Investigation of TLR5 and TLR7 as candidate genes for susceptibility to systemic lupus erythematosus

1Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada; 2Servicio de Medicina Interna, Hospital Clínico San Cecilio, Granada; 3Servicio de Medicina Interna, Hospital Virgen de las Nieves, Granada; 4Servicio de Reumatología, Hospital Xeral-Calde, Lugo; 5Servicio de Medicina Interna, Hospital La Fe, Valencia; 6Servicio de Medicina Interna, Hospital Carlos-Haya, Málaga; 7Departamento de Biología Funcional, Hospital Central de Asturias, Universidad de Oviedo, Oviedo; 8Servicio de Medicina Interna, Hospital Virgen de la Victoria, Málaga; 9Servicio de Medicina Interna, Hospital Parc Taulí, Sabadell; 10Servicio de Medicina Interna, and 11Servicio de Inmunología, Hospital Virgen del Rocío, Seville; 12Servicio de Inmunología, Hospital Virgen de las Nieves, Granada, Spain.

Abstract
Objective
The aim of this study was to evaluate the relevance of genetic variants of TLR5 (rs5744168) and TLR7 (rs179008) gene in systemic lupus erythematosus (SLE) in a Spanish population.

Material and methods
Our study population consisted of 752 SLE patients and 1107 healthy controls. All individual were of Spanish Caucasian origin. The TLR5 and TLR7 polymorphisms were genotyped using a PCR system with pre-developed TaqMan allelic discrimination assay.

Results
No statistically significant differences were observed when the allele and genotype distribution of TLR5 rs5744168 and TLR7 rs179008 polymorphisms was compared between SLE patients and healthy controls. A significant increase frequency in the CC genotype of the TLR5 rs5744168 polymorphism among SLE patients without nephritis was found (93% vs. 87% in SLE patients with nephritis, p=0.03, OR=2.11 95%CI 0.93-3.51). However, this difference did not reach statistical significance in the allele frequencies (p=0.08).

Conclusion
These results suggest that the tested variations of TLR5 and TLR7 genes do not confer a relevant role in the susceptibility or severity to SLE in the Spanish population.

Key words
Polymorphisms, systemic lupus erythematosus, susceptibility, toll-like receptors.
TLR5 and TLR7 polymorphisms in SLE / E. Sánchez et al.

Elena Sánchez, PhD
Jose L. Callejas-Rubio, MD, PhD
Jose M. Sabio, MD, PhD
Miguel A. González-Gay, MD, PhD
Juan Jimenez-Alonso, MD
Luisa Micó, MD, PhD
Enrique de Ramón, MD, PhD
Mayte Camps, MD, PhD
Ana Suarez, MD, PhD
Carmen Gutiérrez, MD, PhD
Rosa García-Portales, MD, PhD
Carles Tolsa, MD, PhD
Norberto Ortego-Centeno, MD, PhD
Julio Sánchez-Román, MD, PhD
Francisco J. García-Hernández, MD, PhD
Maria F. González-Escribano, PhD
Javier Martin, MD, PhD
Miguel A. López-Nevot, MD, PhD

This work was supported by grant 330/06 from Consejería de Salud (Junta de Andalucía), SAF2006-00398 from Plan Nacional de I+D+I, and CTS-1880 from Consejería de Salud (Junta de Andalucía), and SAF2006-00398 from Plan Nacional de I+D+I, and CTS-1880 from Junta de Andalucía.

Please address correspondence to: Elena Sánchez, PhD, Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n 18100, Armilla, Granada, Spain.
E-mail: elena@ipb.csic.es

Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2009.

