Regional distinction for the clinical severity of Behçet’s disease in Korea: four university-based medical centre studies

J.-Y. Choe1,2, W.-T. Chung3, S.-W. Lee3, S.-S. Lee4, C.-B. Choi5, S.-H. Park1,2, S.-K. Kim1,2

ABSTRACT
Objective. To analyse the clinical manifestations and severity of Behçet’s disease (BD) in Korea according to geographic region of residence, and to identify risk factors associated with clinical severity.

Methods. We enrolled 246 BD patients (88 males) who fulfilled the criteria of the International Study Group for BD. These patients were assigned into two groups: a Western group comprising 127 residents in west regions and an Eastern group comprising 119 residents in the center of Korea. Clinical severity was assessed using a severity scoring index of BD.

Results. BD patients from the Western group had a greater prevalence of typical skin lesions, deep vein thrombosis, gastrointestinal bleeding, posterior/panuveitis, and retinal vasculitis than did the Eastern group (p < 0.001, p = 0.009, p = 0.032, and p = 0.007, respectively). The Western group also had higher severity scores than did the Eastern group (5.88 vs 2.5 for the Western group vs. 4.94 vs 2.6 for the Eastern group, p = 0.004). Male BD patients had higher severity scores than did female patients (6.14 vs 5.03, p = 0.001). The disease duration of BD in the Western group showed a significant association with total severity scores (r = 0.231, p = 0.009), but this was not observed for the Eastern group.

Conclusions. We found distinct differences in the clinical manifestations as well as severity of BD according to geographic region in Korean BD patients. Males, particularly those from the Western region of Korea, had significantly higher severity scores than did females.

Introduction
Behçet’s disease (BD) is a multisystemic inflammatory disease characterised by recurrent aphthous oral ulcers, genital ulcers, skin lesions, and ocular inflammations (1, 2). Articular, gastrointestinal, renal, pulmonary, vascular, and central nerve system (CNS) involvement is also frequently observed. Although BD has a worldwide distribution, it is highly prevalent in Eastern Mediterranean, Central Asian, and Far East Asian countries along the ancient Silk Road (2, 3). However, the prevalence of BD in Europe and the United States is low (between 0.12 to 0.64 per 100,000 population) (3, 4). Interestingly, it was demonstrated in Japan that the prevalence of BD within a single ethnic group can differ according to geographic region (5, 6).

The diagnosis of BD is based primarily on the clinical criteria defined by the International Study Group (ISG) of BD (7), even though specific diagnostic criteria or tests for BD have not been developed. The clinical courses of BD are presented with wax and wane. The clinical spectrum of BD is extremely diverse, and can include recurrent aphthous oral ulcerations, eye diseases including anterior uveitis with hypopyon, posterior uveitis, retinal vasculitis, skin diseases, nondestructive arthritis, venous involvements from superficial thrombophlebitis to deep vein thrombosis, and CNS involvements (1-4). Some of these clinical features, including severe ocular inflammations, CNS involvements, and major vascular diseases, may be closely associated with poorer prognosis and higher morbidity (8-11). Therefore, BD severity assessment is clinically significant. However, a clinical index to assess the severity of BD has not yet been established, although a scoring system for all clinical features of BD was reported by Krause et al., based on clinical studies (12-14). Despite some publications for epidemiological and clinical data for Korean BD patients (15-17), detailed assessment of the clinical severity of the disease in Korean patients has not been
performed. Significant geographic distribution of BD was demonstrated through a nationwide survey in which twenty hospitals in Korea participated, showing highest prevalence in Seoul (16). In addition, Chang et al. illustrated that BD patients resided in northeast regions presented more prevalence of vascular lesions and epididymitis than data from other Korean studies (18). Until now, the differences of BD manifestations and severity according to geographic region of residence have not been investigated. Life style and dialect between western and eastern regions were significantly different on the border of the SoBaek Mountains (19). Therefore, our hypothesis is that there are some differences for BD clinical features and their severity according to geographic distribution in Korea, even within a single ethnic group. In this study, we compared the clinical features and severity of BD between patients living in Eastern and Western regions of Korea and identified risk factors associated with severity in BD.

