Signal transducer and activator of transcription and the risk of rheumatoid arthritis and thyroid autoimmune disorders

M. Ben Hamad¹, F. Cornelis², H. Mbarek², G. Chabchoub¹, S. Marzouk³, Z. Bahloul³, A. Rebai⁴, F. Fakhfakh¹, H. Ayadi¹, E. Petit-Teixeira², A. Maalej¹

¹Laboratory of Human Molecular Genetics, Faculty of Medicine, Sfax, Tunisia; ²GenHotel-EA3886, Evry-Paris VII Universities, AP-HP and CHSF Hospitals, Evry Genopole, France; ³Department of Internal Medicine, University Hospital Hedi Chaker, Sfax, Tunisia; ⁴Department of Bioinformatics, Centre of Biotechnology, Sfax, Tunisia.

Abstract
Objective
The signal transducer and activator of transcription 4 (STAT4) gene localised on chromosome 2q32.2–q32.3 is known to be essential for mediating responses to interleukin 12 in lymphocytes and regulating the differentiation of T helper cells. The aim of this study was to investigate the role of the STAT4 gene in susceptibility to rheumatoid arthritis (RA) and autoimmune thyroid diseases (AITDs) in Tunisian case control studies.

Methods
Genotyping of STAT4 rs7574865 single nucleotide polymorphism (SNP) was performed in 140 patients affected with RA, 159 patients affected with AITDs and 200 healthy controls using TaqMan® allelic discrimination assay. Data were analysed by χ²-test, genotype relative risk (GRR) and odds ratio (OR).

Results
Our results revealed that frequencies of the T allele and the T/T genotype were significantly higher among RA patients compared to controls (p=0.008; p=0.003, respectively). However, no significant associations with the risk of autoimmune thyroid diseases were detected. Moreover, the stratification of RA patients subgroups revealed a significant association of both T allele and T/T genotype in patients presented erosion (p=0.003; p=0.004, respectively) as well as anti-cyclic peptides-negative RA (ACP A⁻) (p=0.002; p=0.0003, respectively). Furthermore, genotypic association was found according to the absence of rheumatoid factor antibody (RF) (p=0.0014). But, no significant differences in allele and genotype frequencies of STAT4 rs7574865 polymorphism were detected according to the presence of another autoimmune disease, nodules and in HLA-DRB1*04 and HLA-DRB1*0404 positive subgroups.

Conclusion
Our results support involvement of the STAT4 gene in the genetic susceptibility to RA but not to AITDs in the Tunisian population.

Key words
STAT4 gene, rheumatoid arthritis, autoimmune thyroid diseases, association study
STAT4 gene polymorphism in Tunisian RA and AITDs / M. Ben Hamad et al.

Mariem Ben Hamad, PhD
Francois Cornelis, MD, PhD
Hamdi Mbarek, PhD
Ghazi Chabchoub, MD, PhD
Sameh Marzouk, MD
Ahmed Rebai, PhD
Faiza Fakhfakh, PhD
Zouhir Bahloul, MD
Elisabeth Petit-Teixeira, PhD
Hamadi Ayadi, PhD
Abdellatif Maalej, PhD

This work was supported by the Ministry of Higher Education and Scientific Research, Tunisia and the Association Rhumatisme et Travail, Société Française de Rhumatologie, Genopole and Université d’Evry-Val d’Essonne.

Please address correspondence and reprint requests to:
Prof. Abdellatif Maalej,
Laboratory of Human Molecular Genetics, Avenue Majida Boulila, 3029 Sfax, Tunisia.
E-mail: abdellatifmaalej@yahoo.fr

Received on September 14, 2010; accepted in revised form on December 15, 2010.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2011.

