Letters to the Editor

Observations on class II antigens and genetic susceptibility to primary antiphospholipid (Hughes) syndrome in Arab patients

Sirs,

Initial reports on HLA tissue typing on PAPS patients revealed an association with HLA DR 53 associated antigens, the DR7 (mainly in individuals of Hispanic origin), DR4 (mainly white individuals) and DQ3 (1, 2). Furthermore, the highest relative risk for PAPS is conferred by the DR 53 allele. This allele may play a direct role in mediating immune response to phospholipids (3).

Subsequent reports on other populations indicated other HLA associations in addition to the former antigens suggesting further genetic heterogeneity of the condition. In this regard, associations with HLA antigens DR 5, DR6, DR 9, DQ6 and DR13-DQ6 haplotype have been identified (4). Despite the extensive research and publications in this line worldwide, the corresponding data on Arabs however, has remained unavailable. In this report we present the profile of the class II alleles in the first cohort of Arab patients with PAPS.

Eight Arab female patients with PAPS conformed to the established criteria of Alarcon-Segovia et al. of 1992 (5) and to Wilson et al. criteria for definite PAPS (6). Five were Arabian Peninsula Arabs (APA) and the other 3 were Southern Mediterranean Arabs (SMA). Their age ranged between 16–48 years (average 28.11±9.3 years) at the time of diagnosis. They presented essentially, with venous/arterial thrombosis, often recurrent and/or repeated fetal loss and intra uterine death (IUD), and thrombocytopenia. They did not manifest any typical clinical or serological features of SLE (7) at the time of presentation. The exclusion of SLE included specifically, the absence of anti-native dsDNA and ENAs antibodies, and negative to weakly positive ANF. All patients tested positive for anticardiolipin (aCL) antibodies and 4 were concurrently, positive for lupus anticoagulant (LAC). HLA-DR & DQ alleles were identified by microlymphocytotoxicity test and/or low resolution PCR-sequence specific primers (PCR-SSP). Results were compared to those of geographically matched adult control subjects tissue typed by Valluri et al. (8). Appropriate statistical analysis of data was carried out by Fisher’s exact test. Table I shows the profile of HLA-DR and DQ of these patients and controls. Obviously, there is a clustering of DR 4, followed by DR7 and DQ3 in this cohort of patients. The data, furthermore, indicate that the genetic susceptibility is likely to be related to HLA-DR 4 antigen as is evident by its significant frequency and high relative risk among the patients. The HLA DQ1, on the other hand, was the least likely antigen to have an association with the condition. Of note, in our recent work on 11 Arabs with classic SLE, the DR 4 was totally absent compared to the controls (0% vs. 25.5%, RR=0.5, 95% CI=infinity) and the DR 2 was the antigen with significant association (63.5% vs. 30% RR=3.94, 95% CI 1.944-13.32, p<0.04). These findings are suggestive of two separate disease entities within this population.

The increased susceptibility to PAPS or to antibodies has also been linked to other antigens in other populations. The DR3 was also found to predispose to the formation of anticardiolipin antibodies (aCL) Abs in Danish and Czech women with APS whereas the B8-DR3 haplotype was associated with significantly high levels of aCL Abs in young Italian women. The DR 5 was linked to Mexican patients with PAPS (9). The DQ3 was strongly correlated with anti-J2 GPI antibodies in some Mexicans and American whites and blacks, whereas it was frequently reported with secondary antiphospholipid syndrome (APS) in Brazilians (4). In summary, the results here are in keeping with some important reports in other populations implying a shared susceptibility of these antigens across the ethnic line of predisposition. Nonetheless, larger number of patients need to be screened to substantiate the above conclusions. However, this report remains the first of its kind in documenting the HLA association in Arab patients with PAPS and it adds to the current understanding of the ethnic variations of the syndrome.

H.M. Al. ATTIA1, FRCP(I), FRCP(Glasg), FRCP (Lon) A. SANTOSH2, PhD M.M. AL. FARHAN3, BSc, M. Phil, MBA

Departments of Internal Medicine and Rheumatology and Medical Research Laboratory, Mafrag Hospital, Abu Dhabi, UAE; Clinical Research Organization (Middle East), Sharjah, UAE.

Address correspondence to: Haider M. Al Attia, Consultant Physician & Rheumatologist, Mafrag Hospital, P.O. Box 2951, Abu Dhabi, United Arab Emirates. E-mail: haideralattia@hotmail.com

Competing interests: none declared.

Table I. Analysis of cumulative data of the DR & DQ antigens in PAPS patients.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Patients</th>
<th>Rank</th>
<th>All controls</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 3</td>
<td>2 25%</td>
<td>3</td>
<td>155 25.6%</td>
<td>0.974</td>
<td>0.291-3.261</td>
</tr>
<tr>
<td>DR 4</td>
<td>5 62.5%</td>
<td>1</td>
<td>153 25.3%</td>
<td>2.467</td>
<td>1.418 - 4.294</td>
</tr>
<tr>
<td>DR 5</td>
<td>2 25%</td>
<td>3</td>
<td>209 34.6%</td>
<td>0.722</td>
<td>0.216-2.41</td>
</tr>
<tr>
<td>DR 6</td>
<td>1 12.5%</td>
<td>4</td>
<td>145 23.6%</td>
<td>0.527</td>
<td>0.083-3.322</td>
</tr>
<tr>
<td>DQ 1</td>
<td>3 50%</td>
<td>5</td>
<td>180 21.5%</td>
<td>1.312</td>
<td>0.384-4.927</td>
</tr>
<tr>
<td>DQ 2</td>
<td>3 37.5%</td>
<td>2</td>
<td>216 35.5%</td>
<td>1.048</td>
<td>0.425-2.582</td>
</tr>
<tr>
<td>DQ 3</td>
<td>5 62.5%</td>
<td>1</td>
<td>349 57.7%</td>
<td>1.081</td>
<td>0.629-1.858</td>
</tr>
</tbody>
</table>

References