No detection of occult HBV-DNA in patients with various rheumatic diseases treated with anti-TNF agents: a two-year prospective study

A.R. Giardina¹, D. Ferraro², F. Ciccia¹, A. Ferrante¹, R. Di Stefano², A. Craxì³, G. Triolo¹

¹Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, University of Palermo; ²Dipartimento di Scienze per la Promozione della Salute ‘G. D’Alessandro’, Sezione di Virologia, University of Palermo; ³Dipartimento di Biomedico di Medicina Interna e Specialistica, Sezione di Gastroenterologia, University of Palermo, Palermo, Italy.

Abstract

Objectives
The widespread use of tumour necrosis factor (TNF)-targeted therapies in patients with rheumatic, digestive and dermatologic diseases has been associated with reports of reactivation of HBV replication and ensuing hepatitis flares both in asymptomatic HBsAg carriers and in subjects with occult HBV infection. The aim of our work was to investigate in a two-year prospective study the potential for HBV reactivation in patients with inflammatory joint diseases undergoing anti-TNF treatment from a southern Mediterranean area.

Methods
Fifty-seven consecutive outpatients attending the Academic Unit of Rheumatology at the University of Palermo (12 with rheumatoid arthritis, 17 with psoriatic arthritis and 28 with ankylosing spondylitis) were enrolled in the study. HBV-DNA was tested by a standard quantitative assay in HBsAg-positive subjects and by an ad hoc highly sensitive PCR in HBsAg-negative patients performed at baseline and then every six months on the anti-TNF agent.

Results
Occult HBV-DNA was never detected in the 54 HBsAg negative subjects, regardless of their anti HBs/HBc status. All HBsAg positive patients, who were started on prophylactic lamivudine, remained HBV-DNA undetectable throughout the anti-TNF treatment.

Conclusion
Even in an area of previously high HBV endemicity, where occult HBV infection is likely to have a high prevalence, treatment of rheumatological patients with anti-TNF drugs is safe in terms of its potential to reactivate HBV. Prophylaxis with lamivudine is sufficient to prevent reactivation in HBsAg carriers.

Key words
HBV-DNA, anti-TNF-alpha, rheumatic diseases
Introduction
Persistence of hepatitis B virus (HBV) infection, by far the most common chronic viral infection affecting the liver in the world with over 400 million subjects infected, causes in most patients an “overt” infection, characterised by HBsAg detectable in sample serum and variably amount of HBV DNA (>2000 Ul/ml). In a smaller proportion of patients, HBV persists in the nucleus of hepatocytes as a covalently closed, circular DNA (cccDNA) determining an “occult” infection (OBI), characterised by HBsAg negativity and a small amount of HBV DNA (<200 Ul/ml). On the basis of the HBV antibody profile, OBI can be distinguished as seropositive (anti HBc and/or antiHBs positive) or seronegative (anti HBc and anti HBs negative) (1).

Reactivation of HBV replication in patients undergoing immunosuppressive therapy is a well recognised and frequently reported complication of considerable clinical importance (2-6).

Patients with occult hepatitis B virus infection undergoing deep immunosuppression, because of cytotoxic chemotherapies, are potentially at risk of HBV reactivation, but the true risk is still undefined. However, the OBI reactivation takes place as an acute hepatitis-like syndrome, indistinguishable from de novo acute infection (7-9). Although most of these reports have come from the fields of oncology and transplantation, there has been a growing number of cases reported in patients with rheumatic disease undergoing immunosuppressive therapy (10).

The emergence of tumour necrosis factor (TNF)-targeted therapies as a therapeutic option for patients with rheumatic, digestive and dermatologic diseases has been associated with reports of liver damage in those with HBV infection. In 2003, Michel et al. reported acute liver failure requiring urgent transplantation in a patient who was positive for HBV surface antigen (HBsAg+) and who had been treated with infliximab for adult-onset Still disease (11). On the contrary, reactivation is an infrequent event in antiHBc positive patients as described by Vassilopoulos et al. (12) and Caporali et al. (13), and only rare cases were observed (14, 15), supporting the suggestion that using anti-TNF agents in these patients is safe and an antiviral prophylaxis is not necessary.