Patients and methods

Subjects

We consecutively enrolled a total of 246 BD patients from four university-based medical centres who met the criteria of the ISG for BD (7). All subjects recruited in this study were unrelated Koreans. The patients were formally assessed by physicians employed at the time of enrolment by the rheumatology clinics of Daegu Catholic University Medical Centre, Dong-A University Medical Centre, Chonnam National University Medical Centre, and Dankook University Medical Centre. The grouping of enrolled patients was performed according to whether patients resided west or east of the SoBaek Mountains, which are in the geographic centre of Korea.

We recorded gender, mean age at enrolment, mean disease duration, and mean age at disease onset. We also investigated clinical features including oral ulcerations, genital ulcerations, skin lesions, articular lesions, vascular lesions, gastrointestinal lesions, ocular inflammations, CNS lesions, epididymitis, pathergy response, HLA-B51 positivity, and mean severity score (Table I). Additional clinical information and laboratory findings were obtained based on detailed patient interviews and review of medical records. The research protocol was approved by the Institutional Review Boards of all of the medical centres listed above. All of the enrolled subjects provided written informed consent.

Assessment of severity

We used the clinical severity index described by Krause et al. in their previous studies (12-14). A clinical severity score was calculated based on the clinical features expressed in each enrolled patient. The severity of BD was described as mild, moderate, or severe. Oral ulcers, genital ulcers, typical skin lesions, arthralgia, recurrent headaches, epididymitis, mild gastrointestinal discomfort, pleuritic pain, and superficial vein thrombosis were classified as mild severity symptoms. Arthritis, deep vein thrombosis, anterior uveitis, and GI bleeding were classified as moderate severity symptoms, while posterior/panuveitis, retinal vasculitis, arterial thrombosis or aneurysm, major vein thrombosis, neuro-Behçet, and bowel perforation were considered severe symptoms. The total severity score was estimated by assigning one point to each mild feature, two points to each moderate feature, and three points to each severe feature and then summing the symptom scores (14).

Statistical analysis

Data are presented as mean ± standard deviation or numbers (% of each parameter). The Chi-square test was performed to compare the frequency of non-parametric variables between the two groups. If any cell in the frequency assessment had an expected sample size less than five, Fisher’s exact test was used. Student’s t-test was performed to compare quantitative variables between the two groups. Risk factors contributing to total severity scores were confirmed using multivariate linear regression analysis. Correlations between severity scores and quantitative clinical values including age and disease duration were estimated by Pearson’s correlation analysis. A value of *p*<0.05 was considered statistically significant. The statistical analysis was performed using SPSS 13.0 software (SPSS Inc., Chicago, IL, USA).

Results

1. General characteristics of the Korean BD patients

A total of 246 BD patients enrolled from four university-based medical

<table>
<thead>
<tr>
<th>Table I. General demographics and clinical manifestations of enrolled patients in this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical parameters</td>
</tr>
<tr>
<td>Male/Female</td>
</tr>
<tr>
<td>Mean age at enrolment (years)</td>
</tr>
<tr>
<td>Mean disease duration (years)</td>
</tr>
<tr>
<td>Mean age at disease onset (years)</td>
</tr>
<tr>
<td>Clinical manifestations</td>
</tr>
<tr>
<td>Oral ulceration</td>
</tr>
<tr>
<td>Genital ulceration</td>
</tr>
<tr>
<td>Skin lesions</td>
</tr>
<tr>
<td>Articular lesions</td>
</tr>
<tr>
<td>Vascular lesions</td>
</tr>
<tr>
<td>Gastrointestinal lesions</td>
</tr>
<tr>
<td>Ocular lesions</td>
</tr>
<tr>
<td>Central nerve system lesions</td>
</tr>
<tr>
<td>Epididymitis</td>
</tr>
<tr>
<td>Pathergy response</td>
</tr>
<tr>
<td>HLA-B51 positivity</td>
</tr>
<tr>
<td>Total severity score*</td>
</tr>
</tbody>
</table>

HLA-B51: human leukocyte antigen-B51.

