Evidence of genetic association between TNFRSF1A encoding the p55 tumour necrosis factor receptor, and ankylosing spondylitis in UK Caucasians

T. Karaderi1, J.J. Pointon1,2, T.W.H. Wordsworth1, D.Harvey1, L.H. Appleton2, C.J. Cohen1, C. Farrar1, A. Harin1, M.A. Brown3, B.P. Wordsworth1,2 and the Australo-Anglo-American Spondyloarthritis Consortium

1National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK and 2NIHR Oxford Comprehensive Biomedical Research Centre, Oxford, United Kingdom; 3University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Australia.

Tugce Karaderi, MSc
Jennifer J. Pointon, MSc, DPhil
Thomas W.H. Wordsworth, BSc
David Harvey, MSc, DPhil
Louise H. Appleton,
Carla J. Cohen, MA, PhD
Claire Farrar, SRN
Alice Harin, RGN
Matthew A. Brown, MD, FRACP
B. Paul Wordsworth, MA, MB, FRCP

Please address correspondence to:
Prof. B.P. Wordsworth,
Botnar Research Centre, Nuffield Orthopaedic Centre, Windmill Rd, Headington, Oxford OX3 7LD, United Kingdom.
E-mail: paul.wordsworth@ndorms.ox.ac.uk
Received on April 20, 2011; accepted in revised form on September 20, 2011.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2012.

Key words: spondyloarthropathy, TNFR1, SCNN1A, meta-analysis, polymorphism

Funding information on page 113.
Competing interests: none declared.

ABSTRACT

Objectives. To replicate the possible genetic association between ankylosing spondylitis (AS) and TNFRSF1A.

Methods. TNFRSF1A was re-sequenced in 48 individuals with AS to identify novel polymorphisms. Nine single nucleotide polymorphisms (SNPs) in TNFRSF1A and 5 SNPs in the neighbouring gene SCNN1A were genotyped in 1604 UK Caucasian individuals with AS and 1019 matched controls. An extended study was implemented using additional genotype data on 8 of these SNPs from 1400 historical controls from the 1958 British Birth Cohort. A meta-analysis of previously published results was also undertaken.

Results. One novel variant in intron 6 was identified but no new coding variants. No definite associations were seen in the initial study but in the extended study there were weak associations with rs4149576 (p=0.04) and rs4149577 (p=0.007). In the meta-analysis consistent, somewhat stronger associations were seen with rs4149577 (p=0.002) and rs4149578 (p=0.006).

Conclusions. These studies confirm the weak genetic associations between AS and TNFRSF1A. In view of the previously reported associations of TNFRSF1A with AS, in Caucasians and Chinese, and the biological plausibility of this candidate gene, replication of this finding in well powered studies is clearly indicated.

Introduction
Ankylosing spondylitis (AS) is a highly heritable arthropathy, the polygenic nature of which is now well recognised. Defining the complete genetic aetiology of polygenic disorders, such as AS, is an important research goal since defining loci of even apparently small genetic effect can give major insights into their aetiology and pathogenesis (1). For example, the weak but robust association between rheumatoid arthritis (RA) and CTLA4, increasing the risk of disease by about 8 per cent (2), is indicative of the potential for therapeutic manipulation of T-cell activation through the CD28 pathway. This has been amply demonstrated by the efficacy of recombinant CTLA4 immunoglobulin fusion protein (abatacept) in RA (3). Genome-wide association studies (GWAS) have proved very successful at identifying novel susceptibility genes of moderate effect in AS, such as ERAPI and IL23R (4, 5). However, other loci with smaller genetic effects may require much larger data sets for discovery and validation.

