Lack of linkage and association of adrenomedulin and its receptor genes in French Caucasian rheumatoid arthritis trio families

L. Michou1,2,3, S. Garnier2, S. Barbet2, E. Glikmans2, H.-K. Ea3,4, B. Uzan3, C. Asensio4, M.-D. Ah Kioon2, S. Lasbleiz1,2, T. Bardin1,2,3, F. Cornélis1,2,3, F. Lioté1,3,4, for ECRAF5

1Fédération de rhumatologie, Hôpital Lariboisière, Pôle Appareil Locomoteur, Assistance Publique-Hôpitaux de Paris, Paris; 2Clinicale EA3886, Universités Esey-Paris 7, 91057 Esey-Génopole Cedex; 3Faculté de Médecine, Université Paris 7 Denis Diderot, 10 avenue de Verdun 75010 Paris; 4INSERM U 606, Hôpital Lariboisière, Paris, France; 5ECRAF, the European Consortium on Rheumatoid Arthritis Families.

Laëtitia Michou, MD, PhD; Sophie Garnier, PhD; Sandra Barbet; Elodie Glikmans; Hang-Koong Ea, MD; Benjamin Uzan, PhD; Carine Asensio, PhD; Marie-Dominique Ah Kioon, MS; Sandra Lasbleiz, MD; Thomas Bardin, MD; François Cornélis, MD, PhD; Frédéric Lioté, MD, PhD

This work was supported by the Association Française des Polyarthritiques, Société Française de Rhumatologie, Association Rhumatisme et Travail, Association pour la Recherche sur la Polyarthrite, Génopole, Conseil Régional Ile de France, Fondation pour la Recherche Médicale, Université Esey-Val d’Essonne and unrestricted institutional support from Abbott, Amgen, Pfizer, Schering-Plough, and Wyeth.

Please address correspondence and reprint requests to: Prof. Frédéric Lioté, Fédération de Rhumatologie, AP-HP, Pôle Appareil Locomoteur, INSERM U606, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France. E-mail: frederic.liote@nhAPHp.fr

Received on September 20, 2007; accepted in revised form on May 9, 2008. © Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2008.

Key words: Rheumatoid arthritis, adrenomedullin, calcitonin receptor-like receptor, linkage, polymorphism.

Conflict of interest: Prof. Lioté has received unrestricted grants and research support from Abbott and Wyeth, and from the non-profit associations already mentioned above. The other co-authors have declared no competing interests.

ABSTRACT

Objective. Rheumatoid arthritis (RA) is characterized by hyperplasia of fibroblast-like synoviocytes (FLSs), in part due to apoptosis resistance. Adrenomedullin, an anti-apoptotic peptide, is secreted more by RA than osteoarthritic FLSs. Adrenomedullin binds to a heterodimeric functional receptor, of calcitonin receptor-like receptor (CRLR) coupled with a receptor activity-modifying protein-2 (RAMP-2), which is also overexpressed by rheumatoid synoviocytes. Since adrenomedullin decreases RA FLS apoptosis, possibly contributing to the development of pannus, study of adrenomedullin and its receptor genes might reveal a linkage and association in French Caucasian RA trio families.

Methods. Within each of 100 families, one RA-affected patient and both parents underwent genotyping for polymorphisms of adrenomedullin, CRLR and RAMP-2, by PCR-restricted fragment-length polymorphism (RFLP) or Taqman 5’ allelic discrimination assay. Statistical analysis relied on the transmission disequilibrium test, the affected family-based controls and the genotype relative risk. Haplotypes of CRLR were inferred, and linkage and association studies were performed.

Results. No significant transmission disequilibrium or association between the three genes and RA was observed. CRLR haplotypes revealed two major haplotypes, but no significant linkage with RA.

Conclusion. Our findings provided no significant linkage or association of adrenomedullin and CRLR-RAMP-2 genes with RA in the studied trio families. The two CRLR polymorphisms rs3771076 and rs3771084 should be investigated in larger samples.

Introduction

The pathogenesis of rheumatoid arthritis (RA) is multifactorial, involving both genetic (HLA-DRB1 and PTPN22 genes) and environmental factors. Fibroblast-like synoviocyte (FLS) hyperplasia plays an important role in RA, and its activation is characterized by signalling cascade alterations and apoptosis pathway changes. Resistance to apoptosis may be due to a defective Fas-induced apoptosis pathway, effects of regulatory or antiapoptotic peptides and local synovial expression of the mutant p53 gene.

