Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis

D. Daoussis1, S.C. Liossis1, A.C. Tsamandas2, C. Kalogeropoulou3, F. Paliogianni4, C. Sirinian2, G. Yiannopoulos1, A.P. Andonopoulos1

ABSTRACT

Objectives. To assess the safety and efficacy of long-term treatment with rituximab (RTX) in patients with systemic sclerosis (SSc).

Methods. Eight patients with SSc-associated interstitial lung disease (ILD) received 4 cycles of RTX and had a follow-up of 2 years. Lung involvement was assessed by pulmonary function tests and chest HRCT. Skin involvement was assessed both clinically and histologically.

Results. We found a linear improvement of lung function and skin thickening over the 2 years of RTX treatment. There was a significant increase of FVC at 2 years compared to baseline (mean ± SEM: 77.13±7.13 vs. 68.13±6.96, respectively, p<0.0001). Similarly, DLco increased significantly at 2 years compared to baseline (mean ± SEM: 63.13±7.65 vs. 52.25±7.32, respectively, p<0.0001). Skin thickening, assessed with the MRSS, improved significantly at 2 years compared to baseline (mean ± SEM: 4.87±0.83 vs. 13.5±2.42, respectively, p<0.0001). A reduction in myofibroblast score was seen histologically following RTX treatment.

Conclusion. Our results indicate that long-term treatment with RTX may favourably affect lung function and skin fibrosis in patients with SSc. Larger scale, multicentre, randomised, controlled studies are needed to further explore the efficacy of RTX in SSc.

Introduction

Systemic sclerosis (SSc) is a rheumatic disease characterised of vasculopathy, autoimmunity and progressive fibrosis (1). Lung involvement in the form of interstitial lung disease (ILD) is one of the most serious manifestations of SSc. Patients with severe SSc-associated ILD have a survival rate of only 58% within 10 years from disease onset (2). Therapeutic options for SSc-associated ILD are extremely limited and only cyclophosphamide (CYC) has been formally tested in a multicentre, randomised, double blind, placebo controlled trial, showing statistically significant results (3). The clinical efficacy of CYC is modest, with patients exhibiting a slowing down in the rate of pulmonary function tests (PFTs) decline over time; this effect, though, lasts for only a few months following drug discontinuation (4). This indicates the need for continuous treatment; however, its toxicity restricts its long-term use. The above data underscore the necessity for the development of novel therapies with disease modifying properties and acceptable safety profile that can be administered over a long period of time.

Rituximab (RTX) is a monoclonal antibody against human CD20 that targets B cells. The clinical efficacy of RTX in many systemic rheumatic diseases has brought the B cell under the spotlight; with respect to SSc, several lines of evidence from basic research indicate a potential pathogenic role for B cells in the fibrotic process (5-8). RTX exhibits a mononcytotoxicity and acceptable safety profile and consecutive courses can be administered without significant toxicity.

In previous studies, we showed that RTX may improve lung function in patients with SSc-associated ILD, in a 1-year, randomised, controlled, proof of concept study (9), as well as in a case report (10). So far four studies have explored the potential clinical efficacy of RTX in SSc (11-13). Our study, however, was the only one specifically designed to test the effect of RTX on SSc-associated ILD, since the presence of ILD was an inclusion criterion and most patients had severe ILD, in contrast with other studies that focused on...
Rituximab in scleroderma / D. Daoussis et al.

skin disease and excluded patients with severe ILD. In our study, eight patients had received 2 cycles of RTX; the first at baseline and the second at 6 months. On the basis of a good clinical response, these patients remained on RTX treatment and received two additional cycles of RTX at 12 and 18 months. We report herein that long-term treatment with RTX associates with a linear improvement of lung function and skin remodeling as indicated by reduction in skin thickening and myofibroblast score.