Introduction
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease and is characterized by B-cell hyperreactivity and the production of autoantibodies (1). Autoantibodies to DNA, RNA and associated proteins are common targets of the autoimmune response in SLE (2). The presence of these antinuclear antibodies has been detected in the serum of a majority of patients with SLE, and these antibodies result in the formation of immune complexes (ICs) that deposit in tissues and induce inflammation, thereby contributing to disease pathology. In fact, DNA and/or RNA can behave as autoantigens because they have the capacity to stimulate the innate immune system directly via Toll-like receptors (TLRs) or indirectly via Fcγ receptors (FcγR) and thereby promote the self-directed immune response, potentially leading to tolerance (3). The TLR family constitutes an important group of pattern-recognition receptors that play an essential role in the activation and regulation of innate and adaptive immunity through the recognition of specific molecular patterns of pathogens (4, 5). Currently, 11 TLR subtypes have been identified in humans, with each having specific ligands, cellular localization and expression profiles. Stimulation of the TLR pathway culminates in NFκB activation and transcription of immune response genes, such as cytokines and chemokines (5-7). Because of their central role in the regulation of inflammation and the immune response to pathogens, TLRs are excellent candidate genes in genetic susceptibility studies for autoimmune diseases, such as SLE.

TLR5 gene is known to recognize the bacterial flagellin and it located at 1q41 (8), a chromosome region linked with susceptibility to SLE in different populations (9, 10). A stop codon polymorphism in the ligand-binding domain of TLR5 (TLR5 rs5744168 also called Arg392Stop or C1174T) is unable to mediate flagellin signalling (11) and has been found associated with susceptibility to Legionnaires’ disease (11), resistance to Crohn’s disease (12) and SLE (13). These findings suggest that TLR5 may be considered both a biological and a positional candidate gene for SLE.

TLR7 has recently been described as a potential functional relevance gene in SLE (14). TLR7 is involved in the recognition of single-stranded viral RNA (15). Recent studies in congenic mice bearing the Y-linked autoimmune accelerator (yaa) lupus susceptibility locus, have showed that differences in expression of the TLR7 gene as well as environmental factors that induce TLR7 responses may result in increased B cell sensitivity to RNA-containing self-antigens (16, 17). In addition, TLR7 has the ability to induce the release of interferon-α (IFN-α), a cytokine that has been shown to have a relevant role in SLE (18).

Due to the central role of these TLR (TLR5 and TLR7) genes within the innate immune system, the aim of this study was to determine the role of genetic variations in these genes with SLE in a Spanish population.

Material and methods

Patients
Peripheral blood samples were obtained after written informed consent from 752 SLE patients meeting the American College of Rheumatology criteria for SLE (19). These patients were recruited from nine Spanish hospitals: Hospital Virgen de las Nieves and Hospital Clínico (Granada), Hospital Virgen del Rocio (Seville), Hospital Carlos-Haya and Hospital Virgen de la Victoria (Málaga), Hospital Central (Oviedo), Hospital Parc Taulí (Sabadell), Hospital La Fe (Valencia) and Hospital Xeral-Calde (Lugo). Similarly, blood was taken from 1107 blood bank and bone marrow donors of the corresponding cities were included as healthy individuals. Both patient and control groups were of Spanish Caucasian origin and were matched for age by mean age and sex by frequency matching. Informed consent was provided by each individual included in the study. The samples were collected according to the Helsinki declaration. The study was approved by all local ethical committees from the corresponding centers. Demographic characteristics of the cases and controls in each population have been described previously (20).

Competing interests: none declared.
Genotyping of TLR5 and TLR7 polymorphisms

DNA was obtained from peripheral blood, using QIAamp DNA Blood Maxi Kit (Qiagen, Hilden, Germany). TLR5 and TLR7 genotyping were performed using a TaqMan SNP Genotyping Assay (Applied Biosystems, Foster City, CA). The PCR reaction was carried out in a total reaction volume of 4 µl containing 50 ng genomic DNA as template, 2 µl of Taqman genotyping master mix, 0.1 µl of 20x assay mix and ddH₂O up to 4 µl of final volume. The amplification protocol used was: initial denaturation at 95°C for 10 min followed by 40 cycles of denaturation at 92°C for 15 s, and annealing / extension at 60°C for 1 min. After PCR, the genotype of each sample was automatically attributed by measuring the allele-specific fluorescence in the ABI Prism 7900 Sequence Detection System, using the SDS 2.2.2 software for allele discrimination (Applied Biosystems).