Introduction
Autoimmune diseases (AIDs) are multifactorial diseases and considered to be caused by interactions of both genetic and environmental risk factors such as tobacco smoking, hormones, diet, drugs, toxins and/or infections (1). They are characterised by the loss of immunological tolerance to self antigens and multiple alterations in the immune system resulting in a spectrum of syndromes that either target specific organs or affect the body systemically. Despite their relatively high prevalence rate, the etiology and pathogenesis of most AIDs remain poorly understood (2). Several susceptibility genes have been identified as common risk factors for different autoimmune diseases. For examples, PTPN22 has been reported as a susceptibility gene for rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Graves’ disease (GD), type 1 diabetes (T1D) and juvenile idiopathic arthritis (JIA) (3). CTLA4 and FCRL3 also were reported to be associated with several autoimmune diseases such as RA, SLE and autoimmune thyroid diseases (AITDs) (4, 5). Similar to these susceptibility genes, STAT4 (Signal Transducer and Activator of Transcription protein 4) is also associated with risk for RA, SLE, primary Sjögren’s syndrome (pSS), inflammatory bowel diseases (IBD) and T1D (6-10). Aiming to define whether this gene plays a key role in multiple autoimmune diseases, we investigated the association of the most significant disease-associated SNP (rs7574865) located within the third intron of the STAT4 gene at chromosome 2q32.2-q32.3 (6, 7, 11), with rheumatoid arthritis (RA) as a non-organ specific and AITDs as an organ specific autoimmune disease in the Tunisian population.

STATs are a family of latent cytoplasmic transcription factors. Upon cytokine stimulation, STATs become tyrosine phosphorylated and translocate into the nucleus where they bind to DNA to activate transcription (12). STAT4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of inflammation in human beings (13). STAT4 is required for Th1 cell differentiation and proliferation, is activated by IL-12, and induces the transcription of IFN-γ (14, 15). In addition, STAT4 is implicated in the optimal differentiation of a newly defined CD4+ T-cell lineage, designated Th17 cells. Dependent in part on the activity of interleukin-23, a cytokine related to interleukin-12 (16), proinflammatory Th17 cells can play an important, if not predominant, role in chronic inflammatory disorders (17).

Patients and methods
RA sample
Our study included 140 Tunisian RA patients (25 men and 115 women). The mean ages were 39.3 years at disease onset and 62 at the time of this study. Among our RA patients, 98 had radiographically apparent hand erosions, 15 presented rheumatoid nodules; 96 were rheumatoid factor positive (RF+); 92 were seropositive for ACPOA; 57 had another autoimmune disease (Sjögren’s syndrome, AITDs, SLE and T1D), 58 were positive for HLA-DRB1*04 and 10 were positive for HLA-DRB1*0404. All cases satisfied the 1987 American College of Rheumatology (ACR) criteria for RA (18).

AITD sample
One hundred and fifty-nine unrelated Tunisian patients affected with AITDs were studied (118 were women and 41 were men). There were a total of 99 patients with Graves’ disease (GD) and 60 patients with Hashimoto’s thyroiditis (HT). The mean age of the disease onset was 34.2 years. The diagnosis of GD was based on the presence of biochemical hyperthyroidism as indicated by a decrease of TSH, an increase of T4 levels and positive TSH receptor antibody, in association with diffuse goiter or the presence of exophthalmoses. The diagnosis of HT was based on the presence of thyroid hormone replaced primary hypothyroidism, defined as a TSH level above the upper limits associated with positive titters of thyroid autoantibodies (antithyroglobulin and/or anti-thyroid peroxidase) and with or without a palpable goiter.

Control group
We used two hundred ethnically matched healthy controls (60 men and

Competing interests: none declared.
140 women) without clinical evidence of any autoimmune diseases, based on medical history and physical examination. The mean age at analysis was 43.2 years.

All individuals (patients and controls) provided informed consent as required by the ethics committee of the Centre Hospitalo-Universitaire Hédi Chaker de Sfax, Tunisia.

Autoantibody analysis
RA Patient sera obtained at the time of diagnosis were examined for ACPA by enzyme-linked immunosorbent assay (ELISA) (Anti-CCP ELISA (IgG Test instruction; EUROIMMUN®, Allemagne) and for RF by nephelometry. For AITDs patients’ thyroid autoantibodies (anti-thyroglobulin and anti-thyroid peroxidase) were measured by enzyme-linked immunosorbent assay (ELISA) and indirect immuno-fluorescence using commercially available kits (BINDAZYMETM Human EIA kits) with the respective normal ranges of 0 to 100 and 0 to 70 IU/ml.