Patients and methods

Patients
We enrolled 8 patients with a diagnosis of SSc, fulfilling the preliminary American College of Rheumatology criteria for the classification of the disease (14). All patients belonged to the diffuse variety of the disease, were anti-Scl-70 positive, had evidence of ILD, as indicated by findings in PFTs and/or HRCT, and had no change in medications and/or dosage of treatment administered during the last 12 months before enrollment. This is an extension of our previous study; all eight patients recruited in the RTX arm of the original study, remained on RTX treatment and received two additional cycles of RTX at 12 and 18 months and have completed a follow-up of 2 years. A local (Patras University Hospital, Patras, Greece) ethics committee approved the study protocol (which fulfilled the Declaration of Helsinki requirements) and a written informed consent was obtained from all participants.

Treatment
Patients received 4 weekly pulses of rituximab (375 mg/m²) at baseline, at 6 months, at 12 months and at 18 months, on top of the already administered treatment (details in Table I).

PFTs and chest HRCT
Standard PFTs were performed, at baseline, 6, 12 and 24 months in all patients. All patients had an HRCT performed at baseline, at 6 and 18 months. Semiquantitative evaluation of total disease extent (ground glass and reticular lesions) was performed by two experienced radiologists in a blinded fashion, according to a scoring system proposed by Desai et al. (15).

Clinical assessment of skin thickening
The modified Rodnan skin score (MRSS) was employed for clinical assessment of skin thickening at baseline, 6, 12 and 24 months by an experienced assessor in a blinded fashion (16).

Skin histology
Histologic assessment of skin fibrosis was made by skin biopsies performed at baseline and at 6 months (a 5mm-punch biopsy of lesional skin) in all patients, prior to RTX administration. Myofibroblasts (αSMA(+) cells) were detected by a standard streptavidin biotin peroxidase method, using an anti-αSMA antibody (Novocastra, UK). Computerised image analysis was used to quantify the results.

Overall functional impairment.
Assessment of functional status was performed at baseline, 12 and 24 months using the 20-item Health Assessment Questionnaire-Disability Index (HAQ-DI) (17). Clinically significant improvement in functional status was defined as a 0.14 decrease in HAQ-DI score, as previously described (18).

Statistical analysis
Statistical analysis was performed using the GraphPad Prism software version 5. Data are presented as mean ± SEM, median (upper and lower quartile values) or percentages, as appropriate. Changes from baseline in PFTs and MRSS at 6, 12 and 24 months were analysed using repeated measure analysis of variance (ANOVA) with Dunnett’s post hoc test (multiple comparisons with baseline). We also tested for linear associations between time and each parameter (ANOVA, post hoc test for linear trend). Pearson correlation and paired t-test were used as indicated.

Results
Demographic, clinical characteristics and medications of studied subjects are presented in Table I.

Effect of long-term RTX treatment on SSc-associated ILD
PFTs and HRCT were used to assess the potential effect of RTX treatment on SSc-associated ILD.

Long-term RTX treatment is associated with linear improvement of PFTs
PFTs showed a significant, linear improvement over time. There was a significant increase of forced vital capacity (FVC) at 2 years compared to baseline (mean ± SEM: 77.13±7.13 vs. 68.13±6.96, respectively, p<0.0001). A significant increase in FVC was also evident at 1 year (mean ± SEM: 68.13±6.96 vs.