*Total severity score means summation of mild, moderate, and severe severity scores and severity index is cited from references 12, 13, 14.
centres were assessed in this study. The mean age at the time of enrolment was 41.5±10.5 years, the mean disease duration was 7.1±6.2 years, and 88 patients were male (35.8%) (Table I). The frequencies of clinical manifestations are presented in Table I. The proportion of HLA-B51 positive patients was 40.7% (n=100). The mean total severity score was 5.43±2.6.

2. Comparison of clinical manifestations and severity between the Eastern and Western populations of Korea

We classified the 246 BD patients into two groups: a Western group and an Eastern group (Fig. 1), and then compared clinical features between the two groups (Table II). No differences in the male to female ratio or disease duration were noted between the groups (p=0.080, p=0.898, respectively), whereas a greater proportion of younger patients were enrolled from Western regions than from Eastern regions (average age 39.4±9.5 years in the Western group vs. 43.7±11.1 years in the Eastern group, p<0.001). When clinical features were compared, we found that the frequencies of typical skin lesions, deep vein thrombosis, GI bleeding, and posterior/panuveitis, retinal vasculitis were significantly higher in the Western group than in the Eastern group (p<0.001, p=0.009, p=0.032, and p=0.007, respectively). The frequency of HLA-B51 positivity was not different between the two groups (p=0.381).

We calculated severity scores for each patient using the severity scoring system described by Krause et al. and compared the severity scores between the Western and Eastern groups (Fig. 2). The mild severity score was not different between the two regions (3.27±0.9 for the Western group vs. 3.24±1.3 for the Eastern group, p=0.822), nor was the moderate severity score (1.15±1.3 for the Western group vs. 0.92±1.2 for the Eastern group, p=0.162). However, severe severity scores were significantly different between the two regions (1.46±1.8 for the Western group vs. 78±1.4 for the Eastern group, p=0.001). In terms of the total severity scores, patients residing in the Western region of Korea had much higher scores than the patients residing in Eastern regions of Korea (5.88±2.5 for the Western group vs. 4.94±2.6 for the Eastern group, p=0.004). This finding suggests that patients residing in Western regions of Korea have more severe clinical manifestations of BD than do Eastern patients.

Table II. Comparison of clinical manifestations in patients of two geographic regions.