Despite the recent findings, the risk of HBV reactivation after exposure to pharmacological TNF-blockade is still unknown. In particular, despite a close monitoring of liver enzymes and HBV-DNA levels in patients with a previous HBV infection receiving anti-TNF treatment, some individuals might have occult HBV infection owing to HBsAg escape mutants or low levels of viremia. For these reasons, the virological status for HBV must be assessed before and during any immunosuppressive therapy in order to use appropriate prophylaxis measures. The HBsAg positive patients must be treated with antiviral therapy. The HBsAg negative patients may be evaluated for the presence of occult HBV infection by HBVDNA detection, which is the only reliable diagnostic marker of OBI. Moreover, the anti-HBc positivity should be considered a surrogate marker to identify potential OBI (1).

The aim of our work was to investigate in a two-year prospective study the potential for HBV reactivation in HBsAg negative patients from a Southern Mediterranean area with inflammatory joint diseases undergoing anti-TNF treatment utilising a home-made high sensitive assay specific for HBV DNA (16). This was felt to be specifically relevant, due to the fact that the previously high endemicity rate for HBV left a high background rate of up to 16% of OBI in the general hospital population in this region (17).

As a secondary aim, we also evaluated in this setting the efficacy of long-term prophylaxis in asymptomatic HBsAg carriers with lamivudine, a first-generation nucleoside analogue.

Materials and methods
Patients
Fifty-seven consecutive patients, 12 with rheumatoid arthritis (RA), 17 with psoriatic arthritis (PsA) and 28 with ankylosing spondylitis (AS) attending the Unit of Rheumatology at the University of Palermo from January to December 2008, were enrolled in the study. All patients fulfilled the international criteria...
HBV-DNA in rheumatic diseases after TNF-blocking agents / A.R. Giardina et al.

for diagnosis. The study was approved by the institutional review board of our medical centre, and a written informed consent was obtained from subjects enrolled.

Patients included in the study were non-responder to oral non-steroidal anti-inflammatory drugs and/or disease modifying anti-rheumatic drugs (DMARDs) and/or low dose prednisone (<10 mg/day). Thirty-four patients were female and 23 were male, the mean age was 49 years ±11.32 (range 24–72). Mean disease duration was 4.6 (range 6 months–10 years) for RA patients, 3.8 years (range 2–8 years) for PsA patients and 4.1 years (range 2–10 years) for AS patients. Disease activity, evaluated at baseline by the disease activity score in 28 joints (DAS 28) in patients with RA and by the Bath ankylosing spondylitis disease activity index (BASDAI) in patients with PsA and AS, was respectively 5.2±1.2 and 4.9±1.5.

All RA patients and 12 out of the 17 PsA patients had been treated with methotrexate for at least two years at a dose comprised between 10 and 20 mg per week and prednisone (<10 mg/day) and continued this kind of treatment during the follow-up. Patients were assigned to receive an anti-TNF alpha treatment according to the Italian guideline for each disease. Four RA, 4 PsA and 16 AS patients received 5 mg per Kg infliximab. Eight RA, 13 PsA and 12 of the AS patients received etanercept 50 mg per week. At baseline, the median values of ALT and AST were within the normal range (Table I). Patients were monitored before starting treatment (baseline) and every 6 months during therapy in a two-year prospective study.

Methods

Routine baseline laboratory assessment including routine chemistry, liver enzymes and inflammation pointers (erythrocyte sedimentation rate (ESR), C-reactive protein (CRP)) determination was performed at baseline and then every 3 months for 2 years.

Virological assay

Serological markers of HBV (HBsAg, total anti-HBc, anti-HBs HBeAg, anti-HBe and IgM anti-HBc) were tested by commercial enzyme immunoassays (EIAs) (Dia Sorin, Saluggia, Italy). HBV DNA was quantified by bDNA (Versant HBV 3.0, Siemens medical Solutions Diagnostics Europe, Dublin, Ireland; range 357–17 857 000 IU/ml, 2000, 10 copies/ml).