Patient n./ Disease Organ involvement Number Follow-up Previous Concurrent

<table>
<thead>
<tr>
<th>Patient n./age</th>
<th>Disease duration (years)</th>
<th>Organ involvement at baseline other than lung</th>
<th>Number of RTX courses</th>
<th>Follow-up (months)</th>
<th>Previous immune based therapies</th>
<th>Concurrent medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/F/47</td>
<td></td>
<td>DU, Musc, GI</td>
<td>4</td>
<td>24</td>
<td>D-pen</td>
<td>Pred, Bos</td>
</tr>
<tr>
<td>2/M/72</td>
<td></td>
<td>Musc, GI, Heart</td>
<td>4</td>
<td>24</td>
<td>CYC</td>
<td>Pred, MMF</td>
</tr>
<tr>
<td>3/F/56</td>
<td></td>
<td>DU, Musc, GI, Heart</td>
<td>4</td>
<td>24</td>
<td>CYC</td>
<td>Pred, Bos</td>
</tr>
<tr>
<td>4/M/39</td>
<td></td>
<td>DU, Musc, GI, Heart</td>
<td>4</td>
<td>24</td>
<td>D-pen, CYC</td>
<td>Pred, Bos, MMF</td>
</tr>
<tr>
<td>5/F/33</td>
<td></td>
<td>Musc, GI</td>
<td>4</td>
<td>24</td>
<td>D-pen, MTX</td>
<td>Pred, MMF</td>
</tr>
<tr>
<td>6/F/56</td>
<td></td>
<td>GI</td>
<td>4</td>
<td>24</td>
<td>–</td>
<td>MMF</td>
</tr>
<tr>
<td>7/F/70</td>
<td></td>
<td>GI</td>
<td>4</td>
<td>24</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8/F/50</td>
<td></td>
<td>Musc</td>
<td>4</td>
<td>24</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

1Discontinued at least 3 years prior to study enrollment.
2Started at least 4 years prior to study enrollment.
3Pred: low dose prednisone; Bos: bosentan; MMF: mycophenolate mofetil; CYC: cyclophosphamide; MTX: methotrexate; DU: digital ulcers; Musc: musculoskeletal involvement defined as joint contractions (pts 1, 3, 4, 5), muscle weakness (pt 2) and synovitis (pts 1, 5, 8).
4GI: gastrointestinal involvement defined as esophageal motility disorder as assessed by radioisotope method (pts 1, 3, 4, 5 and 6) and gastro-esophageal reflux (pts 1, 2, 3, 4, 5, 6, 7).
5Heart: cardiac involvement defined as pulmonary hypertension (pt 3 had an RVSP of 50–55mmHg), diastolic dysfunction (pt 4) and conduction disturbances (pts 2, 4).
75.63±6.97, p<0.001 compared to baseline, but not at 6 months (mean ± SEM: 71.5±7, p=ns compared to baseline). These results indicate a significant linear improvement of FVC over time (p<0.0001, ANOVA, post test for linear trend), as shown in Figure 1A. The median (upper and lower quartile values) percentage of improvement of FVC at 24 months compared to baseline was 12.79% (8.76–25.12). Patients n. 7 and n. 8, who had early disease, had the most striking improvement (27.94% and 29.03%, respectively).

Similarly, DLco increased significantly at 2 years compared to baseline (mean ± SEM: 63.13±7.65 vs. 52.25±7.32, respectively, p<0.001). A significant increase in DLco was also found at 1 year (mean ± SEM: 62±8.2, p<0.001 compared to baseline) whereas at 6 months DLco values showed an upward trend which did not reach statistical significance (mean ± SEM: 55.25±6.78, p=ns compared to baseline). A significant linear improvement over time was found (p=0.0003, ANOVA, post test for linear trend), as shown in Figure 1B. The median (upper and lower quartile values) percentage of improvement of DLco at 24 months compared to baseline was 19.47% (3.81–27.15).

We retrospectively collected data on PFTs during the last 30 months prior to RTX treatment in the 6 patients who had long-standing disease. These patients had declining PFTs and showed a median percentage of deterioration of 10.25% and 17.9% for FVC and DLco, respectively.
Rituximab in scleroderma / D. Daoussis et al.

in ground glass lesions at 18 months compared to baseline, while reticular lesions remained unchanged (Fig. 2).

Effect of long-term RTX treatment on skin fibrosis in patients with SSc

We performed standard clinical assessment by applying the MRSS tool and the skin biopsy analysis in order to assess the effect of RTX on skin fibrosis.