<table>
<thead>
<tr>
<th>Clinical parameters</th>
<th>Western (n=127)</th>
<th>Eastern (n=119)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/Female</td>
<td>52/75 (40.9/59.1)</td>
<td>36/83 (30.3/69.7)</td>
<td>0.080</td>
</tr>
<tr>
<td>Mean age at enrolment (years)</td>
<td>39.4 ± 9.5</td>
<td>43.7 ± 11.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Mean disease duration (years)</td>
<td>7.2 ± 5.8</td>
<td>7.1 ± 6.6</td>
<td>0.898</td>
</tr>
<tr>
<td>Mean age at disease onset (years)</td>
<td>32.2 ± 8.7</td>
<td>36.7 ± 10.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Oral aphthous ulcer</td>
<td>127 (100)</td>
<td>119 (100)</td>
<td>NA</td>
</tr>
<tr>
<td>Genital ulcer</td>
<td>97 (76.4)</td>
<td>99 (83.2)</td>
<td>0.184</td>
</tr>
<tr>
<td>Typical skin lesions</td>
<td>122 (96.1)</td>
<td>71 (59.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>39 (30.7)</td>
<td>49 (41.2)</td>
<td>0.087</td>
</tr>
<tr>
<td>Recurrent headaches</td>
<td>9 (7.1)</td>
<td>15 (12.6)</td>
<td>0.145</td>
</tr>
<tr>
<td>Epididymitis</td>
<td>6 (4.7)</td>
<td>5 (4.2)</td>
<td>0.843</td>
</tr>
<tr>
<td>Mild GI symptoms</td>
<td>10 (7.9)</td>
<td>15 (12.6)</td>
<td>0.220</td>
</tr>
<tr>
<td>Pleuritic pain</td>
<td>1 (0.8)</td>
<td>5 (4.2)</td>
<td>0.110*</td>
</tr>
<tr>
<td>Superficial vein thrombosis</td>
<td>4 (3.1)</td>
<td>7 (5.9)</td>
<td>0.300</td>
</tr>
<tr>
<td>Arthritis</td>
<td>31 (24.4)</td>
<td>38 (31.9)</td>
<td>0.189</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>14 (11.0)</td>
<td>3 (2.5)</td>
<td>0.009</td>
</tr>
<tr>
<td>Anterior uveitis</td>
<td>10 (7.9)</td>
<td>7 (5.9)</td>
<td>0.538</td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>18 (14.2)</td>
<td>7 (5.9)</td>
<td>0.032</td>
</tr>
<tr>
<td>Posterior/panuveitis, retinal vasculitis</td>
<td>44 (34.6)</td>
<td>23 (19.3)</td>
<td>0.007</td>
</tr>
<tr>
<td>Arterial thrombosis or aneurysm</td>
<td>6 (4.7)</td>
<td>1 (0.8)</td>
<td>0.121*</td>
</tr>
<tr>
<td>Major vein thrombosis</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>NA</td>
</tr>
<tr>
<td>Neuro-Bechter</td>
<td>12 (9.4)</td>
<td>7 (5.9)</td>
<td>0.295</td>
</tr>
<tr>
<td>Bowel perforation</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>NA</td>
</tr>
<tr>
<td>HLA-B51 positivity</td>
<td>55 (43.3)</td>
<td>45 (37.8)</td>
<td>0.381</td>
</tr>
</tbody>
</table>

Western region in Korea means a group consisting of patients residing at Cheonan and Gwangju. Eastern region in Korea means a group consisting of patients residing at Daegu and Pusan. NA: not statistically assessed.

*p-value: Fisher’s exact test was performed. HLA-B51: human leukocyte antigen-B51.
Regional distinction for severity in Korean BD / J.-Y. Choe et al.

3. Differences in clinical severity according to gender and region of residence
We investigated the differences in clinical severity according to gender in our patient cohort of 246 BD patients. No significant differences in the frequency of mild and moderate BD symptoms were found between males and females (p=0.736 for mild severity symptoms, and p=0.062 for moderate severity symptoms), whereas male BD patients showed more severe symptoms than did female patients (p=0.002). We also found that male BD patients had higher severity scores than female patients (6.14±2.8 vs. 5.03±2.4, respectively, p=0.001).

In addition, the influence of gender on the clinical severity of BD according to geographic regions was also assessed in this study. Significantly more male patients from the Western group had more severe symptoms than did female Western patients (6.54±2.4 for Western males vs. 5.43±2.5 for Western females, p=0.013), whereas the clinical severity of BD was similar for males and females from the Eastern regions of Korea (5.36±3.2 for Eastern males vs. 4.67±2.3 for Eastern females, p=0.142) (Fig. 3). Regional differences in the total clinical severity scores were not found for either male or female patients (p=0.123 between Western and Eastern males, and p=0.051 between Western and Eastern females), although moderate symptom scores in males and severe symptom scores in female were significantly different according to region of residence (p=0.016 for moderate symptoms between Western and Eastern males, and p=0.016 for severe symptoms between Western and Eastern females).

4. Identification of risk factors associated with clinical severity scores
Correlations between severity scores and quantitative variables including mean age at enrolment, mean disease duration, and mean age at disease onset were estimated. The results showed that only disease duration and the severity scores of severe symptoms were significantly correlated (r=0.186, p=0.004), whereas mean age at enrolment, mean disease duration, and mean age at disease onset were not associated with severity score. The disease duration of BD in Western BD patients was significantly associated with the severity score for severe symptoms and total severity scores (r=0.274, p=0.002 and r=0.231, p=0.009, respectively). However, no associations between any other quantitative variables and severity scores were found. These results indicate that longer disease duration is associated with increased risk for severe symptoms.