The type 1 (p55) tumour necrosis factor receptor (TNFR1), encoded at TNFRSF1A, is a plausible candidate for involvement in AS for several reasons. First, TNFR1 has a pivotal role in TNF-related pathways leading to NFκB-mediated activation of pro-inflammatory genes and FADD-mediated apoptosis (6); second, TNF blockade with recombinant TNF receptor/lig fusion protein (etanercept) is a highly effective treatment (7); third, tissue-specific expression of TNFR1 is critical to the development of disease in certain animal models (8); and fourth, there is already evidence of genetic association between TNFRSF1A and certain inflammatory disorders, including AS (5, 9-12). Not only did the recent GWAS reported by the Triple A (Australo-Anglo-American) Spondyloarthritis Consortium (TASC) show suggestive association of AS with rs1800693 (p=6.9x10-8) at TNFRSF1A (5) but a weak association (p=8.2 x10-4) was also reported at TNFRSF1A with rs4149577 in Han Chinese (9). We therefore re-sequenced the TNFRSF1A gene to identify new variants and then undertook a systematic re-evaluation of the genetic association with AS in a further independent UK Caucasian population sample.

Materials and methods
Re-sequencing of TNFRSF1A and detection of novel SNPs
We re-sequenced all 10 exons, exon-intron boundaries and 2100 bp of 5’ flanking sequence of TNFRSF1A, on 96 chromosomes from 48 subjects with AS, using BigDye® Terminator chemistry and ABI3100 sequencing system (Applied Biosystems, Warrington, UK). Polyphred software package was used to detect SNPs (http://droog.gs.washington.edu/polyphred/). Novel SNPs were identified by comparison with known sequences and SNPs,
RFLP analysis was used to confirm the presence of novel SNPs.

Case-control study and meta-analysis

In “Study A”, we genotyped 14 SNPs in a new sample of 1604 UK Caucasians with AS and 1019 age and ethnically-matched controls not included in the previous GWAS (5). All cases fulfilled the modified New York criteria for AS (13). The study was approved by the UK multicentre research ethics committee (MREC project number: 98/5/23). The 14 SNPs included one novel SNP in TNFRSF1A, eight previously known SNPs in TNFRSF1A, including 7 tagging SNPs ($r^2>0.8$), and 5 SNPs in the final 3 kilobases of the upstream gene SCNN1A, encoding sodium channel, non-voltage-gated 1 alpha (Fig. 1). Four more 5’ SNPs in SCNN1A had been genotyped in the TASC study but showed no evidence of association and were not therefore included in this study. Ten SNPs were genotyped by iPLEX technology (MassArray, Sequenom) and four SNPs (rs4149576, rs1800692, rs12426675, novel SNP IVS6-32C→A) by KASPar technology (KBiosciences, Hoddesdon, Herts, UK). Genotypes were tested for Hardy-Weinberg equilibrium ($p<0.05$ was considered statistically significant but none needed to be excluded from the study). Cochrane-Armitage test of trend was used for case-control analyses; p-values <0.05 were considered statistically significant. We extended this study, (“Study B”), by including control data on between 1400 and 1475 controls (depending on the SNP) from the 1958 British Birth Cohort (BBC) (http://www.b58cgene.sgu.ac.uk/October 2008). Case control data were available for two SNPs (rs4149577 and rs4149578) from the 2010 TASC study (5). “Study A” data and the TASC discovery set data for these two SNPs were therefore combined in a meta-analysis (excluding the 1958 BBC control data from the “Study B” because of overlap with the TASC controls). Mantel-Haenszel test was used to calculate fixed effects pooled odds ratio, chi-square and p-values using StatsDirect software (version 2.6.6 03/02/2008). Cochran Q p-values were calculated to establish the combinability of the studies. An insignificant p-value (>0.05) indicates low heterogeneity between studies, validating the use of a fixed-effects meta-analysis approach. Quanto software was used for power calculations assuming a log-additive mode of inheritance and a disease prevalence of 0.004, using unmatched cases and controls (version 1.2.4 May 2009). The PHASE program was used to derive haplotypes from the genotype data from “Study A” (SNPs rs4149584, rs4149579, rs4149578, rs4149577, rs4149576 and rs4149570). Differences in the frequencies of the predicted haplotypes between cases and controls were tested using a chi-square test.
Results
We detected 7 sequence variants of \textit{TNFRSF1A}, of which one was a novel SNP in intron 6 (IVS6–32C→A) and six (rs4149569, rs767455, rs4149584, rs1800692, rs1800693 and rs12426675) had previously been reported (Fig. 1). Other possible SNPs detected by the polyphred software proved to be non-polymorphic on visual inspection and RFLP analysis.