Long-term RTX treatment is associated with improvement of skin thickening

We found a linear decrease of MRSS over time indicating an improvement of skin thickening. There was a significant decrease of MRSS at 2 years compared to baseline (mean ± SEM: 4.87±0.83 vs. 13.5±2.42, respectively, p<0.0001). A significant decrease in MRSS was also found at 1 year (mean ± SEM: 8.37±2.28, p=0.0001 compared to baseline) and at 6 months (mean ± SEM: 8.75±2.06, p<0.001 compared to baseline). A significant linear decline of MRSS over time, indicating improvement of skin thickening, was found (p<0.0001, ANOVA, post test for linear trend), as shown in Figure 1C. The median percentage of improvement (upper-lower quartile values) at 1 year was 39.29% (27.35–65) and at 2 years it increased further to 64.58% (51.79–73.74).

Reduction of collagen deposition, skin infiltrating B cells and myofibroblast score following RTX administration

We have already reported that collagen deposition in the papillary dermis decreases following RTX administration, and that skin B cell depletion correlates with histologic improvement. Evidence of histologic improvement was seen in 6 out of 8 patients (n. 2, n. 3, n. 4, n. 6, n. 7 and n. 8). Myofibroblast score in the papillary dermis decreased significantly following treatment with RTX (mean ± SEM, 44.58±5.04 vs. 8.03±3.86, at baseline vs. 6 months, respectively, p=0.0022). Myofibroblast score decreased in the same 6 patients who showed histologic improvement and remained unchanged in the two patients who did not improve histologically. More details are presented in Figure 3.

Effects of long-term RTX treatment on anti-Scl-70 levels

Anti-Scl-70 levels were serially evaluated semi-quantitatively in patients who received long-term RTX treatment (at baseline, 6 and 18 months). In patients n. 3, 6 and 7 a decline in anti-Scl70 levels was found, as shown in Figure 4. No differences were detected in the other patients.

Effects of long-term RTX treatment on functional status, cardiac and renal function

Cardiac function (ejection fraction and right ventricle systolic pressure) and renal function (eGFR) remained stable throughout the study (data not shown). A significant improvement in functional status, as indicated by a decline in HAQ-DI scores, was noticed in the 8 patients who received long-term RTX treatment. There was a significant decrease in HAQ-DI scores at 2 years compared to baseline, indicating an improvement in functional status (median [lower and upper quartile values], 0.687 (0.28–1.25) vs. 0.25 (0.125–0.437), at baseline vs. 2 years, respectively, p<0.001). This improvement was also evident at 1 year (median [lower and upper quartile values] 0.312 (0.125–0.687), p<0.0001).
Seven patients showed a more than 0.14 decrease in HAQ-DI score, indicating a clinically significant improvement – the single patient who did not improve significantly had a very low baseline score.

Adverse events

Three serious adverse events occurred. Patient 2 had a respiratory tract infection three months after the second RTX course. Patient 4 suffered a respiratory tract infection with associated leukopenia 2 months after the third RTX course, and an H1N1 infection 5 months following the fourth RTX course. They both required short-term hospitalisation and recovered fully in a few days. Patient 1 developed a mild infusion reaction during the first RTX course.

Discussion

Several lines of evidence from basic research indicate that B cells may be actively involved in the fibrotic process. B cells from the tight skin mouse, an animal model of SSc, show augmented CD19 signalling (19), and treatment with RTX diminishes skin fibrosis (20). In the bleomycin induced mouse model of SSc, where not only skin but also lung fibrosis occurs, CD19 deficiency led to improvement of both skin and lung fibrosis (21). It has been reported that the development of bleomycin-induced pulmonary fibrosis in mice is regulated by CD19 and that fibrosis associates with the accumulation of CD19+ B cells in the lungs (22). These studies indicate a potential link between B cell hyperactivity and fibrosis, and provide indirect evidence that modulating B cell function might have beneficial effects on fibrosis. In SSc patients, B cells exhibit increased CD19 expression and are chronically activated (23), whereas genes characteristically expressed in B cells were found to be upregulated in SSc versus normal skin (24). Moreover, B cell infiltration was a prominent finding in lung biopsies from patients with SSc-associated ILD (25). The presence of B cells in SSc-associated ILD did not come as a surprise, since other studies have also shown prominent B cell infiltration in RA-associated ILD (26) and idiopathic pulmonary fibrosis (27, 28).