HLA-DR typing
Broad-level HLA-DRB1 typing and high-resolution DRB1*04 typing were accomplished by polymerase chain reaction-sequence specific primers (PCR-SSP) (all DRB1 alleles for broad-level typing, and group-specific amplification for DRB1*04 alleles) using commercially available kits (Micro SSP™ DNA Typing trays, SSP2LB and SSP2-104; respectively) (One Lambda Inc, USA).

Molecular genotyping
Genomic DNA was isolated and purified from fresh peripheral blood leucocytes according to standard protocols. Genotyping of the STAT4 rs7574865 SNP was carried out with a TaqMan 5’ allelic discrimination assay on an ABI 7500 real-time polymerase chain reaction (PCR) machine (assay: C_29882391_10, Applied Biosystems, Foster City, CA, USA) according to manufacturer’s instructions. CEPH controls (1347-02 and 884-15) were co-genotyped with all our samples for quality control. Moreover, ten percent of randomly chosen samples were genotyped twice.

<table>
<thead>
<tr>
<th>Allele</th>
<th>RA group n=140 (%)</th>
<th>Control group n=200 (%)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>210 (75)</td>
<td>333 (83.2)</td>
<td>0.008</td>
<td>1.66 (1.14-2.42)</td>
</tr>
<tr>
<td>T</td>
<td>70 (25)</td>
<td>67 (16.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical analyses
Hardy-Weinberg equilibrium was checked in the control group using a standard chi-square test. Genotypic and allelic frequencies were obtained by direct counting. The χ^2 test (2*2 contingency tables) with 1 degree of freedom was performed to compare distributions for statistical significance. The Genotype Relative Risk (GRR) test adjusts the genotype frequencies in the controls to the expected Hardy-Weinberg proportions and yields more accurate risk estimates (19). Values of $p<0.05$ were considered statistically significant, but for RA subgroups, significance of p-values was assessed using a Bonferroni correction at 5% ($p<0.05/11=0.0045$ is considered significant). Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated according to Woolf’s method (20).

| Allele and genotype frequencies of the STAT4 G/T polymorphism analysed in RA patients and healthy controls. |

<table>
<thead>
<tr>
<th>Allele</th>
<th>RA group n=140 (%)</th>
<th>Control group n=200 (%)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>210 (75)</td>
<td>333 (83.2)</td>
<td>0.008</td>
<td>1.66 (1.14-2.42)</td>
</tr>
<tr>
<td>T</td>
<td>70 (25)</td>
<td>67 (16.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results
We analysed 499 samples (140 RA patients, 159 patients affected with AITDs and 200 healthy controls). The distribution of genotypes in the control group showed no deviation from Hardy-Weinberg equilibrium ($p=0.067$).

Association of STAT4 polymorphism with RA
Table I show the STAT4 rs7574865 allele and genotype distributions. We observed a statistically significant increase of the minor T allele in RA patients compared to healthy controls (25 vs 16.8%, $p=0.008$, OR=1.66, 95% CI=[1.14–2.42]). Moreover, the distribution of genotypes showed a higher frequency of T/T homozygous individuals in the RA patient group (7.9 vs 1% in the control group, $p=0.003$, OR=8.44, 95% CI=[1.84–38.71]).

Stratification by autoantibody status
When the subgroups defined by either ACPA positivity or RF positivity were compared with controls, no association could be observed for the STAT4 polymorphism (Table II). Moreover, neither allelic nor genotypic association was found in the subgroup who was positive for both tests (ACPA* RF+) ($p=0.23$; $p=0.67$, respectively). However, a significant association of T allele and T/T genotype were shown with ACPA-negative RA in patients as compared with healthy controls ($p=0.002$; $p=0.0003$, respectively) (allelic OR=2.15, 95% CI=[1.3–3.55]; genotypic OR=14.14, 95% CI=[2.76–72.52]). Furthermore, an increase in
frequency of the T/T genotype was observed in patients with RF-negative RA as compared with healthy controls (p=0.0014, genotypic OR=12.69, 95% CI=[2.38–67.78]). But, no significant association was found when we compared the ACPA–negative and RF-negative patients (ACPA+ RF-) with controls (p>0.004).

