No evidence for association between the CCR5/Delta32CCR5 polymorphism and systemic sclerosis

Sir,

Systemic sclerosis (SSc), also known as scleroderma, is a complex polygenic autoimmune disease (AID) of unknown aetiology characterised by extensive fibrosis, fibroproliferative vasculopathy and presence of auto-antibodies against nuclear self-antigens. It is known that genetic factors play an important role in the susceptibility and clinical features of this AID, especially those related to the immune response (1).

A 32-base pair deletion mutation in the CC chemokine receptor 5 gene (CCR5), known as Δ32CCR5, produces a non-functional receptor by modifying the second extra-cellular loop of the protein. The protective effect of this mutant variant on the development and progression of different autoimmune disorders has been proposed (2, 3).

To explore the possible role of Δ32CCR5 in the pathogenesis and clinical phenotype of scleroderma, a total of 844 Spanish Caucasian SSc patients, who met the 1980 American College of Rheumatology (ACR) classification criteria for this disease (4), were included in the study. Approval from the local ethical committees and written informed consent from all participants were obtained. To perform the phenotype analysis, patients were further subdivided into limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) subgroups, and by autoantibody profile based on the presence of anti-topoisomerase (ATA) and anti-centromere (ACA) autoantibodies. Measurement of autoantibodies was performed using standard procedures. Clinical features of the patients have been described before (5).

The data from the control population was obtained from (3), since this set matched geographically and ethnically our SSc cohort. Polymerase chain reaction (PCR) was performed to genotype samples using a couple of primers that span the 32-base pair deletion in the CCR5 gene (GenBank Accession#: AF009962): 5’-CCACAAA-GAAGGCTTCTATTACC-3’ (sense), and 5’-CCCTGTCCTCCTTCCTCATCATT-TCG-3’ (antisense). The size of the amplified wild-type and deleted DNA fragments was 189 bp and 157 bp, respectively.

The statistical power of the global analysis was 90% to detect associations with OR=1.5 at the 5% statistical level, according to Power Calculator for Genetic Studies 2006 software (http://www.sph.umich.edu/csg/abecasis/CA Ts/). However, it should be noted that this study is underpowered to detect lower ORs, and this may be considered a limitation. No significant differences were observed between the Δ32CCR5 allele frequencies of the different case sets and that of the control population, as well as when subgroups were compared one to another (Table I).

Abnormal chemokine and chemokine receptor expressions, which lead to an excessive infiltration of leukocytes, seem to play key roles in the fibrosis and vascular alterations of SSc patients (6). This study represents the first attempt to evaluate the possible implication of the functional variant Δ32CCR5 of the chemokine receptor CCR5 in the pathophysiology of SSc up to now. This receptor is highly expressed on the surface of T lymphocytes, and plays an important role during the recruitment of this cell type towards inflammation regions (7). Although some evidences about a possible involvement of the Δ32CCR5 mutant allele in autoimmune have been reported (2, 3), recent studies demonstrate a lack of association of this CCR5 variant with several AIDs, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, and type 1 diabetes (8-10). Specially controversial are the results published in relation to SLE and RA (2). Our data show no significant association of the CCR5/Δ32CCR5 polymorphism with the susceptibility and clinical manifestations of scleroderma, in spite of the well-defined and large-sized SSc cohort that we have included in the analysis. In any case, additional studies are needed to draw firm conclusions about the exact role of the CCR5/Δ32CCR5 polymorphism in the susceptibility and clinical spectrum of autoimmunity.

Acknowledgements

The authors thank Gema Robledo, Sofia Vargas and Sonia Garcia for their excellent technical assistance, and all participants who kindly accepted to collaborate. This work was supported by SAF2009-11110, Junta de Andalucía, grants: CTS-4977 and CTS-180, Orphan Disease program from EULAR, and by RETICS Program, RD0800705 (RIER) from Instituto de Salud Carlos III (ISCIII). FDCIL was supported by Consejo Superior de Investigaciones Científicas (CSIC) through the program JAE-DOC.

Table I. Distribution of the CCR5/Δ32CCR5 polymorphism in SSc patients and the phenotypic subgroups compared to healthy controls, and accordingly with presence or absence of specific features of the disease.