Statistical analysis

Allele and genotype frequencies were obtained by direct counting and for the statistical analysis to compare allelic and genotypic distributions we used the χ² test. We assessed the quality of the genotype data by testing for Hardy-Weinberg equilibrium in the case and control samples, using Fisher’s exact test (p>0.05). Odds ratio (OR) with 95% confidence intervals (95%CI) were calculated according to Woolf’s method. The software used was StatCalc program (Epi Info 2002; Centers of Disease Control and Prevention, Atlanta, GA, USA). P-values below 0.05 were regarded as statistically significant. The power of each study was computed as the probability of detecting an association between TLR5 and TLR7 polymorphisms and SLE at the 0.05 level of significance, assuming an OR of 1.5 (small effect size). Power analysis was estimated using the Quanto v 0.5 software (Department of Preventive Medicine University of Southern California, CA, USA).

Results

All the genotype frequencies in cases and healthy controls were not significantly different from those predicted by Hardy-Weinberg equilibrium.

Table I shows the distribution of genotypes and alleles of the TLR5 rs5744168 polymorphism studied in SLE patients and controls. No statistically significant differences were observed when the allele and genotype distribution was compared between SLE patients and healthy controls. The allele frequencies found in our controls population are in good agreement with allele frequencies observed in other Caucasian populations (21). We next considered whether the TLR5 stop codon showed a preferential association with particular clinical manifestations of SLE (Table II). A significant increase frequency in the CC genotype among SLE patients without nephritis was found (93% vs. 87% in SLE patients with nephritis, p=0.03, OR=0.47 95%CI 0.28-1.07). However, this difference did not reach statistical significance in the allele frequencies (p=0.08).

No TLR7 polymorphisms have been described to date that influence the course of human diseases. Nevertheless, a recent study detected a variants with a frequency over 5% (rs179008), which results in an aminoacid change from glutamine to leucine at codon 11 (Q11L) (22). We analyzed the TLR7 Q11L polymorphism in our cohort of SLE patients. No statistically significant differences were observed between allele frequencies of SLE patients and healthy controls (Table III). In addition, we found

| Table I. Genetic and allelic distribution of TLR5 rs5744168 polymorphism in SLE patients and healthy controls. |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Genotypes | SLE patients n=752 (%) | Healthy controls n=1107 (%) | p-value | OR (95% CI) |
| CC | 673 (89.5) | 1009 (91.1) | 0.2 | 0.83 (0.60-1.14) |
| CT | 74 (9.8) | 96 (8.7) | 0.4 | 1.15 (0.83-1.60) |
| TT | 5 (0.7) | 2 (0.2) | 0.1 | 3.70 (0.64-27.54) |
| Alleles | | | | |
| C | 1420 (94.4) | 2114 (95.5) | 0.1 | 0.80 (0.59-1.09) |
| T | 84 (5.6) | 100 (4.5) | 0.1 | 1.25 (0.92-1.70) |