Adrenomedullin (ADM), an anti-apoptotic peptide, is expressed and secreted more by RA FLSs than osteoarthritic FLSs. ADM binds to a receptor, the calcitonin receptor-like receptor (CRLR) coupled with the receptor activity-modifying protein-2 (RAMP-2), which can activate the protein kinase A pathway. ADM and its receptor genes are good RA candidates because their anti-apoptotic effect is involved in RA pathogenesis. ADM is a survival factor of antigen-activated T cells and may act as a proinflammatory or anti-inflammatory factor. ADM’s beneficial properties in biological functions suggest that it could be a potential therapeutic target.

Subcutaneous administration of the entire ADM peptide to mice reduced the incidence and severity of collagen-induced arthritis by modulating T-cell functions. So far, however, ADM is also a potential pathogenic peptide because of its angiogenic and anti-apoptotic properties, which might be relevant in the pathogenesis of pannus in RA.

ADM is highly conserved and its 3’ end is flanked by a microsatellite marker whose 19-repeats allele has been associated with essential hypertension. A Chinese study suggested that an A-to-G substitution at position −1894 in the promoter region of ADM likely increases transcription.

The CRLR gene, located at chromosome region 2q31-q32, has been suggested to be RA-linked in a French genome-wide scan, confirmed in a genome-wide linkage meta-analysis for RA including the French population. However, this locus was not associated with RA in a recent case-control genome-wide association study in the British population. In a Japanese study, CRLR polymorphisms were found not to be associated with essential hypertension.

Because ADM and its receptor genes are implicated in the pathogenesis of RA, we aimed to perform a linkage and association study of ADM and CRLR-RAMP-2 in RA.
Patients and methods
Patients and their families
We included 100 French Caucasian RA “trio” families (the patient and parents). RA diagnosis fulfilled the 1987 American College of Rheumatology criteria (13). All individuals provided informed written consent. The study was approved by the ethics committee of the Hospital Bicêtre (Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris).

Eighty-seven percent of the RA patients were females, mean age of RA onset was 32±10 years and mean disease duration was 18±7 years. Erosions were present in 90% of patients, and 81% were positive for IgM rheumatoid factor; 78% carried at least one shared-epitope HLA-DRB1 allele.

Genotyping
Blood samples were collected for DNA extraction and genotyping by standard methods. Because ADM and RAMP-2 genes contain less than 5,000 base pairs (bp), one polymorphism per gene was studied. For CRLR, four polymorphisms spanning the whole gene were genotyped. Four polymorphisms were genotyped by PCR-restriction fragment length polymorphism (RFLP). PCR amplification involved use of the Eppendorf Mastercycler. Annealing temperatures were 60°C for CRLR-rs10194247 (primers: forward 5′-TGATTCAACAAATCCAAACTGA-3′/reverse 5′-TTGCACAAGGCACCTCTTTTTCTT-3′) and CRLR-rs3771076 (primers: forward 5′-TCCGTTGAAACCGAAGAGAG-3′/reverse 5′-GTTCCGTTGCAGTGAC-3′) and 63°C for CRLR-rs3771084 (primers: forward 5′-TGGTTTCACGGGATTTCT-3′/reverse 5′-GGTTGAAGATATTT-3′) and ADM-rs4399321 (primers: forward 5′-CTGAGTTTGAGATCTCAGAGA-3′/reverse 5′-GTTAAGGATATTT-3′) and ADM-rs4399321 (primers: forward 5′-TCCACAATGCTAGCTGAGAAAA-3′/reverse 5′-AATGCTGAGTGGAATCT-3′).

Restriction enzymes were respectively BclI, BanII, BfIal and HaeIII. Genotyping of CRLR-rs10931284 and RAMP-2-rs1078523 polymorphisms involved use of Taqman 5′ allelic discrimination assay (assays C26197317_10 and C2160077_10, respectively) by real-time PCR on ABI 7500. CEPH controls were co-genotyped with all samples for genotyping quality control.

Hardy-Weinberg equilibrium was checked in controls (constituted by the untransmitted parental chromosomes), by use of chi-square test with one degree of freedom. The linkage analysis relied on the transmission disequilibrium test (TDT), which compared, for a given allele, the transmission of that allele from heterozygous parents to RA patients, with the transmission expected from Mendel’s first law (i.e., 50%), with a conformity chi-square test with one degree of freedom. For the association analyses, we used the affected family-based controls (AFBAC) to compare frequency of transmitted and untransmitted alleles, and the genotype relative risk (GRR), which compared the affected offspring’s genotype with that of a control genotype derived from untransmitted parental chromosomes. The odds ratio (OR) and 95% confidence interval (CI) were estimated.