HBV-DNA assay for OBI detection were performed at baseline and 6–24 months after starting anti-TNF therapy according to our recently published paper (16). Briefly, total DNA was extracted using the phenol method, with a few ad hoc modifications. One hundred μl of serum was treated with lysis buffer and proteinase K at 55°C for 150 min, and treatment with Tris-saturated phenol (pH 8) and chloroform/isoamyl alcohol, DNA was precipitated with absolute cold ethanol with glycogen (20 ng/ml), and incubated at -20°C overnight. The pellet was washed with 70% alcohol, air dried and dissolved in 10 μl H2O. Total DNA extracts from four independent extractions were subjected to PCR with HBV-specific primers (17). The sensitivity was between 0.1 and 0.05 IU/ml, as compared with the reference standard serum, and between 10 and 15 virus genome equivalents/ml, as compared with the pUC.HBV D plasmid. Guideline procedures were strictly adhered to minimise the risk of carryover contamination.

Results

Fifty-seven consecutive patients affected by rheumatic diseases treated with anti-TNF agents were included in the prospective study. Of the patients, 12 were affected by RA, 17 by PsA, and 28 by AS. Of the patients, 24 were treated with infliximab and 33 with etanercept. Of the 57 patients, 24 were also treated with weekly methotrexate (MTX), 40 with non-steroidal anti-inflammatory drugs (NSAIDs), and 34 with prednisone ≤10 mg/day. The demographic and clinical features of the patients are reported in Table I.

Fifty-three patients were HBsAg negative. Thirty-eight of them had no markers of previous HBV infection, while 15 were HBV experienced (3 anti-HBe positive, 8 anti-HBs positive and 4 anti-HBc anti-HBs positive) (Fig. 1). One patient had no previous exposure to HCV. No patients were lost to follow-up. Testing for occult HBV in samples collected before and during immunosuppressive treatment showed that no patients presented detectable HBV DNA for the four genomic regions. No cases of HBV reactivation occurred during the 2 years of follow-up, but an increase in ALT/AST was documented in 4 patients on methotrexate therapy.

Table I. Baseline characteristics of patients included in the study (n=57).

<table>
<thead>
<tr>
<th>Characteristics of patients</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men : women</td>
<td>34/23</td>
</tr>
<tr>
<td>Age, mean ±SD yrs</td>
<td>49±11.32</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>12</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>17</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>28</td>
</tr>
<tr>
<td>Disease duration, median yrs</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>4.6 (6–10)</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>3.8 (2–10)</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>4.1 (2–10)</td>
</tr>
<tr>
<td>DAS 28, mean ±SD</td>
<td>5.2±1.2</td>
</tr>
<tr>
<td>BASDAI score, mean ±SD</td>
<td>4.9±1.5</td>
</tr>
<tr>
<td>ALT/AST median μl/ml</td>
<td>23/19</td>
</tr>
<tr>
<td>Tumour necrosis factor α inhibitor</td>
<td></td>
</tr>
<tr>
<td>Infliximab (RA 4, PsA 4, AS 16)</td>
<td>24</td>
</tr>
<tr>
<td>Etanercept (RA 8, PsA 13, AS 12)</td>
<td>33</td>
</tr>
<tr>
<td>Methotrexate (dosage 10–20 mg/week) (RA 12, PsA 12)</td>
<td>24</td>
</tr>
<tr>
<td>Prednisone (dosage ≤10 mg/day)</td>
<td>34</td>
</tr>
</tbody>
</table>

DAS 28: disease activity score in 28 joints; BASDAI: Bath ankylosing spondylitis disease activity index; RA: rheumatoid arthritis; PsA: psoriatic arthritis; AS: ankylosing spondylitis.
Normalisation of aminotransferases was observed within two weeks after methotrexate discontinuation in all these patients, without the need for any other modification in therapy. Four patients out of the 57 enrolled were HBsAg positive with normal ALT (asymptomatic HBsAg carriers) at baseline. They were started on lamivudine 100 mg/day as prophylaxis one month before starting anti-TNF-α therapy, and are currently on treatment in accordance with current guidelines. In all the patients, HBV DNA remained undetectable by the bDNA assay throughout follow-up.

