Ultrasound imaging for the rheumatologist

XX. Sonographic assessment of hand and wrist joint involvement in rheumatoid arthritis: comparison between two- and three-dimensional ultrasonography

E. Filippucci¹, G. Meenagh², A. Delle Sedie³, F. Salaffi¹, L. Riente³, A. Iagnocco⁴, C.A. Scirè⁵, C. Montecucco⁵, S. Bombardieri³, G. Valesini⁴, W. Grassi¹

¹Cattedra di Reumatologia, Università Politecnica delle Marche, Jesi, Italy; ²Antrim Hospital, Antrim, United Kingdom; ³Unità Operativa di Reumatologia, Università di Pisa, Pisa, Italy; ⁴Cattedra di Reumatologia, Sapienza - Università di Roma, Roma, Italy; ⁵Cattedra di Reumatologia, IRCCS Policlinico S. Matteo, Università di Pavia, Pavia, Italy.

Abstract

In the rheumatology literature, most of the available evidence on three-dimensional ultrasound (3D US) is related to the acquisition process and highlights the virtual operator independence and shortening of the US examination time. The main aim of this study was to compare 3D US using a high-frequency volumetric probe and conventional 2D US at the wrist and hand in patients with rheumatoid arthritis (RA). The 3D US examinations were performed using a Logiq 9 (General Electrics Medical Systems, Milwaukee, WI) with a high-frequency (8-15 MHz) volumetric probe. Overall, there is good-to-excellent agreement between the two modalities relating to both joint inflammation and bone erosion. This study is an initial step towards establishing a methodology necessary for developing multi-centre US studies which are aimed at assessing hand involvement in patients with RA.

Introduction

Over the last ten years, a consistent number of studies has been published providing evidence supporting the validity of ultrasonography (US) in the assessment of patients with rheumatoid arthritis (RA) (1-10) and other rheumatic diseases (11-16). Several important advances have also been made in US technology which have resulted in an impressive improvement in the quality and sensitivity of US imaging. Foremost amongst the latest innovations is the arrival of high frequency volumetric probes which allow the automated acquisition of three-dimensional (3D) data sets (17-23). A volumetric probe contains a transducer which sweeps electronically whilst acquiring a virtually infinite number of scanning planes under the probe footprint. The advantages of 3D US compared to conventional 2D US have already been described in the literature and are predominantly related to the acquisition process; virtual operator independence and shortening of the examination time. The main aim of this study is to compare 3D US using a volumetric probe and conventional 2D US in the detection and scoring of US findings in the wrist and hand of patients with RA. As a secondary aim, the inter-observer agreement of sonographers using 2D US was calculated.

Methods

Patients

Two patients with RA fulfilling the American College of Rheumatology diagnostic criteria (24) were enrolled in the study. The two selected patients (a 46-year-old sero-positive female with 10 years of disease duration and bone erosions documented on plain x-ray and a 39-year-old sero-negative male with 3 years of disease duration and no bone erosions on plain x-ray) had clinical involvement of the wrist and hand joints.

US scanning technique

US examinations were performed independently by four rheumatologists experienced in musculoskeletal US, using a Logiq 9 (General Electrics Medical Systems, Milwaukee, WI) equipped with a high-frequency (8-15 MHz) volumetric probe. The dominant hand of each patient was scanned at the following anatomical
sites: radio-carpal, inter-carpal and ulno-carpal joints and second to fifth metacarpophalangeal (MCP) joints.

The acquisition of 3D data sets was obtained first following the standardised scanning protocol described in Table I followed by conventional scanning of the same sites using the conventional 2D multi-planar technique. For each US examination a total of 20 minutes were assigned to each sonographer: 5 minutes for 3D data set acquisition and 15 minutes for the 2D US assessments. The acquisition time of a single 3D data set ranged from 3 to 10 seconds according to the volume angle.