In order to investigate the effect of serum autoantibodies on the association of STAT4 with RA, we analysed the distribution of the rs7574865 genotypes and alleles among RA patients stratified according to autoantibody status. We found a similar trend of distribution between ACPA-positive and ACPA-negative patient groups and between RF-positive and RF-negative patient groups. Similarly, the comparison of the subgroups positive and negative for both ACPA and RF (ACPA+ RF+ vs. ACPA- RF-) showed no significant difference. This finding suggests that the susceptibility to RA conferred by the rs7574865 T allele does not differ among ACPA or RF status in patients with RA (Table II).

Stratification by clinical data in RA patients

The stratification of RA patients’ subgroups according to clinical data (Table II) revealed a significant association of both T allele and T/T genotype in patients presented erosion (p=0.003; p=0.004, respectively). But, no significant differences in allele and genotype frequencies of STAT4 rs7574865 polymorphism were detected neither according to the presence of another autoimmune disease and nodules nor in HLA-DRB1*04 and HLA-DRB1*0404 positive subgroups (p>0.004).

<table>
<thead>
<tr>
<th>Allele association</th>
<th>Genotype association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele association</td>
<td>G</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>ACPA+ (n=92)</td>
<td>143 (77.7%)</td>
</tr>
<tr>
<td>ACPA- (n=48)</td>
<td>67 (69.8%)</td>
</tr>
<tr>
<td>RF+ (n=96)</td>
<td>144 (75%)</td>
</tr>
<tr>
<td>RF- (n=44)</td>
<td>66 (75%)</td>
</tr>
<tr>
<td>ACPA+ RF+ (n=68)</td>
<td>107</td>
</tr>
<tr>
<td>ACPA- RF+ (n=21)</td>
<td>31</td>
</tr>
<tr>
<td>AID (n=57)</td>
<td>84 (73.7%)</td>
</tr>
<tr>
<td>Erosive (n=98)</td>
<td>143 (73%)</td>
</tr>
<tr>
<td>Nodules (n=15)</td>
<td>22 (73.3%)</td>
</tr>
<tr>
<td>HLA-DRB1*04 (n=58)</td>
<td>91 (78.4%)</td>
</tr>
<tr>
<td>HLA-DRB1*0404 (n=10)</td>
<td>13 (65%)</td>
</tr>
<tr>
<td>Controls (n=200)</td>
<td>333 (83.2%)</td>
</tr>
</tbody>
</table>

ACPA: anti-citrullinated peptide antibodies; RF: rheumatoid factor; AID: autoimmune diseases; (%): Frequencies of alleles; (*): Significant p-value using a Bonferroni correction at 5% (p<0.004); OR: Odds ratios and 95%; CI: confidence interval; A direct comparison of ACPA+ vs. ACPA- samples showed no significant difference; A direct comparison of RF+ vs. RF- samples showed no significant difference; A direct comparison ACPA+ RF+ vs. ACPA- RF showed no significant difference.
the empirical power, which is the probability of detecting an association. We had a 77.8% power to detect a trend in favour of an association for α=5% for the allelic test and 98.3% power for the genotypic test. Likewise, for the AITD sample, we found a power of 23.9% for the allelic test and 77.4% for the genotypic test; this explains the negative allelic and genotypic associations.