Discussion

It is known that when the immune system is made unresponsive, HBV can reactivate overcoming the host control system, with a significant incidence in morbidity and mortality. This effect was well studied over the past 30 years in patients with “overt” HBV infection undergoing chemotherapy courses for haematological or neoplastic diseases or transplantation (4).

The availability of effective nucleotide analogues that suppress HBV replication is a valuable aid to prevent viral reactivation during immunosuppressive treatment. In particular, for patients who receive a short-term chemotherapy lamivudine prophylaxis is suggested, while tenofovir or entecavir should be given for long-term immunosuppressive therapy (18, 19).

Although at a lower rate than occurs with cancer chemotherapy, in patients with rheumatic diseases who have either HBsAg or anti-HBc in serum, simple immune-suppression may induce re-appearance of HBV replication and disease activation. The risk of HBV reactivation in patients with rheumatic disease under immunosuppressive therapy is less well defined and the studies were principally carried out in RA patients (11, 21-25) Differently from patients receiving chemotherapy for definite periods, these patients usually receive long-term immunosuppressive therapy, which increases the risk of viral reactivation (26) and it is possible that a significant proportion of chronically infected patients remains undiagnosed, due to the usual absence of clinical symptoms (27).

Moreover, in the last few years, more RA patients received anti-TNF-alpha, because they were resistant to conventional disease-modifying anti-rheumatic drugs (DMARDs), making the remission of RA an increasingly realistic aim. As hypothesised for mycobacterial infection, TNF could be a key cytokine in controlling HBV infection, and raised levels of TNF and TNF receptor super family member 16 (also called p75) have been found in the serum and liver of patients with HBV infection (13). A pivotal role for TNF in the suppression of HBV replication that involves a synergistic effect with interferon has also been suggested (28, 29), and TNF appears to be essential in clearing HBV (30, 31). It seems reasonable to suggest, therefore, that pharmacological blockade of TNF-α might facilitate the replication of HBV by allowing the virus to escape endogenous antiviral defense mechanisms blocking the proliferation of HBV-specific cytotoxic T lymphocytes and restoring the helper T lymphocyte ability to suppress the HBV specific immune response (32,33).

Vassilopoulos et al. (12) have recently reported the results from a study of 131 patients with rheumatic diseases treated with anti-TNF agents, of whom 19 had undergone HBV vaccination, 19 were positive for anti-HBc antibodies (indicative of previous HBV infection) and 14 were HBsAg+ (a marker of chronic HBV infection). Antiviral prophylaxis was administered to HBsAg+ patients before anti-TNF therapy; after a mean follow-up of 2 years, only one HBsAg+ patient had experienced HBV reactivation, owing to the emergence of a lamivudine-resistant viral strain. Although less frequently than observed in HBsAg positive patients, HBV reactivation can also occur in HBsAg negative patients if an occult infection is present. Indeed, according to the results of the Pubmed search, of the 255 with rheumatic disease treated with anti-TNF alpha agents, HBV reactivation occurred in 33 of 87 HBsAg+ patients compared with only 9 of 168 of those who were HBs Ag negative/anti-HBc positive. Unlike other studies that evaluated only anti-TNF treated patients with rheumatoid arthritis, in the present 2-year prospective study also patients suffering from psoriatic arthritis and ankylosing spondylitis were included. The study of markers for major hepatotropic viruses in this group of 57 patients affected by rheumatic disease before and during the therapy with conventional and anti-TNF drugs showed that four patients were infected with HBV and none with HCV. The HBsAg positive patients were treated with a preemptive lamivudine therapy and no increase in viral load nor clinical signs of viral reactivation was observed.

In the HBsAg negative patient an occult HBV infection was investigated by the presence of HBV DNA in serum sample obtained before and during anti-TNF therapy. To our knowledge, this study is the first in which the occult HBV DNA was investigated by home-made nested PCR assay highly sensitive and specific for the four HBV genomic regions in patients with rheumatic disease.

