Ultrasound imaging for the rheumatologist

XIV. Ultrasound imaging in connective tissue diseases

L. Riente¹, A. Delle Sedie¹, E. Filippucci², A. Iagnocco³, G. Meenagh⁴, O. Epis⁵, W. Grassi², G. Valesini³ C. Montecucco⁵, S. Bombardieri¹

ABSTRACT

Ultrasound (US) role is becoming more and more relevant in the assessment of rheumatic diseases but there are still some almost unexplored fields and, surely, one of these is represented by the great family of connective tissue diseases (CTD). In this review we provide an update of the available data regarding some applications of US in CTD. Besides an overview of the role of US in their musculoskeletal involvement, we will report data on the use of US in the evaluation of skin and lung in systemic sclerosis and of salivary glands in Sjögren’s syndrome. US assessment of heart, kidney or vascular involvement in CTD will not be the subjects of this paper.

Introduction

Several papers describe the clinical applications and findings of musculoskeletal ultrasound (US) (1-8) in patients with arthritides, predominantly rheumatoid arthritis (9) but also spondyloarthritis (10), osteoarthritis (11) and crystal-related arthritis (12). US has also been successfully applied to image multisystem involvement (heart, kidney and vessels) typical of connective tissue disorders (CTD) such as systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS), systemic sclerosis (SSc), polymyositis (PM), dermatomyositis (DM), mixed connective tissue disease (MCTD) and undifferentiated connective tissue disease (UCTD). To date, very few studies are reported in the literature about the applications of US in the assessment of joint and tendon involvement in the course of CTD.

In this review we provide an update of the available data regarding some applications of US in CTD. Besides an overview of the role of US in musculoskeletal involvement in CTD we will report data on the use of US in the evaluation of skin and lung in SSc and of salivary glands in SS. US assessment of heart, kidney or vascular involvement in CTD will not be the subjects of this paper.

Systemic lupus erythematosus

Joint involvement in SLE patients is very frequent, particularly at the wrists and hands. It may range from mild arthropathy to severe non erosive deforming arthritis (Jaccoud’s arthropathy), erosive arthritis resembling rheumatoid arthritis or mild deforming arthropathy (13). To the best of our knowledge, only two papers on SLE joint involvement evaluated by musculoskeletal US are reported in literature. In 2004, Iagnocco et al. examined 52 wrists of 26 SLE patients and demonstrated synovitis in 22/52 radio-ulno-carpal joints with synovial proliferation in 10 joints, effusion in 13, power Doppler signal in 5 and bone erosions in both wrists of the same patient (14). More recently, an ultrasound pictorial assay on hand and wrist arthritis in SLE showed joint effusion or synovial proliferation in 16 of 17 patients at the wrist and at the metacarpophalangeal joints (MCP) in 12, bone erosions of the 2nd and 3rd MCP joints in 8 subjects and finger flexor tenosynovitis in 11 patients (15). An interesting application of US coupled with color and power Doppler has been reported in 22 patients affected by SLE which showed hemodynamic changes in blood flow to the proximal femur even in the absence of osteonecrosis. The Authors suggest color Doppler evaluation of femoral head perfusion as a predictive test for hemodynamic deterioration (16).

Key words: Ultrasound, connective tissue, systemic lupus erythematosus, Sjögren, systemic sclerosis, undifferentiated, mixed.

Competing interests: none declared.

¹Cattedra di Reumatologia, Università di Pisa, Pisa, Italy;
²Cattedra di Reumatologia, Università Politecnica delle Marche, Jesi, Italy;
³Cattedra di Reumatologia, Sapienza Università di Roma, Roma, Italy;
⁴Department of Rheumatology, Antrim Hospital, Antrim, United Kingdom;
⁵Cattedra di Reumatologia, IRCCS Policlinico S. Matteo, Università di Pavia, Pavia, Italy.

Lucrezia Riente, MD; Andrea Delle Sedie, MD; Emilio Filippucci, MD; Annamaria Iagnocco, MD; Gary Meenagh, MD; Oscar Epis, MD; Walter Grassi, MD, Professor of Rheumatology; Guido Valesini, MD, Professor of Rheumatology; Carlomaurizio Montecucco, MD, Professor of Rheumatology; Stefano Bombardieri, MD, Professor of Rheumatology.