The 2D US multi-planar examinations were conducted using the accessible articular surfaces. All wrist and hand joints were scanned on the dorsal aspect from lateral to medial in both longitudinal and transverse views. Radio-carpal and inter-carpal joints, second and third MCP joints were also scanned on the volar aspects. The 2D US images showing the maximal area of enhancement on power Doppler were stored and considered for interpretation.

In order to avoid elevation of intra-articular pressure, patients were examined in the neutral position and the probe was placed on the area under examination using minimal compression and a thin layer of gel visible between the footprint of the probe and the skin. The setting parameters were as follows: greyscale frequency was 15 MHz, Doppler frequency was 7.5 MHz, pulse repetition frequency was set at 900 Hz, volume angle was variable according to the size of the anatomical site under examination ranging from 14 to 19. The wall filters and the colour gain were set as illustrated by Torp-Pedersen et al. (25).

US image interpretation

The following US findings were assessed: joint cavity widening due to either synovial effusion and/or synovial hypertrophy, intra-articular power Doppler signal and bone erosions. Appropriate semi-quantitative scales were used where applicable. OMERACT preliminary definitions were adopted for the identification of the US findings (4). Joint cavity widening was graded using a semi-quantitative scoring system which consisted of a 0-3 scale (0 = absent; 1 = mild; 2 = moderate; 3 = marked) (2, 6, 7). Intra-articular power Doppler signal was subjectively graded on a semi-quantitative scale from 0 to 3 (0 = absent; 1 = mild; 2 = moderate; 3 = marked) (3, 6, 7, 9, 10).

MCP joints were examined to evaluate the presence, location and size of bone erosions (4, 5). The site of bone erosion was recorded according to the bone involved (metacarpal head or base of the proximal phalanx) and the quadrant (lateral, dorsal or volar). The size of bone erosion was measured using electronic callipers and a semi-quantitative scale (very small erosion: <1 mm, small erosion 1-2 mm, moderate erosion: 2.1-4 mm, and large erosion >4 mm) (26).

All the 3D data sets were collected and assessed independently by a fifth rheumatologist experienced in musculoskeletal US blind to clinical data. The operator underwent dedicated training for post-processing the 3D data sets lasting approximately three hours and evaluated more than two hundred cubes using the Logiq 9. The software displays automatically the three main perpendicular planes: longitudinal, transverse and coronal; indicating the exact point of intersection of all three. This was particularly useful to confirm the presence of bone erosion according to the definition of findings in two perpendicular views. Intra-articular power Doppler

Table I. Requirements for acquisition of 3D data sets of the hand and wrist in RA patient.

<table>
<thead>
<tr>
<th>Patient position</th>
<th>Acoustic window</th>
<th>Anatomical landmarks for acquiring the 3D data sets</th>
<th>Pathological condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral position</td>
<td>Dorsal median aspect of the wrist</td>
<td>The bone profile of the radius, lunate bone and capitate bone and the outline of the tendons lying within the IV compartment of the wrist must be included in the longitudinal dorsal scan and used as a reference for acquiring the 3D data set</td>
<td>Synovitis of the radio-carpal and inter-carpal joints</td>
</tr>
<tr>
<td>Neutral position</td>
<td>Medial aspect of the wrist</td>
<td>The bone profile of the head of the ulna and of the medial aspect of the triquetrum bone and the outline of the extensor ulnaris carpi tendon lying within the VI compartment of the wrist must be included in the longitudinal lateral scan and used as a reference for acquiring the 3D data set</td>
<td>Synovitis of the ulno-carpal joint and bone erosion of the ulnar head</td>
</tr>
<tr>
<td>Neutral position</td>
<td>Volar median aspect of the wrist</td>
<td>The bone profile of the radius, lunate bone and capitate bone and the outline of the median nerve must be included in the longitudinal volar scan and used as a reference for acquiring the 3D data set</td>
<td>Synovitis of the radio-carpal and inter-carpal joints</td>
</tr>
<tr>
<td>Neutral position</td>
<td>Dorsal aspect of the II to V MCP joints</td>
<td>The bone profile of the metacarpal head and proximal phalanx and the outline of the finger extensor tendon must be included in the longitudinal dorsal scan used as a reference for acquiring the 3D data set</td>
<td>Synovitis of the II to V MCP joints, and bone erosion of the metacarpal head</td>
</tr>
<tr>
<td>Neutral position</td>
<td>Lateral aspect of the II MCP joint</td>
<td>The lateral bony profile of the metacarpal head and proximal phalanx must be included in the longitudinal lateral scan and used as a reference for acquiring the 3D data set</td>
<td>Bone erosion of the metacarpal head</td>
</tr>
<tr>
<td>Neutral position</td>
<td>Volar aspect of the II to III MCP joints</td>
<td>The bone profile of the metacarpal head and proximal phalanx and the outline of finger flexor tendons must be included in the longitudinal volar scan and used as a reference for acquiring the 3D data set</td>
<td>Synovitis of the II to III MCP joints</td>
</tr>
<tr>
<td>MCP joint in maximal flexion</td>
<td>Dorsal aspect of the II MCP joint</td>
<td>The bone profile of the metacarpal head and the outline of its hyaline cartilage</td>
<td>Bone erosion of the metacarpal head</td>
</tr>
</tbody>
</table>

