MHz) should be used to obtain the best sensitivity/specificity ratio. In general a Doppler frequency higher than 7 MHz is recommended for Doppler assessment.

Advances in technology have made portable US systems suitable for providing both high quality greyscale and power Doppler imaging for use at sports grounds allowing immediate assessment.

US can also prove invaluable in the assessment of fitness to perform in specific sports activities, especially in amateur athletes.

Table I lists the most frequent sport-specific injuries which can be evaluated by rheumatologists.

The main drawbacks to US imaging include restriction of the available acoustic window and operator dependency. The first limitation cannot be modified and hinders the assessment of anatomical structures that can be involved especially after trauma (i.e. at knee level, meniscal tears and/or cruciate ligaments lesions). Operator experience is essential for ensuring accuracy both in diagnosis and monitoring sport-related abnormalities.

Sonographic findings
It is vital to consider the coexistence of both sport-induced injuries and pre-existing pathology when interpreting US imagery in sport-related cases. This is particularly pertinent in amateur athletes and in older subjects.

Tendons with synovial sheath
The pattern of involvement of tendons with a synovial sheath in sport-related pathology is similar to that seen in work related pathology. Exudative tenosynovitis is the most characteristic feature of acute and chronic stress and strain pathology with a distribution correlated to the specific movements of the athletes and the use of specific sports equipment.

Tendon assessment is directed at evaluating the morphostructural features of the sheath content and identification of any indications to perform a sonographic-guided injection. Particular attention must be paid to the identification of minimal interruption of the tendon fibrils which may precede larger partial-thickness or full-thickness tears. This is especially important in all sports activities which overload tendons (i.e. weight lifting, tennis, volleyball, football). The most common tendons involved in sports trauma include: tibialis posterior tendon (football), long head of biceps tendon (baseball), finger flexor tendons (archery) and peroneals (skiing and running).

Tendons without synovial sheath
Tendons without a synovial sheath are a frequent target in sport-related injury mainly because some originate from the most powerful muscles in the human body (quadiceps, triceps). The Achilles tendon is the most frequently involved tendon in several sports activities. It can be relatively easily assessed by US because of its superficial location and its axis parallel to the skin surface. It is advisable to perform scheduled US examinations of the Achilles tendon in all athletes who expose it to overload.

Comprehensive US examination of the Achilles tendon consists of multiplanar scanning from the musculo-tendinous junction to the distal insertion into the calcaneum. This allows the detection of even minimal changes that can justify immediate preventive (partial or complete suspension of the sports activity) or therapeutic (physiotherapy, pharmacological, surgical) intervention (6). Correlation between US changes and clinical findings is more complex in sport-related injuries than in other musculoskeletal disorders. In long distance runners, chronic tendinopathy with diffuse intra-tendinous and pre-insertional power Doppler signal may be completely asymptomatic. Other tendons devoid of synovial sheaths frequently involved in sport-related injury include: supraspinatus tendon, common extensor and flexor tendons at the elbow, quadriceps tendon and patellar tendon (Fig. 1A-B).

Muscles
The spectrum of US findings due to muscle involvement includes contusion, strain, partial and complete tears, fascial tear, muscle herniation, haematoma, scar tissue, intramuscular calcification and intramuscular cyst formation (Fig. 1C) (11). Muscle healing can be normal, with the return to the previous muscle echotexture or abnormal, with hyperechoic scars and/or intramuscular cysts (5).

Hematomas US appearance evolves from hyperechoic, soon after its formation, to hypoechoic after only very few hours. At follow-up US examinations, hematomas show an anechoic fluid collection surrounded by a hypoechoic reparative tissue (24, 25).

Ligaments
Ligaments are frequently involved by post-traumatic macro and micro lesions.