\textit{Study A}: The results of this independent replication study are shown in Table I. No significant associations with AS were seen with any SNP in \textit{TNFRSF1A} or \textit{SCNN1A}.

\textit{Study B}: Increasing the power of the study by including control data from the 1958 BBC revealed weak association with two markers, rs4149576 (\(p=0.04\), OR=0.9, 95\% CI 0.82–0.99) and rs4149577 (\(p=0.007\), OR=1.1, 95\% CI 1.03–1.24). However, no association was observed with rs4149578 (\(p=0.7\)).

No additional significant associations were apparent after stratifying for age of onset, peripheral joint disease, presence of inflammatory bowel disease, uveitis or HLA-B27 status (data not shown). Comparison of patient and control haplotypes revealed no additional associations (data not shown). However these analyses have reduced power, for instance for rs4149577, stratifying on presence of uveitis reduces the power to <50\% to detect an OR of 1.1.

\textit{Meta-analysis}: When data for the two SNPs (rs4149577 and rs4149578) common to “Study A” and the previously published TASC study were combined in a meta-analysis, a somewhat stronger association was observed with rs4149577 (\(p=0.002\), OR=1.1, 95\% CI 1.04–1.18, power=92\%) and there was also a positive association with rs4149578 (\(p=0.006\), OR=0.9, 95\% CI 0.77–0.96, power=91\%). The magnitude and direction of the associations are in agreement for the meta-analysis with very narrow confidence intervals for the fixed effects pooled odds ratios for rs4149577 and rs4149578. The data from the Chinese study could not be included in the meta-analysis because of significantly different minor allele frequencies between the two populations.

Discussion
Mutations in \textit{TNFRSF1A} have already been implicated in auto-inflammatory diseases known as TNF receptor associated periodic syndromes (14) but there is no firm association of common variants of this gene with common diseases. We were able to identify one new SNP with a very low minor allele frequency and to confirm the existence of six others in \textit{TNFRSF1A} with minor allele frequencies in excess of 0.01. The initial replication study did not reveal significant associations with AS. However, associations with functional candidates may escape identification due to low minor allele frequencies, small effect sizes and/or low power. By including data from the 1958 BBC, which had already been typed for a subset of the markers employed in our replication study, the power to detect association for some SNPs was approximately doubled. We can have more confidence that these are true results as the 95\% CIs are narrower for both the associated and non-associated SNPs.

In the extended “Study B” there was some evidence of association with two markers, rs4149576 (\(p=0.04\)) and rs4149577 (\(p=0.007\)). Of particular interest, rs4149576 tags another SNP, rs1800693 (\(r^2=0.8\)), which showed the strongest association with AS (6.9x10\(^{-6}\)) in the TASC study (5). Even though this SNP was not formally typed in this study, it still supports our results as these two SNPs, which are in strong LD, are associated with AS in two different studies. The meta-analysis of rs4149577 and rs4149578 was consistent with a real association between \textit{TNFRSF1A} but none of these results on their own provide conclusive