MCP: metacarpophalangeal.
Joint inflammation

Good-to-excellent agreement rates were obtained both in the detection of presence/absence of US findings and in the use of the semi-quantitative scoring systems. The interobserver agreement between 3D and 2D US in the detection of sonographic findings indicative of joint inflammation showed unweighted kappa values ranging from 0.814 to 0.908 for greyscale findings and from 0.805 to 0.904 for intra-articular power Doppler signal. Weighted kappa values estimating the inter-observer agreement between 3D and 2D in scoring greyscale and power Doppler findings ranged from 0.788 to 0.848, respectively.

Bone erosions

Good-to-excellent agreement rates were found both in the detection of presence/absence of bone erosions and in their semi-quantitative assessment. The analysis comparing 3D and 2D results showed unweighted kappa values for the dichotomous evaluations ranging from 0.676 to 0.913 and weighted kappa values ranging from 0.676 to 0.882 for greyscale and power Doppler signal, respectively.

Results

Table II reports the kappa values estimating the inter-observer agreement between the 2D US and the 3D US findings and the rates of agreement of 2D US results obtained by the four experienced sonographers.
Discussion
To the best of our knowledge, this is the first study designed to compare 3D centralised reading and 2D US findings indicative of joint involvement in patients with RA. The results indicate that good to excellent agreement rates can be obtained for both joint inflammation and bone erosion.

Disagreement can be explained by the fact that 2D US assessment may overestimate or underestimate the number of US findings and their severity with respect to 3D US reading. Representative 2D images obtained with the aim of showing the highest expression of intra-articular power Doppler signal may overestimate the total amount of signal given that it can be focally distributed in a circumscribed part of the joint cavity. Thus, an image obtained at that level can be scored relatively highly but the remaining part of the joint cavity may have a significantly lower degree of power Doppler signal. Conversely, 2D US may underestimate the amount of intra-articular power Doppler signal or the presence of bone erosion because the operator could have failed to identify them owing to pressure of time. The acquisition of the 3D data set includes all the volume under the foot print and its assessment is made afterwards by a reader who has no time limitation.

The operators were experienced sonographers who were familiar with the US equipment used in the study. This aspect may explain in part the high kappa values of the inter-observer agreement in 2D US.

The main limitation of the present study is the restricted number of patients which reduces both the anatomical and pathological variability of the examined districts.

Conclusion
The present study represents the first step towards establishing the methodology necessary for developing multi-centre US studies aimed at assessing hand involvement in patients with RA. The results justify the development of the process with a larger number of patients in a multi-centre study.

Link
For ultrasound images, go to www.clinexpneumatol.org/us ultrasound

References