ABSTRACT

Despite the significant advantages in clinical practice associated with TNF-inhibitors, a loss of response over time is sometimes observed, in some cases possibly due to immunogenicity, i.e. the development of antibodies direct against the drug. This review evaluates the immunogenicity of different anti-TNF agents, and discusses its effects on efficacy and safety. Available evidence indicates that all anti-TNF drugs may induce an immune response. However, the variation in the occurrence of anti-drug antibodies, as well as the variation in the impact of antibodies on the efficacy and safety, can be explained by drug conformation itself, use of concomitant immunosuppressants and differences in dosing regimen and route of administration. The association between the development of anti-drug antibodies and low drug serum concentrations is clinically relevant since it is likely related to low response. Strict monitoring of neutralising antibodies might be useful for tailoring therapeutic strategy. There is no evidence of cross-reactivity among different drugs: immunogenicity (the development of specific anti-drug antibodies to one TNF inhibitor) does not seem to affect the effectiveness of another anti-TNF agents; therefore, switching to another drug of the same class might be effective in patients who have developed anti-drug antibodies to a TNF inhibitor.

Introduction

Cytokines are important molecular targets for therapy in rheumatic diseases. Among these inflammatory mediators, TNF has emerged as a key target in inflammatory arthritides. The available drugs that target TNF are monoclonal antibodies (MAb) or derivatives thereof; they include chimeric, humanised or fully human MAb and antibody fragments (Fc or Fab) (1). Anti-TNF agents currently approved for treatment of rheumatic diseases include the MAbs infliximab (IFX), adalimumab (ADA) and golimumab (GLM), the fusion protein etanercept (ETN) and the PEGylated Fab fragment certolizumab pegol (CZP) (2). Despite the significant advantages in clinical practice associated with these drugs, a loss of response over time is sometimes observed; in some cases immunogenicity, i.e. the development of antibodies against the drug, can be implicated in the reduced drug efficacy (3). IFX is a chimeric monoclonal anti-TNF comprising the constant region of human immunoglobulin G1 kappa (IgG1k) with mouse variable heavy and light chain domains, conferring high affinity and neutralising capacity. The murine sequences account for 25% of the whole structure. Because the murine amino acid sequences differ from their human counterpart, IFX may induce human anti-mouse antibodies directed to the murine variable binding region (complementarity-determining regions and framework regions) of the antibody.

Attempts to reduce immune response to the chimeric antibody include removal of murine components and development of fully human antibodies: ADA and GLM are fully human IgG1k antibodies with anti-TNF activity. However, fully human MAbs still have some immunogenicity and human anti-human antibodies have been detected in patients treated with these drugs. ETA is an engineered dimeric p75 TNF-receptor fusion protein linked to the Fc portion of human IgG1; it only includes human amino acid sequences. The newest anti-TNF agent is CZP, a PEGylated Fab fragment of humanised anti-TNF. Fab fragments are generally less immunogenic than whole antibodies and the addition of polyethylene glycol (PEG) could further...
reduce the immunogenicity (4). Given that they are exogenous proteins, all the above-mentioned drugs may be immunogenic. However, the development of anti-drug antibodies and their impact on efficacy and safety depend on several factors, which, in addition to extent of humanisation, include dosing regimen and route of administration (3).

This narrative review evaluates the differential immunogenicity of currently approved anti-TNF agents, and discusses the relevance of immunogenicity on efficacy and safety.

