Autologous stem cell transplantation in refractory paediatric Wegener’s granulomatosis

Sirs,

Wegener’s granulomatosis (WG) is a rare systemic granulomatous vasculitis of small to medium vessels, involving the upper and lower respiratory tract, and the kidneys. WG predominantly affects middle-aged adults, however, paediatric patients have been reported (1, 2). Prednisolone and cyclophosphamide (CY) are the mainstay of therapy and methotrexate (MTX) is used to maintain remission. Relapses are common in all age-groups and warrant research on new/alternative treatment-regimens (1, 2).

Autologous stem-cell-transplantation (SCT) has the potential to eliminate auto-reactive lymphocytes and may be a therapeutic option in patients with autoimmune-disease (AID). SCT exerts a potent disease-arresting effect by reconstituting the immune-system with a “naïve” state (3). Over 700 patients with AID have been treated with SCT, some of which (35) were suffering from systemic vasculitis (4-6). In recent analyses (5, 6), clinical outcomes of 18 of these patients were investigated, under which circumstances SCT plays a central role in the pathophysiology of WG (8), and data from case reports and open-label-studies showed promising results with 70–100% remission-rates after B cell-depletion. Thus, in agreement with EULAR-recommendations (9), Rituximab (RTX) was applied and low-dose MTX was re-introduced. RTX induced temporary remission, but regardless of the absence of serum auto-antibodies and peripheral B lymphocytes, epistaxis and otitis re-occurred. Magnetic resonance imaging unveiled unilobed mastoid oedema, and maxillary-cavity-inflammation (Fig. 1D).

It has been reported that a subset of patients with significant granuloma-formation, do not respond to B cell-depletion. Since germinal-center-like structures were observed in granulomatous lesions, therapy-resistance might be due to local plasma-cell-survival and autoantibody-production (8). T lymphocytes play an important role in granuloma-formation and TNF-lymphocyte-directed therapies showed good effects in some reports (8). Thus, anti-TNF-treatment with infliximab was introduced; unfortunately without effects.

Secondary to chronic disease-progression, autologous SCT was performed to eliminate auto-reactive lymphocytes and re-introduce a “naïve” immune-system. Stem-cells were mobilized with CY (5x50mg/kg) and anti-thymocyte globulin (3x20mg/kg). Ovarian function was preserved with gonadotropin-releasing-hormone analoga. Additionally, ovocytes were cryo-conserved. The graft was T-cell depleted by CD34-selection (T-cell count <1x105/kg) and 3.6x106 CD34+ cells/kg were infused. Hematopoietic regeneration was observed at day +14 after SCT. Low-dose MTX was re-introduced to support stable remission and prevent reported re-development of auto-reactivity (4-6). Five months after SCT, our patient developed Escherichia coli-positive haemorrhagic cystitis. No further treatment-associated side-effects occurred during the 9-month follow-up. Currently, the patient is in stable remission. Thus, high dose immune-suppression, resulting in immune-ablation and followed by reconstitu-

Fig. 1. A) Laboratory findings and treatment applied in the course of a 12-year-old Wegener granulomatosis (WG) patient. Leukocyte counts (Leuk), cANCA titers and CrP levels are displayed as markers of disease-activity. Induction-therapy was performed, using cyclophosphamide (CY) and oral prednisolone. Methotrexate (MTX) was administered as maintenance treatment. Secondary to side effects, azathioprine (AZA) was introduced. After a relapse, cyclophosphamide was re-administered orally and Rituximab® (RTX) in combination with methotrexate was started. Secondary to limited success Infliximab® (IFX) therapy was introduced, again with limited success. Stem cell transplantation (STC), followed by methotrexate maintenance-treatment was performed after 34 months of “classic” WG treatment and off-label use of biologicals. Stable remission was obtained after SCT. Time course is displayed as days relative to SCT.

B) Chest CT at the time of diagnosis, showing bilateral perihilar peribronchovascular nodules and partial cavitary masses with prominent walls.

C) PD-weighted MRI sequences of the knees with fat saturation, showing bone marrow oedema and osteonecrosis in the right femur and both tibiae.

D) MRI of the skull (TIRM-sequences) at month 23 after diagnosis. Swollen mucosa of the inferior conchae nasalis (1), the left maxillary sinus (4) and both mastoid cells (+). No bone-destruction was detected.
tion with an “un-educated” immune-system by SCT was effective as rescue-therapy and resulted in stable remission.

To our knowledge, this is the first paediatric case of refractory WG, successfully treated with STC. Early SCT might have reduced treatment-related side effects, such as aseptic bone-necroses. Based on previous reports, the efficacy of SCT in WG seems to be inconsistent (4-7). About 50% of patients responded with complete remission (5, 6), while 50% responded incompletely and/or relapsed (8). Even though the utilization and safety of SCT has evolved over the recent years, treatment-related morbidity still appears to be considerable in certain autoimmune diseases, such as systemic sclerosis (23%) (10). Refractory autoimmune-diseases have been the main target of SCT, although there is a tendency to treat systemic autoimmune-diseases in early stages to prevent multi-organ damage. Still, it is hard to predict the response to the considerably safe “classical” induction therapy with CY and prednisolone, followed by MTX maintenance treatment.

C.M. HEDRICH M. BORNHÄUSER
B. FIEBIG M. GAHR
N. BRUCK M. SUITTORP
G. HAHN

1 Paediatric Rheumatology and Immunology;
2 Department of Radiology, Paediatric Radiology Section;
3 Department of Haematology, Oncology and Haematopoietic Stem Cell Transplantation;
4 Paediatric Haematology and Oncology, University Children’s Hospital Dresden, Dresden, Germany.

Address correspondence to:
Dr Christian Hedrich, Paediatric Rheumatology and Immunology Section, University Children’s Hospital Dresden, University of Technology Dresden, Fetscherstr. 74, D-01307 Dresden, Germany.
E-mail: christian.hedrich@uniklinikum-dresden.de

Competing interests: none declared.

References