<table>
<thead>
<tr>
<th>Genotype, n. (%)</th>
<th>Allele (%)</th>
<th>Cases vs. Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCR5/Δ32</td>
<td>Δ32/Δ32</td>
</tr>
<tr>
<td>Controls (n=815)**</td>
<td>707 (86.75)</td>
<td>101 (12.39)</td>
</tr>
<tr>
<td>lcSSc (n=844)</td>
<td>738 (87.44)</td>
<td>103 (12.20)</td>
</tr>
<tr>
<td>dcSSc (n=231)</td>
<td>194 (83.98)</td>
<td>35 (15.15)</td>
</tr>
<tr>
<td>ATA+ (n=579)</td>
<td>306 (89.21)</td>
<td>36 (10.50)</td>
</tr>
<tr>
<td>ATV+ (n=571)</td>
<td>143 (83.63)</td>
<td>27 (15.79)</td>
</tr>
<tr>
<td>ATV+ (n=571)</td>
<td>354 (86.13)</td>
<td>55 (13.38)</td>
</tr>
<tr>
<td>ATV+ (n=579)</td>
<td>515 (88.95)</td>
<td>62 (10.71)</td>
</tr>
</tbody>
</table>

The statistical software (Epi Info 2002; Centers for Disease Control and Prevention, Atlanta, GA, USA) was used to perform 2x2 contingency tables and q2 test and/or Fisher’s exact test, when appropriate, and to calculate p-values, odds ratios (OR), and 95% confidence intervals (CI). *OR for the Δ32CCR5 allele. **From Gomez-Reinga et al. (1999). *lcSSc vs. dcSSc; **ACA+ vs. ACA−; ***ATA+ vs. ATA−.

Letters to the Editors

F.D. CARMONA1,
A. SERRANO-LOPERA1,
E. LÓPEZ-ISAAC1,
P.C. SIMÉON1,
P. CARREIRA1,
R. RÍOS-FERNÁNDEZ1,
G. ESPINOSA2,
M.T. CAMPS1,
N. NAVARRETE1,
M.F. GÓMEZ-ESCRIBANO2,
E. VICENTE-RABANEDA3,
L. RODRÍGUEZ-RODRÍGUEZ4,
C. TOLOSA4,
E. BELTRAN5,
I. GÓMEZ-GARCÍA5,
M. FERNÁNDEZ-CASTRO5,
F.J. LÓPEZ-LONGO5,
F.J. GARCÍA-HERNÁNDEZ6,
I. CASTELLI6,
L. TRAPIELLA6,
A. FERNÁNDEZ-NEBRO6,
R. GARCÍA-PORTELA6,
M.V. EGURRÍDE6,
V. FONOLLOSA7,
P. GARCÍA DE LA PEÑA7,
A. PROS7,
M. RODRÍGUEZ-CARBALEIRA8,
F. DÍAZ-GONZÁLEZ8,
L. SÁEZ-COMET8,
M.A. GONZALEZ-GAY9,
J. MARTÍN9

1Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada;
2Department of Internal Medicine, Hospital
Letters to the Editors

Valle de Hebron, Barcelona; 1Department of Rheumatology, Hospital 12 de Octubre, Madrid; 2Department of Internal Medicine, Hospital Clínico Universitario, Granada; 3Department of Internal Medicine, Hospital Clínico de Barcelona, Barcelona; 4Department of Internal Medicine, Hospital Carlos-Haya, Málaga; 5Department of Internal Medicine, Hospital Virgen de las Nieves, Granada; 6Department of Immunology, Hospital Virgen del Rocío, Sevilla; 7Department of Rheumatology, Hospital de la Princesa, IISP, Madrid; 8Department of Rheumatology, Hospital Clínico San Carlos, Madrid; 9Department of Internal Medicine, Hospital Puerta de Hierro, Madrid; 10Department of Rheumatology, Hospital de la Princesa, IISP, Madrid; 11Department of Rheumatology, Hospital Parc Taulí, Sabadell; 12Department of Rheumatology, Hospital Clínico de Barcelona, Barcelona; 13Department of Rheumatology, Hospital de la Princesa, IISP, Madrid; 14Department of Rheumatology, Hospital Puerta de Hierro, Madrid; 15Department of Rheumatology, Hospital Gregorio Marañón, Madrid; 16Department of Rheumatology, Hospital Virgen de las Nieves, Granada; 17Department of Rheumatology, Hospital de Sant Pau, Barcelona; 18Department of Internal Medicine, Hospital Central de Asturias, Oviedo; 19Department of Rheumatology, Hospital Carlos Haya, Málaga; 20Department of Rheumatology, Hospital Virgen de la Victoria, Málaga; 21Department of Internal Medicine, Hospital de Cruces, Barakaldo; 22Department of Rheumatology, Hospital Ramón y Cajal, Madrid; 23Department of Rheumatology, Hospital Del Mar, Barcelona; 24Department of Internal Medicine, Hospital Universitari Mutua Terrassa, Barcelona; 25Department of Rheumatology, Hospital Universitario de Canarias, Tenerife; 26Department of Internal Medicine, Hospital Universitario Miguel Servet, Zaragoza; 27Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, IFIMAV, Santander, Spain.

Address correspondence and reprint requests to:
F. David Carmona, PhD, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento s/n 18100-Armilla (Granada), Spain.
E-mail: dcarmona@ipb.csic.es

Competing interests: none declared.

References