Please address correspondence and reprint requests to:
Dr. Lucrezia Riente, U.O. Reumatologia, Dipartimento di Medicina Interna, Università di Pisa, Via Roma 67, Pisa 56126, Italy.
E-mail: l.rente@int.med.unipi.it
Received and accepted on March 17, 2008.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2008.
Systemic sclerosis

Several features of SSc can be assessed using US including joint and tendon involvement, the presence of subcutaneous calcification and the skin features. To date only one study has investigated the role of US in the evaluation of SSc joints showing, at the distal phalanx of the hand, that the most frequent findings are soft tissue calcifications and narrowing of the distance between phalangeal apex and skin surface (17). No US studies have been published on tendon involvement in SSc. Subcutaneous calcification, even when incipient, can be imaged, using US, particularly over the palmar aspect of the finger (18). Dermatological US was initiated in 1979 by Alexander and Miller who measured skin thickness by 15 MHz US (19). The development of very high frequency probes (20 MHz or more), which are mandatory to clearly distinguish epidermis, dermis and subcutaneous fat, has allowed not only the determination of thickness but also a qualitative assessment of the skin. Thus, in recent times, several papers have reported the sonographic skin findings in diffuse or localized scleroderma (20-24). However, lack of homogeneity among the different studies exists: firstly, the frequency of the probes used ranged from 10 to 32 MHz and, in addition, inconsistencies relating to the skin depth examined. In 2003, a longitudinal study (using a 20 MHz ultrasound probe) in 16 patients (8 with diffuse and 8 with limited SSc) showed thickening and decreased echogenicity of the dermis in sclerotic skin in the early phases of the diseases. The degree of thickening tended to diminish with time and, at 4 years of disease duration, thickness was significantly decreased in the forearm and chest and echogenicity increased at the hands. The Authors concluded that US appeared as a good non-invasive tool to monitor disease progression (25).

A 17-point dermal US scoring method has been proposed (using a 22 MHz US probe) based on the measurement of dermal thickness at 17 sites, corresponding to those of the modified Rodnan skin score. This scoring system may be a useful measure of outcome in the future (26).

In SSc patients with short disease duration, US has been shown to be able to detect the oedematous phase that may precede palpable skin involvement, that could be useful in identifying patients with diffuse skin involvement in a very early disease phase (27).

Recently quantitative US has shown a decrease in the skin thickness after photochemotherapy in SSc (28). The application of US in the evaluation of lung fibrosis in SSc patients is under investigation. It would appear that both pleural effusion and interstitial change can be identified using US and has been proposed as a possible alternative to high resolution computed tomography in the follow-up of such patients (29, 30).

Sjögren’s syndrome

Joint involvement is not rare in SS (31) and US can be useful in its evaluation and also to investigate changes in salivary gland architecture. Iagnocco et al. studied knee involvement in patients with primary and secondary SS (associated with rheumatoid arthritis or CTD). They demonstrated mild synovitis in primary SS while joint effusion was more frequently present in secondary SS with rheumatoid arthritis (32). Several studies based on the US findings in the parotid and submandibular glands in primary SS have been published (33-37). US examination of the salivary glands is performed using a 5-14 MHz linear transducer to assess the following parameters: parenchymal echogenicity, homogeneity, the presence of hypoechogenic areas, hyperechogenic lines and/or dots, clarity of glandular boundaries (see Table I). A reproducible scoring system (range 0 to 3) has been proposed by Hocevar et al. (38, 39) and by Wernicke et al. (range 0 to 2) (40).

A further scoring system comparing US findings with minor salivary gland biopsy, proposed a US score (range 0 to 4) which assigned points to the different degrees of glandular inhomogeneity (41). Recently, Shimizu et al. tried to precisely define what “inhomogeneity”

Table 1. The US features which can be assessed in the salivary glands.