| Table II. Distribution of TLR5 rs5744168 genotypes (%) by clinical features of the SLE patients. |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SLE feature | CC | CT | TT | C | T |
| Nephritis | + | 0.87* | 0.13 | 0 | 0.93** | 0.07 |
| | – | 0.93 | 0.6 | 0.08 | 0.97 | 0.03 |
| Malar rash | + | 0.93 | 0.07 | 0 | 96.4 | 3.6 |
| | – | 0.88 | 0.10 | 0.02 | 93.3 | 6.7 |
| Discoide | + | 0.87 | 0.1 | 0.03 | 0.92 | 0.08 |
| | – | 0.91 | 0.08 | 0.01 | 0.95 | 0.05 |
| Oral ulcer | + | 0.88 | 0.12 | 0 | 0.94 | 0.06 |
| | – | 0.93 | 0.06 | 0.01 | 0.96 | 0.04 |
| Photosensivity | + | 0.92 | 0.08 | 0.01 | 0.96 | 0.04 |
| | – | 0.89 | 0.10 | 0.01 | 0.94 | 0.06 |
| Arthritis | + | 0.92 | 0.09 | 0.01 | 0.95 | 0.05 |
| | – | 0.93 | 0.06 | 0.01 | 0.96 | 0.4 |
| ANA | + | 0.91 | 0.08 | 0.01 | 0.95 | 0.5 |
| | – | 1.00 | 0 | 0 | 1.00 | 0 |
| Anti-dsDNA Ab | + | 0.90 | 0.09 | 0.01 | 0.95 | 0.5 |
| | – | 0.96 | 0.03 | 0.01 | 0.97 | 0.03 |

*p=0.03, OR=0.47 95%CI 0.28-1.07.

**p=0.08.
no association of this polymorphism and genotype frequencies in female patients with SLE (data not shown). We also estimated the allele frequencies in male with SLE and no deviation in the distribution compared with allele frequencies in male controls was observed. In addition, available clinical features of patients with SLE were analysed for possible association with the different alleles or genotypes of TLR7 polymorphism. However, when we stratified SLE patients according to the presence of renal involvement, no statistically significant differences were observed in the distribution of this polymorphism between SLE patients with or without lupus nephritis (data not shown). Similarly, no significant differences were observed between this genetic variant and the following variables, age at onset, articular involvement, cutaneous lesions, photosensitivity, hematological alterations, neurological disorders and serositis (data not shown).

Discussion

Due to the central role of TLRs within the innate immune system, genetic variation in this gene family may alter susceptibility to some diseases. Genetic variations in the TLR genes have been associated with many inflammatory and/or autoimmune diseases (13, 23-26). Accumulating evidence indicates a role of TLRs in the recognition of endogenous ligands which might be involved in these disorders (3, 27).

In the present study we investigated for the first time a TLR7 polymorphism (Q11L) to test SLE susceptibility, and we found no evidence of association. The possibility that this lack of association could have arisen due to type II error seems unlikely, since we estimated that our cohort has enough power (>99%) to detect the effect of the polymorphism, taking into consideration an OR of 1.5 at a 5% significance level. Furthermore, allele frequencies in our control population are similar to those reported in the SNP database (http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=179008) in other Caucasian-European populations. However, we cannot exclude the possibility that other polymorphisms of the TLR7 gene that are not in linkage disequilibrium with the alleles tested may contributed to the development of SLE. In addition, this SNP is located in a region of known copy number variation, which should be taken with caution in genotyping studies since the alleles may differ according to the number of copies carried.

TLR5 and TLR7 signalling involves the adaptor protein myeloid differentiation factor 88 (MyD88), since mice rendered MyD88-deficient are unresponsive to ligands for these TLRs (32) and that activation leads to the production of proinflammatory cytokines such as TNF-α, IL6, IL1β and IL12. In addition, TLR stimulation generally leads to the production of IL12 and IL23 and thereby favours a Th1-type response (33). However, in previous studies, we failed to find an association between genetic variants in these cytokines and other TLRs with SLE in our population (34-37).

In conclusion, although the clinical relevance of TLR5 rs5744168 and TLR7 rs179008 polymorphisms indicates the possible physiological effect of other polymorphisms in chronic inflammatory diseases, these variants seems not play a relevant role in SLE in our population. However, this finding cannot rule out a possible role of TLR5 and TLR7 in SLE pathogenesis therapeutic targets (38).

Acknowledgements

We thank all SLE patients and controls for making this study possible.
References