In oncohaematological patients undergoing chemotherapy, this highly sensitive serum HBV DNA testing at baseline had shown in 18 out of 75 patients the occult infection with a 28% predic-
tive ability to forecast HBsAg seroconversion. The HBV reactivation was ob-
served also in 6 out of 57 occult HBV DNA negative, showing a 90% ability to
forecast persistent HBsAg negativity (16). In contrast with this previous
study, utilising the same procedure, occult HBV-DNA was not detected in
all HBsAg negative patients with various rheumatic diseases under anti-TNF
agents.
A possible explanation for this differ-
ent result may be attributed to the lower mean age of the group study (49 vs. 60.9)
and the different pathology. Indeed, ep-
ideomiological studies have demonstrat-
ed the relation between HBV infection and oncohaematological disease (34).
The HBV reactivation observed in on-
cohaematological patients with or with-
out occult HBV DNA detectable in the serum may be due to the chemothera-
pentic agents, including anthracyclines and corticosteroids that stimulate HBV
replication (35, 36). However, the data in the present study are consistent with
the literature in which only few cases of OBI reactivation are reported.
Although the number of enrolled sub-
jects is limited, some considerations may be made.
(a) even in an area of previously high
HBV endemicity, where occult HBV infection is likely to have a high
prevalence, especially in onco-hae-
matological patients, HBV reactiva-
tion in patients with rheumatic dis-
Eases is rare.
(b) treatment of rheumatological patients
with anti-TNF drugs is thus safe in
terms of its potential to reactivate
HBV.
(c) in this setting, serological markers
of previous exposure to HBV (anti-
HBc and/or anti-HBs, in the absence of
HBsAg) do not indicate a higher
likelihood of OBI, and hence are not
an indication to pre-emptive prophy-
laxis with nucleoside analogues.
(d) long-term prophylaxis with lamivu-
dine is sufficient and safe to prevent
reactivation in HBsAg carriers.
The choice of antiviral agent in the
prophylaxis of HBsAg+ patients who require treatment with anti-TNF agents
should be made according to existing
international guidelines that suggest
that lamivudine alone is sufficient for
patients receiving immunsuppressive
therapy for less than 6 months (37).

References
1. RAIMONDO G, ALLAIN JP, BRUNETTO MR et al.: Statements from the Taormina expert
2. PERRILLO RP: Acute flares in chronic hepato-

tis B: the natural and unnatural history of an
3. VENTO S, CAIENELLI F, LONGHI MS: Reactiva-
tion of replication of hepatitis B and C viruses after immunsuppressive therapy: an unre-
4. YEO W, JOHNSON PS: Diagnosis, prevention and
management of hepatitis B virus Reactiva-
5. LUBEJ IS, TESTRO AG, ANGUS PW: Hepatitis B virus
reactivation following immunsup-