We analysed the associations between total severity scores and clinical features including skin lesions, deep vein thrombosis, GI bleeding, and ocular inflammation using multivariate regression analysis, and found that these were significantly different between patients from the two geographic regions (Table III). Thus typical skin lesions, deep vein thrombosis, GI bleeding, poste-
ior/panuveitis, and retinal vasculitis were closely associated with the clinical severity of BD in this study.

Discussion
The prevalence of BD is world-wide distributed, although the geographic prevalence of BD is greater in countries that formed part of the ancient Silk Road from the Eastern Mediterranean to Far East Asia (2, 3) than in Western countries such as the United States and the United Kingdom (3, 4). In addition to the prevalence of BD, the clinical characteristics of BD, including disease duration and the types of organs involved, vary according to the study population. However, few investigations of the clinical severity of BD have been performed.

Krause et al. demonstrated large differences in the clinical severities of BD when they compared Jewish and Arab BD patients living in Israel; the Jewish BD patients had higher severity BD than did the Arab patients (14). In addition, there were also significant differences in clinical severity between Jewish patients from various regions including Iran/Iraq, Turkey, and North African countries. These authors therefore proposed that the clinical severity of BD may be influenced by ethnic or geographic origin. In the current study, we investigated differences in the clinical severity of BD in Korean BD patients, a single ethnic group. Patients in this study were classified into one of two groups based on whether they resided west or east region of the SoBaek Mountains. We assessed clinical severity using the BD severity scoring index suggested by Krause et al. (12-14). We found large differences in the clinical severities of BD between patients from these two regions; significantly higher severity scores were found in patients from Western regions than in those from Eastern regions. The significant differences in severity were significantly associated with severe clinical manifestations of BD rather than mild or moderate BD symptoms. These findings demonstrate that there are differences in the clinical severity of BD within a single ethnic group, namely Koreans.

Despite indices to assess the clinical activity of BD (20-22), reliable definitions or classifications of the clinical severity of BD have not been established. Assessment of the severity of BD is important, because severe clinical features are associated with increased mortality/morbidity and a poorer prognosis. A recent 20-year outcome study of 387 Turkish patients illustrated that poor prognosis and high morbidity/mortality were significantly associated with ocular, vascular, and CNS lesions (10). Akman-Demir et al. also revealed increased mortality in patients with neurological problems in their seven-year follow-up study (20). A ten-year mortality survey of 152 Turkish BD patients also found that vascular complications such as pulmonary arterial aneurysms and major venous involvements were the major causes of deaths (11). Previous studies implicated ocular, major vascular, CNS involvement may be classified into severe clinical manifestations in BD with poor prognosis. Kim et al. (23) and Park et al. (24) classified patients as having severe manifestations if the patient had more than one of the following clinical features of BD: posterior uveitis, retinal vasculitis, gastrointestinal ulcers with bleeding or perforation, and major organ or major vessel involvement. However, it seems that their classification for severity in BD is lack of values of objective and quantitative assessments. One study proposed that interleukin (IL)-8 level can be a reliable tool in discrimination of the disease severity, compared to clinical and laboratory findings (25). However, this finding needs to be confirmed through longitudinal studies, due to a rapid change of IL-8 level according to diverse clinical situations. Krause et al. reported a severity assessment tool based on the summation of points for each clinical feature (12-14). They classified ocular inflammations such as posterior/panuveitis and retinal vasculitis, vascular lesions including arterial thrombosis and major venous thrombosis or aneurysms, CNS involvement, and bowel perforation, as severe clinical features. We consider Krause’s severity index a reasonable method to assess the severity of BD, although further validation studies are required.