Discussion
Our results suggest that STAT4 rs7574865 T allele and T/T genotype were significantly associated with RA in the Tunisian population (p=0.008; p=0.003, respectively). These results support previous finding reported in US (6), Swedish (6, 22), Korean (7), UK (23), Greek (24), Colombian (25), Spanish (22), Japanese (26) and Dutch (22) populations. These results confirm that the STAT4 rs7574865 polymorphism is associated with RA susceptibility in different ethnic groups, and that its prevalence is ethnicity dependent, as reported by Lee et al. (27). Moreover, in one meta-analysis, an association between the STAT4 rs7574865 polymorphism and RA in all this studies, was shown (p<0.001, OR=1.271, 95% CI=1.197–1.350) (27). After stratification by ethnicity, analysis indicated that the STAT4 rs7574865 T allele was significantly associated with RA in Europeans and Asians (p<0.001, OR=1.300, 95% CI=1.195–1.414; p<0.001, OR=1.216, 95% CI=1.135–1.303).

It is worth noting that the North American Rheumatoid Arthritis Consortium (NARAC) has reported a RA linkage region on the long arm of chromosome 2 in 642 families of European ancestry (28). In addition, dense SNP mapping and candidate-gene approach of this region led to the identification of a new susceptibility gene, STAT4, for RA and SLE (6). In fact, association of rs7574865 polymorphism was found in three SLE cohorts (6, 25, 26), suggesting that this locus may harbour a risk allele pre-disposing to susceptibility for multiple autoimmune diseases with a shared aetiology in a similar manner to the PTPN22 gene.

In RA, previous studies have suggested that genetic risk factors predispose individuals to specific subsets of the disease, characterised by autoantibody status. For example, both the HLA shared epitope and PTPN22 loci have been shown to be associated with a clear predisposition to ACAP-positive disease only. In our study, stratification of patients according to autoantibodies status showed a significant association of T allele with ACAP-negative RA subgroup and an increase of the T/T genotype in both ACAP-negative and RF-negative RA as compared with healthy controls. In this term, significant associations between the T allele and RA in both ACAP positive and negative RA patients versus controls were shown in a Caucasian population (29) and only with ACAP positive RA in a Korean population (7). Additionally, direct comparison between ACAP positive and negative subjects showed no significant difference in our study similar to the other previous studies (29). However, the association between the STAT4 rs7574865 polymorphism and RA is not dependant of the presence of this antibody. It was also reported in two series of Spanish patients with RA that there was a lack of association between STAT4 and RA with or without cardiovascular events, the presence of endothelial dysfunction or increased carotid intima-media thickness (30), or the presence of HLA shared epitope, rheumatoid nodules and radiographic changes (31).

In contrast to our positive results on the RA subgroup, we failed to detect either allelic or genotypic association of STAT4 rs7574865 with AITDs and healthy controls in the Tunisian population. To assess the significance of our case-control sample, we computed the power of detecting an association; we found a power of 23.9% for the allelic test and 77.4% for the genotypic test. Therefore, the lack of association between STAT4 polymorphism and AITDs could be due to the limited sample size. Our results were similar to a previous study that showed a lack of association of rs7574865 polymorphism with multiple sclerosis in the Spanish population (9).

In our study, we noted that the minor allele frequencies (MAF) in our healthy controls (16.8%) was similar to that reported previously in the European population (16.5 to 23.16%) and lower than those reported in the Asian (30.97 to 33.8%) and Latin American (31.46%) populations (27, 32). This similarity in the allele frequencies in our population as compared to other European populations could be explained by the exchange between the North African populations and European population (33, 34). These data support our previous results on 103 microsatellite markers which showed a similarity between allele frequencies between Tunisian and CEPH populations (35).

In conclusion, this study investigated the association of STAT4 with RA in the Tunisian population. Our results were the first to show an association of this genetic variant in a population of North African origin. There was no clear effect observed in patients with AITD. Replication studies using larger sample sizes and/or other ethnic populations will be required to confirm and establish any genetic association.

Acknowledgements
We thank Jeffrey Hammer (National Institutes of Health, Bethesda, Maryland, USA) for his critical reading of this manuscript.

References
8. KORMAN BD, ALBA MI, LE JM et al.: Variant form of STAT4 is associated with primary
STAT4 gene polymorphism in Tunisian RA and AIDTs / M. Ben Hamad et al.

11. BOWES J, BARTON A: Recent advances in the genetics of RA susceptibility. Rheumatology 2008; 47: 399-402.