6. POST A, NAGENDRA S: Reactivation of hepa-
titis B: pathogenesis and clinical applica-
tions. Current Infectious Disease Reports
7. IANZENITTO E, MINARDI V, CALVARUSO G et al.: Hepatitis B reactivation and alentuzum-
8. TSUTSUMI Y, KANAMORI H, MORTI A et al.: Reactivation of hepatitis B virus with Rituxi-
mab. Expert Opin Drug Saf 2005; 4: 599-
608.
9. HUI CK, CHEUNG WW, ZHANG HY et al.: Kinetics and risk of de novo hepatitis B in-
fection in HBsAg negative patients undergo-
ing chemotherapy. Gastroenterology 2006;
131: 59-69.
10. CALABRESE LH, ZEIN NN, VASSILIOPOULOS
D: Hepatitis B virus (HBV) reactivation with
immunosuppressive therapy in rheumatic
diseases: assessment and preventive strate-
11. MICHEL M, DUVOUX C, HEZODE C, CHER-
QUID D: Fulminant hepatic failure indu-
ed by infliximab in a patient with hepatitis B virus treated for an adult onset still's disease. J Hepatol 2003;
30: 1624-5.
12. VASSILIOPOULOS D, APOSTOLOPOULOU A,
HADZIYANNIS E et al.: Long-term safety of
anti-TNF treatment in patients with rheumat-
ic diseases and chronic or resolved hepatitis B virus infection Ann Rheum Dis 2010; 69:
1352-5.
factor-α blockers in hepatitis B virus occult
carriers (hepatitis B surface antigen negative/
anti-hepatitis B core antigen positive) with
rheumatic diseases Arthritis Care Res 2010;
62: 749-54.
14. MONTIEL PM, SOLIS JA, CHIRINOS JA et al.: Hepatitis B virus reactivation during therapy
whit an enetacetre in an HbsAg negative and
anti HBs positive patient. Liver Int 2008; 28:
718-20.
15. MADONIA S, ORLANDO A, SCIMECA D et al.: Occult hepatitis B and Infliximab-induced
HBV reactivation (letter). Inflamm Bowel Dis
16. FERRARO D, PIZZILLO P, DI MARCO V et al.: Evaluating the risk of hepatitis B reactiva-
tion in patients with haematological malign-
17. RAIMONDO G, NAVARRA G, MONDELLO S et al.: Occult hepatitis B virus in liver tissue of
individuals without hepatic disease. J Hepa-
18. LOK AS, MCMANON BJ: Chronic hepatitis B:
19. SCHMELTZER P, SHERMAN KE: Occult Hep-
titis B: Clinical implications and treatment
20. CHUNG SJ, KIM JK, PARK YB, LEE SK: Reacti-
vation of hepatitis B viral infection in in-
active HBV carriers following anti tumor
necrosis factor alpha therapy, J Hepatol 2009;
21. KUODA T, WADA Y, KOBAYASHI D et al.: Effect of etanercept and icatecol in a patient
with rheumatoid arthritis who is a hepatitis B
carrier: a review of the literature. Rheuma-
22. VERHEILST OR, ORLENT H, COLLE I et al.: Subfulminant hepatitis B during treatment with
adalimumab in a patient with rheuma-
toid arthritis and chronic hepatitis B. Eur J
23. YPPARASIOPOULOU A, DOUMAS, VASSILADIS T et al.: Reactivation of chronic hepatitis B
virus infection following rituximab admin-
istration for rheumatoid arthritis. Rheumatol
Int 2011; 31: 403-4.
24. ITO S, NAKAZONO K, MURASAWA A et al.: Development of fulminant hepatitis B (pre-
core variant mutant type) after discontinua-
tion of low dose methotrexate therapy in a
rheumatoid arthritis patient. Arthritis Rheum
2001; 44: 339-42.
25. HAGIYAMA H, KUBOTA T, KOMANO Y et al.: Fulminant hepatitis in an asymptomatic chronic
carrier of hepatitis B virus mutant after withdrawal of low dose methotrexate therapy for rheumatoid arthritis. Clin Exp
26. ALBRECHT K, MULLER-LADNER U: Side
effects and the following of side effects of
methotrexate in rheumatoid arthritis. Clin Exp
27. ROSTOKER G, ROSENBAUM J, BEN MAADI A et al.: Reactivation of hepatitis B virus by
corticosteroids in a case of idiopathic neph-
28. FEDUCHAR E, MIGUEL A, ALONSO, LUIS CAR-
RASCO: Human gamma interferon and tumor
necrosis factor exert a synergistic blockade on
the replication of herpes simplex virus. J Viral
29. LUCIN P, JONIC S, MESSERLE M et al.: Late
phase inhibition of murine cytomegalovirus
replication by synergistic action of interfer-
on-gamma and tumour necrosis factor J Gen
30. PURO R, SCHNEIDER R: Tumor necrosis
factor activates a conserved innate antiviral
response to hepatitis B virus that destabi-
libizes nucleocapsids and reduces nuclear viral
31. YANG PL, ALTHAGE A, CHUNG I et al.:
HBV-DNA in rheumatic diseases after TNF-blocking agents / A.R. Giardina et al.

Immune effectors required for hepatitis B virus clearance Immunology 2010; 107: 798-802.