The clinical phenotypes of BD are known to vary according to geographic location. For instance, a higher risk of neurological and vascular involvement has been demonstrated for patients from Jordan, Saudi Arabia, Tunisia, and Egypt compared to patients from Far East Asian countries (3, 26, 27), whereas patients in Japan and Taiwan have a higher prevalence of gastrointestinal involvement (3, 28). These epidemiologic data suggest that patients residing in countries in the Eastern Mediterranean and Central Asia may suffer from more severe clinical features than patients in East Asian countries. We found that the average severity score of our 246 BD patients was 5.43±2.6, which is much lower than that of the 100 Israel BD patients (6.62±2.58 in Jewish patients and 6.38±2.51 in Arab patients) (14). This finding is consistent with the observed differences in clinical severity between ethnic groups (3, 26-28).

The epidemiologic and clinical characteristics of Korean BD patients have been investigated previously (15-18). However, the clinical severity of BD was not assessed in these studies. In our study, we found significant differences in the clinical severities of BD according to geographic region. Furthermore, the prevalence of typical skin lesions,
deep vein thrombosis, gastrointestinal bleeding, and severe ocular inflammations such as posterior/panuveitis and retinal vasculitis was greater in BD pa-
tients from Western regions of Korea than in those from Eastern regions of Korea. Why these differences are ob-
served in not clear, although environ-
mental factors or genetic susceptibility
may be contributing factors. No sig-
nificant differences in disease duration
or HLA-B51 prevalence were noted in
this study, although age at enrolment
was significantly different between the
two geographic groups. No association
between HLA-B51 status and clinical
features were observed in a previ-
ous study of 108 Korean BD patients
(24). Together with our non-significant
HLA-B51 results, this suggests that
HLA-B51 does not have an influence
on the clinical severity of BD in Ko-
rean patients. We found that disease
duration was significantly associated
with severity scores in BD patients,
especially in patients from the West-
ern regions of Korea. Given the similar
disease duration in the two groups, it
appears that regional factors may influ-
en BD severity with the exception of
disease duration.

The clinical course of BD is known to
be influenced by gender; male BD pa-
tients demonstrate a more severe clini-
cal course than do female patients (10,
11, 17, 20, 27, 29). Houman et al. dem-
onstrated more frequent development
of deep vein thrombosis in males than
in females, although no gender differ-
ences in vascular and CNS involve-
ments were identified (27). A ten-year
mortality survey in a Turkish popula-
tion suggested that young male BD
patients show increased mortality (11).
Furthermore, the clinical manifesta-
tions of BD have been shown to be less
severe in female patients based on a 20-
year clinical outcome survey of 387 BD
patients (10). In addition, severe com-
plications such as ocular and vascular
involvement have been reported to be
more frequent in male than in female
Korean BD patients (17). In this study,
we found that severity scores in males
were significantly higher than those in
females, consistent with previous stud-
ies. Furthermore, we found significant
differences in severity scores between
the two genders living in Western re-
392
gions of Korea, but not the two gen-
ders living in Eastern regions of Korea.
These findings suggest that gender in-
fluences the clinical severity of BD and
that this occurs to a greater extent in
Western regions of Korea.

In conclusion, this study was designed
to identify differences in the clinical
severity of BD between Korean BD pa-
tients from two different geographical
regions in Korea. The second major aim
was to determine risk factors associated
with BD severity. BD patients resident
in Western regions of Korea showed
higher severity scores than did those
from Eastern regions, and males had
more severe symptoms than females,
with this effect more pronounced in
patients from Western regions of Ko-
rea. Furthermore, the disease duration
of BD was closely associated with the
severity of BD, especially in patients
residing in Western regions of Korea.
Together, these results suggest that
in Korean BD patients, differences in
clinical severity are associated with
geographic distribution and gender.