<table>
<thead>
<tr>
<th>Table I. Specific sports-related injuries detectable by US.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport-related injury</td>
</tr>
<tr>
<td>Finger pulley rupture (14-15)</td>
</tr>
<tr>
<td>Chronic patellar tendinosis (Jumper’s knee) (16)</td>
</tr>
<tr>
<td>Chronic tendinopathy of the common extensor tendons at the lateral epicondyle of the elbow also called “tennis elbow” (17, 18)</td>
</tr>
<tr>
<td>Chronic tendinopathy of the common extensor tendons at the medial epicondyle of the elbow also called “gofer’s elbow” (18)</td>
</tr>
<tr>
<td>Osgood-Schlatter disease (19)</td>
</tr>
<tr>
<td>Overuse insertional tendinopathy of the pectoralis minor muscle (20)</td>
</tr>
<tr>
<td>Rectus abdominis muscle strain (21)</td>
</tr>
<tr>
<td>Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius also called “tennis leg” (22)</td>
</tr>
<tr>
<td>Injury ulnar collateral ligament of the elbow (23)</td>
</tr>
</tbody>
</table>
In healthy subjects, they normally appear hyperechoic with a homogeneous fibrillar echotexture. Partial tears are characterised by focal loss of the normal echotexture and hypoechoic thickening of the ligament with or without surrounding hypoechoic or anechoic fluid collection (7, 9).

Literature review

Tendons

Tendinopathies of the rotator cuff, long head of the biceps brachii tendon and of the tendon pectoralis major muscle are frequent causes of shoulder pain in athletes. However, morpho-structural and perfusional abnormalities can be detected by US also in asymptomatic athletes. The rotator cuff may show relevant echo-textural changes, such as complete tears or calcifications of the supraspinatus tendon, in asymptomatic tennis or baseball players (26, 27). In these subjects, subdeltoid bursitis is almost always associated with shoulder pain (27).

Similar discrepancy between clinical and US findings has been reported for chronic tendinopathy of the Achilles or patellar tendons affecting asymptomatic athletes in sports such as soccer and basketball (28-30).

Power Doppler findings seem to have a higher correlation with symptoms than greyscale findings (31, 32). However, the intra-tendineous colour Doppler signal may, in part, be a physiological response to sports activity as suggested in a recent study performed in elite badminton players at the Achilles tendon level (33).

Muscles

Minor lesions, such as contusions and strains, can be difficult to identify, being comparison with contralateral muscle echotexture and sonopalpation very important for increasing accuracy (11). Major lesions, including partial and complete tears, can be easier identified by US which has a role also in detecting possible associated lesions like hematomas, guiding their aspiration and monitoring their evolution.

Some muscle findings are highly specific to certain sports activity e.g. asymmetrical hypertrophy of the rectus abdominis muscle sometimes seen in elite tennis players. The muscle belly on the side opposite the dominant arm, is overused, becomes hypertrophied and exposed to a higher risk of muscle tears at its deepest fibres below the umbilicus (22).

US monitoring of muscle lesions provides useful information to improve both therapy tailoring and sports activity resumption planning.

In experienced hands, US has shown to provide an accurate diagnosis of muscle injuries. In a recent study, MRI and US yielded an exact agreement of 87.6% in 81 football players examined for assessing site, type and extent of traumatic muscle injuries of the lower limbs (34). Thus, US should be considered as the first-line technique for assessing muscle injuries (35).

Ligaments

Ligament injuries are very frequent in almost every sports activity, even if their detection by US is not always easy due to the acoustic barriers. A correct approach for assessing ligaments requires practical skills and experience in visualising their pathology. Rheumatologists should pay attention to possible findings of chronic involvement. Acute pathology is generally assessed in orthopaedic and sports medicine settings. One of the most common injuries in skiers is a tear of the ulnar collateral ligament of the metacarpophalangeal joint of the thumb. A rapid assessment with US can identify a need for surgical intervention to prevent chronic functional instability of the joint. Studies have evaluated the ability of US to detect this injury ranging from 74 to 86% using surgical exploration as gold standard (36-40). There is, however, conflicting evidence on the effectiveness of US to differentiate between displaced and non-displaced tears of this ligament (36, 41, 42).

Research agenda

Longitudinal studies are required to determine the clinical importance of US findings in athletes particularly those who are asymptomatic (24). US findings need to be correlated with standard references including surgical and MRI assessments.

Future research should also be directed at determining the usefulness of power Doppler technique in monitoring sport-related abnormalities.
Ultrasound imaging of sports medicine / E. Filippucci et al.

Link
For further ultrasound images, go to www.clinexprheumatol.org/ultrasound

References