<table>
<thead>
<tr>
<th>SNP</th>
<th>Gene</th>
<th>Position</th>
<th>p-value</th>
<th>OR (95% CI)</th>
<th>MAF controls</th>
<th>MAF cases</th>
<th>Power (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4149577</td>
<td>TNFRSF1A</td>
<td>Chr12:644752</td>
<td>0.007</td>
<td>1.13 (1.03–1.24)</td>
<td>0.51</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>rs4149578</td>
<td>TNFRSF1A</td>
<td>Chr12:6447437</td>
<td>0.001</td>
<td>0.97 (0.83–1.13)</td>
<td>0.09</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>rs4149579</td>
<td>TNFRSF1A</td>
<td>Chr12:6447357</td>
<td>0.005</td>
<td>0.91 (0.78–1.08)</td>
<td>0.08</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>rs4149584</td>
<td>TNFRSF1A</td>
<td>Chr12:6442643</td>
<td>0.019</td>
<td>0.76 (0.54–1.07)</td>
<td>0.41</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>rs1800692</td>
<td>TNFRSF1A</td>
<td>Chr12:6442346</td>
<td>0.021</td>
<td>1.01 (0.85–1.13)</td>
<td>0.42</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>rs4149570</td>
<td>TNFRSF1A</td>
<td>Chr12:6451590</td>
<td>0.022</td>
<td>0.93 (0.85–1.02)</td>
<td>0.41</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>rs2228576</td>
<td>SCNN1A</td>
<td>Chr12:6457067</td>
<td>0.024</td>
<td>0.91 (0.85–1.03)</td>
<td>0.41</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>rs3764875</td>
<td>SCNN1A</td>
<td>Chr12:6458274</td>
<td>0.024</td>
<td>0.91 (0.85–1.03)</td>
<td>0.41</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>rs3764850</td>
<td>SCNN1A</td>
<td>Chr12:6458084</td>
<td>0.024</td>
<td>0.91 (0.85–1.03)</td>
<td>0.41</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>rs3764874</td>
<td>SCNN1A</td>
<td>Chr12:6458703</td>
<td>0.024</td>
<td>0.91 (0.85–1.03)</td>
<td>0.41</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

(OR: odds ratio; CI: confidence interval; MAF: minor allele frequency; BBC: British birth cohort (http://www.b58cgene.sgu.ac.uk/).
TNFRSF1A and ankylosing spondylitis / T. Karaderi et al.

Evidence of true association. The ORs for the associated SNPs in this study (0.9 and 1.1) are comparable to those found by others in the most recent reports in Crohn’s disease, a related inflammatory disorder (15).

The population attributable risk (PAR) for the two associated TNFRSF1A SNPs in study B, rs4149576 (PAR−4%) and rs4149577 (PAR−6%), are lower than those for ERAP1 (rs2287987 OR−0.7, PAR−26%) or IL23R (rs11209032 OR−1.3, PAR−9%), unsurprisingly those for PAR−26%). Further examination of the relationship of this locus with AS is clearly merited. Functional consequences of mutations could also provide further evidence of true association. The ORs (~1.3, PAR~9%), unsurprisingly those for PAR−26%) or populations has already provided additional support for this locus driven pathways (potentially including TNF-driven pathways (potentially including TNF-

Testing for association in other ethnic populations has already provided strong biological evidence for the involvement of TNF-driven pathways (potentially including TNF-

Acknowledgements

Patient recruitment has been greatly enhanced by the unmasking support of the National Ankylosing Spondylitis Society in the UK. We thank the Osteoarthritis Genetics Research Group (Oxford) for access to their control samples. We acknowledge the use of genotype data from the 1958 British Birth Cohort DNA collection funded by the Medical Research Council grant G0000934 and Wellcome Trust grant 068545/z/02. This study makes use of data generated by the Wellcome Trust Case Control Consortium (WTCCC). A full list of the investigators who contributed to the data is available from www.wtccc.org.uk. Finally, we thank Lyn-Louise Johnson for iPLEX genotyping and the Bioinformatics and Statistical Genetics Group at the Wellcome Trust Centre for Human Genetics for support.

References

Funding

T. Karaderi was the Henni Mester Student at University College, University of Oxford and is funded by the National Ankylosing Spondylitis Society (UK). J. Pointon is funded by the National Institute for Health Research Oxford Comprehensive Biomedical Research Centre (theme code: A91202), and C. Farrar is funded by NIHR Thames Valley Coordinated Local Research Network. This work was partly funded by Arthritis Research UK (grant refs: 18797 and 19356). M.A. Brown is funded by a Principal Research Fellowship from the National Health and Medical Research Council (Australia).