References
1. MARSHALL SE: Behçet’s disease. Best Pract
2. SAKANE T, TAKENO M, SUZUKI N, INABA G:
1284-91.
3. ZOUBOULIS CC: Epidemiology of Adama-
tiades-Behçet’s disease. Ann Med Interne
(Paris) 1999; 190: 488-98.
4. ZOUBOULIS CC, KÖTTER I, DIJAWARI D et al.
Epidemiological features of Adamantia-
des-Behçet’s disease in Germany and in Eu-
5. OHNO S, CHAR DH, KIMURA SJ, O’CONNOR
GR: Clinical observations in Behçet’s dis-
6. HIROHATA T, KURATSUNE M, NOMURA A,
JIMI S: Prevalence of Behçet’s disease in
Hawaii. With particular reference to the com-
parison of the Japanese in Hawaii and Japan.
Hawaii Med J 1975; 34: 244-6.
7. INTERNATIONAL STUDY GROUP FOR BEHCET’S
DISEASE: Criteria for diagnosis of Behçet’s
disease. International Study Group for Be-
8. AKMAN-DEMIR G, BATKAN-KURT B, SER-
DAROGLU P et al.: Seven-year follow-up of
9. HAMURYUDAN V, YURDAKUL S, MORAL F,
et al.: Pulmonary arterial aneurysms in Be-
çet’s syndrome: a report of 24 cases. Br J
Rheumatol 1994; 33: 48-51.
10. KURAL-SEYAHI E, FRESKO I, SEYAHI N et
al.: The long-term mortality and morbidity
of Behçet syndrome: a 2-decade outcome
survey of 387 patients followed at a dedi-
cated center. Medicine (Baltimore) 2003; 82:
60-76.
11. YAZICI H, BAŞARAN G, HAMURYUDAN V et
al.: The ten-year mortality in Behçet’s syn-
12. KRAUSE I, MOLAD Y, WEINBERGER A:
Association of HLA-B5 with Clinical Ex-
pression and Severity of Behçet’s Disease in
13. KRAUSE I, ROSEN Y, KAPLAN I et al.: Recur-
rent aphthous stomatitis in Behçet’s disease:
clinical features and correlation with sys-
temic disease expression and severity. J Oral
14. KRAUSE I, MADER R, SULKES J et al.: Be-
çet’s disease in Israel: the influence of eth-
nic origin on disease expression and se-
15. BANG D, YOON KH, CHUNG HG, CHOI EH,
LEE ES, LEE S: Epidemiologic and clinical
features of Behçet’s disease in Korea. Yonsei
16. BANG D, LEE JH, LEE ES et al.: Epidemiolog-
ic and clinical survey of Behçet’s disease in
Korea: the first multicenter study. J Korean
17. BANG DS, OH SH, LEE KH, LEE ES, LEE SN:
18: 231-5.
18. CHANG HK, KIM JW: The clinical features of
Behçet’s disease in Yongdong districts: an-
asessment of a cohort followed from 1997 to
19. JUNG SH, CHEON BY, SOHN TY, OH JJ:
Geographical Distribution of Physician Man-
power by Specialty and Care Level. Journal
of Preventive Medicine and Public Health
1993; 26: 661-71.
20. YAZICI H, TÜZÜN Y, PAZARLI H et al.: In-
fluence of age of onset and patient’s sex on
the prevalence and severity of manifestations
21. BHAKTA BB, BRENNAN P, JAMES TE, CHAM-
BERLAIN MA, NOBLE BA, SILMAN AJ: Be-
çet’s disease: evaluation of a new instrument
to measure clinical activity. Rheumatology
22. LAWTON G, BHAKTA BB, CHAMBERLAIN
MA, TENNANT A: The Behçet’s disease activ-
ity index. Rheumatology (Oxford) 2004;
43: 73-8.
23. KIM SK, JANG WC, PARK SB et al.: SLC11A1
gene polymorphisms in Korean patients with
Behçet’s disease. Scand J Rheumatol 2006;
35: 398-401.
24. PARK SH, PARK KS, SEO Y et al.: Associa-
tion of MICA polymorphism with HLA-B51
and disease severity in Korean patients with
17: 366-70.
25. POLAT M, VAHABOGLU G, ONDE U, EKSI-
OGLU M: Classifying patients with Behçet’s
26. YAZICI H, BAŞARAN G, HAMURYUDAN V et
al.: The ten-year mortality in Behçet’s syn-