We report herein an improvement of lung function as indicated by a linear increase in PFTs and a modest improvement of HRCT findings, following treatment with RTX during a 2-year period. It is noteworthy that none of the study subjects exhibited worsening of lung function; instead all patients had an increase by >10% in FVC and/or DLco. In the context of the natural course of the disease, PFTs gradually deteriorate. Patients with disease duration of 4–6 years are reported to have a 3% decline in FVC per year (2), indicating that the significant linear improvement in lung function reported herein is unlikely to be attributed to the natural course of the disease, and suggests disease modifying properties of RTX in SSc-associated ILD.

In other studies (11, 12), assessing the efficacy of RTX in SSc, lung function remained stable throughout a 6-month follow-up. These data are in agreement with ours, since in this study the trend towards improvement in PFTs at 6 months did not reach statistical significance. Therefore, our data indicate that the beneficial effect of RTX on lung function requires more than 6 months to become evident, and that continuous treatment is needed to sustain and further augment this effect. The need for retreatment with RTX was also underscored by a case reported by McGonagle et al. (29). The beneficial effect of RTX on SSc-associated ILD in that case waned over time and the patient had to receive a second course of RTX.

Skin thickening significantly improved during the 2-year follow-up of this study in all patients. The median percentage of MRSS decrease at 1 year was approximately 40%, a much higher percentage than that expected within the context of the natural course of the disease, which has been reported to be approximately 20% (30). These data are in agreement with other studies (11-13), also reporting improvement of skin thickening following RTX administration, thus suggesting that RTX may favourably affect skin fibrosis.

Histologic outcomes have rarely been reported in scleroderma trials and up until recently, histologic improvement has only been documented following stem cell transplantation (31). It is noteworthy that histologic improvement has also been reported in the other studies assessing the potential clinical efficacy of RTX in SSc (11-13). Our study has several potential limitations. These are the small number of

Fig. 4. Long -term treatment with RTX mediates a decline in anti-Scl-70 levels in a subset of patients with SSc. RTX-induced decrease in anti-Scl-70 levels in patient 7 (A) and 6 (B).
Rituximab in scleroderma / D. Daoussis et al.

patients recruited and that most patients had long-standing disease. It is generally recommended that patients recruited in scleroderma trials should have early disease, since these patients are more likely to deteriorate over the time of the study and the potential effect of the treatment could be more easily seen. Indeed, the most striking improvement of lung function was documented in the two patients with early disease. Nevertheless, a linear improvement of lung function was also documented in patients with long-standing disease. The fact that a treatment effect could be documented in our study in such patients, which are probably less responsive to any kind of therapy compared to patients with early disease, may provide an argument in favour of the disease modifying role of RTX. Another limitation is that five patients received concurrent treatment with mycophenolate mofetil (MMF) and, even though they have been on that therapy for a long time prior to study enrolment, we cannot exclude the possibility that MMF contributed to the positive outcomes reported herein.

Taking into consideration the limitations of the present study, definite conclusions cannot be drawn. However, our data strongly point to the direction that further exploration of the clinical efficacy of RTX in SSc is warranted. A comparison of RTX versus CYC, the gold standard of care so far, in a large, randomised, double blind multicentre study, would seem a reasonable approach.

In conclusion, B cell depletion therapy is well tolerated and may improve lung function and skin fibrosis in patients with SSc. Further exploration of the potential clinical efficacy of RTX in SSc with a multicentre, double blind, controlled study is needed.

Acknowledgements

We thank Dr A. Kazantzi for her kind contribution in assessing the HRCT scans.

References