Results
All controls showed Hardy-Weinberg equilibrium for all polymorphisms. TDT results remained not statistically significant, except for a trend of over-transmission (57%, p=0.2) for two CRLR polymorphisms (T allele of rs3771076 and rs3771084). AFBAC analysis showed a high frequency of transmitted T alleles for the same two polymorphisms (Table I).

The GRR analysis revealed a higher number of TT genotypes in patients than in controls (22 vs. 12, p=0.2) for CRLR-rs3771084, but it was probably not an effect of the T allele because this difference disappeared when the CT and TT genotypes were pooled. The four CRLR polymorphisms allowed us to generate 15 haplotypes, most with a frequency below 5%. None of the four polymorphisms showed a linkage disequilibrium with any other. We observed two major haplotypes in patients and controls, with a frequency of 49% for A-A-C-G and 21.2% for G-T-T-A (Table II). The linkage analysis revealed an over-transmission of 60% of the T-T haplotype made up of the T alleles of CRLR-rs3771076 and CRLR-rs3771084 (p<0.09). Haplotype TDT with the four polymorphisms and association analyses provided no significant results.

Discussion
We performed a linkage and association study of three candidate genes, ADM, CRLR and RAMP-2 with RA. Although the CRLR locus was suggested to be linked to RA (9) and was a good RA candidate gene by its function, we found no significant transmission disequilibrium or association. However, we did find a trend to

Table I. Results of the transmission disequilibrium test (TDT) and affected family-based controls (AFBAC).

<table>
<thead>
<tr>
<th>Polymorphisms (allele)</th>
<th>TDT</th>
<th>AFBAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>ADM-rs4399321 (A)</td>
<td>54%</td>
<td>0.4</td>
</tr>
<tr>
<td>CRLR-rs10194247 (G)</td>
<td>51%</td>
<td>0.8</td>
</tr>
<tr>
<td>CRLR-rs3771076 (T)</td>
<td>57%</td>
<td>0.2</td>
</tr>
<tr>
<td>CRLR-rs3771084 (T)</td>
<td>57%</td>
<td>0.2</td>
</tr>
<tr>
<td>CRLR-rs10931284 (G)</td>
<td>54%</td>
<td>0.5</td>
</tr>
<tr>
<td>RAMP-2-rs1078523 (G)</td>
<td>51%</td>
<td>0.8</td>
</tr>
</tbody>
</table>

T: percentage of transmission; OR: odds ratio; 95% CI: 95% confidence interval.
over transmission for T alleles of two CRLR polymorphisms and also when combined in a haplotype. Analysis of CRLR haplotypes revealed two major haplotypes, but no significant linkage or association with RA.

To our knowledge, this is the first linkage as well as association study of RA patients with CRLR haplotypes. In the current analysis of the CRLR polymorphisms and also when combined in a haplotype, no evidence of linkage or association was found. The two CRLR polymorphisms, rs3771076 and rs3771084, should be investigated in larger samples.

Conclusion

In conclusion, our findings provide no evidence of linkage or association of the ADM-CRLR-RAMP-2 pathway with RA in this first sample.

Acknowledgments

The European Consortium on Rheumatoid Arthritis Families was initiated with funding from the European Commission (BIOMED2) by: T. Bardin, D. Charron, F. Coménès (coordinator), S. Fauré, D. Kunz, M. Martinez, J.F. Prudhomme, J. Weissenbach (France); R. Westhovens, J. Dequeker (Belgium); A. Balsa, D. Pascucale-Salcedo (Spain); M. Spyropoulou, C. Stavropoulos (Greece); P. Migliorini, S. Bombardieri (Italy); P. Barrera, L. Van de Putte (The Netherlands); H. Alves, A. Lopez-Vaz (Portugal).

The authors are grateful to the RA patients for their participation, Dr. P. Fritz for reviewing the clinical data, Dr. J.-F. Prudhomme, Dr. C. Bouchier, Prof. J. Weissenbach (Genethon), Mrs M.F. Legrand and Prof. G. Thomas (Fondation Jean-Dausset-CEPH) for technical help with the DNA samples, and J. Moore (GenHotel) for help with genotyping.

References