- Parenchymal echogenicity
- Homogeneity
- Presence of hypoechogenic areas
- Hyperechogenic lines and/or dots
- Clarity of glandular boundaries

Fig 1. Systemic sclerosis. Dorsal longitudinal (A) and transverse (B) views of the 3rd finger. The asterisk indicates hypoechogenic thickening of the derma due to oedema. **mp** = middle phalanx. Images taken using a MyLab70 XVG (Esaote Biomedica, Genoa – Italy) equipped with a 6-18 MHz linear probe. Volar longitudinal views of the right (C) and left (D) 2nd finger with right distal phalanx bone resorption. The arrow indicates distal phalanx edge. **dp** = distal phalanx. Images taken using a Logiq 9 (General Electrics, Milwaukee – USA) equipped with a 15 MHz linear probe.

For further ultrasound images, go to www.clinexpneumol.org/ultrasound

231
Connective tissue diseases ultrasound / L. Riente et al.

Connective tissue diseases ultrasound

means and suggested a further grading (positive, probable and negative) (42). In comparison to other imaging tools, such as sialography, scintigraphy and MRI, US emerges as a very useful method for the diagnosis and follow-up of salival gland involvement in SS patients (43-45). Color Doppler sonography has investigated blood flow before and after secretory stimulation and shows that blood flow response may be defective in the salivary glands of these patients (46).

Changes within the lacrimal glands in SS have been studied and demonstrated significant differences in size compared to normal subjects together with changes in echostucture due to fatty infiltration or the presence of lymphoma. US was not able to accurately image atrophic glands due to their size and their isoechoic pattern indiscernible from orbital fatty tissue (47).

Polymyositis and dermatomyositis

Very few studies are reported on the role of musculoskeletal US in PM and DM. However, using a 7-9 MHz linear transducer array it is possible to evaluate muscle changes in myositis. With normal muscle bulk, fascicles appear anechoic or hypoechoic relative to septae. An isoechoic appearance is considered extremely abnormal, reflecting diminished fascial size and closer space between fibrous septae. Reimers et al. (48) reported muscle atrophy and increased echogenicity in the upper and lower limbs both in childhood and adult PM and DM. Higher echogenicity and more pronounced atrophy was usually present in chronic myositis, lower echogenicity and muscle edema in acute myositis (48). In another study in 37 patients with DM or PM, the gray-scale evaluation of muscle was correlated with power Doppler. Disease of longer duration was significantly associated with more abnormal features on gray-scale examination, whilst power Doppler signal was increased in disease of shorter duration (49). Recently using contrast-enhanced US, muscle perfusion was studied in 35 patients suspected of having PM and DM. In all patients, blood flow, volume and flow velocity were measured and compared to the results of MRI and muscle biopsy. Eleven out of 35 patients had histologically confirmed DM or PM and significantly higher perfusion parameters. The Authors concluded that contrast-enhanced US could be an additional parameter for the diagnosis of inflammatory myopathy (50). US can also be useful to aid needle positioning during muscle biopsy, however, MRI is still considered more sensitive than US in the detection of muscle edema. Calculification can easily be detected because of high echointensity and acoustic shadowing on US images (48).

Undifferentiated and mixed connective tissue disease

Very recently, a study on 14 UCTD patients suggested that power Doppler US has better accuracy than nailfold capillaroscopy in differentiating primary from secondary Raynaud’s phenomenon and in assessing microvascular abnormalities (51).

Research agenda

Future areas for researchers to target in this field include:
- Definition of the features of the articular and periarticular involvement in all CTD.
- Standardization of the scanning protocol of the skin.
- Study of the features of skin involvement in SSC and MCTD.
- Evaluation of diagnostic accuracy and follow-up of skin US.
- Study of muscle involvement not only in PM and DM but also in myositis associated with SLE and SSc using US and power Doppler examination.
- Development of largely accepted criteria to diagnose SS even in the absence of minor salivary glands biopsy.
- Role of US in the therapy monitoring of the different manifestations of CTD.

Link

For further ultrasound images, go to wwwClinExpRheumatolorgultrasound

References

Connective tissue diseases ultrasound / L. Riente et al.

IMAGING