Table I. Incidence of anti-infliximab antibodies in rheumatic diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>n.</th>
<th>IFX dosage</th>
<th>Follow-up</th>
<th>Method</th>
<th>% Ab</th>
<th>Neutralising (y/n)</th>
<th>Effect on clinical response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>87</td>
<td>1, 3, 10 mg/kg 0, 2, 6, q8w</td>
<td>26 week</td>
<td>ELISA</td>
<td>17.4%</td>
<td>n.r.</td>
<td>NR</td>
<td>Maini et al. (5)</td>
</tr>
<tr>
<td>RA</td>
<td>51</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>n.r.</td>
<td>ELISA</td>
<td>39%</td>
<td>1 IFX levels</td>
<td>NR</td>
<td>Harauzi et al. (6)</td>
</tr>
<tr>
<td>RA</td>
<td>51</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>1 year</td>
<td>RIA</td>
<td>43%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>Wolbink et al. (7)</td>
</tr>
<tr>
<td>RA</td>
<td>106</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>6 months</td>
<td>RIA</td>
<td>44%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>Bendzen et al. (8)</td>
</tr>
<tr>
<td>RA</td>
<td>35</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>6 months</td>
<td>RIA</td>
<td>51.4%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>Radstake et al. (9)</td>
</tr>
<tr>
<td>RA</td>
<td>64</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>n.r.</td>
<td>ELISA</td>
<td>12.5%</td>
<td>1 IFX levels</td>
<td>association with acquired drug resistance</td>
<td>Finckh et al. (10)</td>
</tr>
<tr>
<td>RA</td>
<td>85</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>5.9 years*</td>
<td>ELISA</td>
<td>32.9%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>Pascual-Salcedo et al. (11)</td>
</tr>
<tr>
<td>RA</td>
<td>40</td>
<td>3 mg/kg 0, 2, 6, q8w</td>
<td>54 weeks</td>
<td>ELISA</td>
<td>35%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>Hoshino et al. (13)</td>
</tr>
<tr>
<td>SpA, RA</td>
<td>108 (9, 17)</td>
<td>3 mg–5 mg/kg 0, 2, 6, q8w</td>
<td>n.r.</td>
<td>ELISA</td>
<td>19%</td>
<td>1 IFX levels</td>
<td>NR</td>
<td>Ducourau et al. (12)</td>
</tr>
<tr>
<td>SpA</td>
<td>56</td>
<td>5 mg/kg 0, 2, 6, q8w</td>
<td>4 years</td>
<td>ELISA</td>
<td>25.5%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>Plascencia et al. (15)</td>
</tr>
<tr>
<td>PsA</td>
<td>100</td>
<td>5 mg/kg 0, 2, 6, q8w</td>
<td>66 weeks</td>
<td>n.r.</td>
<td>15.4%</td>
<td>n.r.</td>
<td>NR</td>
<td>Kavanagh et al. (16)</td>
</tr>
<tr>
<td>AS</td>
<td>38</td>
<td>5 mg/kg 0, 2, 6, q8w</td>
<td>54 weeks</td>
<td>RIA</td>
<td>29%</td>
<td>1 IFX levels</td>
<td>Yes</td>
<td>de Vries et al. (17)</td>
</tr>
<tr>
<td>JIA</td>
<td>21</td>
<td>3–5 mg/kg 0, 2, 6, q8w</td>
<td>n.r.</td>
<td>ELISA</td>
<td>43%</td>
<td>1 IFX levels</td>
<td>NR</td>
<td>Kosmač et al. (18)</td>
</tr>
</tbody>
</table>

AS: ankylosing spondylitis; ELISA: enzyme-linked immunosorbent assay; IFX: infliximab; JIA: juvenile idiopathic arthritis; NR: not reported; PsA: psoriatic arthritis; RA: rheumatoid arthritis; RIA: radioimmunoassay. *: mean follow-up.

Table II. Incidence of anti-adalimumab antibodies in rheumatic diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>n.</th>
<th>ADA dosage</th>
<th>Follow-up</th>
<th>Method</th>
<th>% Ab</th>
<th>Neutralising (y/n)</th>
<th>Effect on clinical response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>217</td>
<td>20, 40, 80 mg eow</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>1%</td>
<td>n.r.</td>
<td>NR</td>
<td>Weinblatt et al. (19)</td>
</tr>
<tr>
<td>RA</td>
<td>419</td>
<td>20 mg weekly or 40 mg eow</td>
<td>52 weeks</td>
<td>ELISA</td>
<td>0.72%</td>
<td>n.r.</td>
<td>NR</td>
<td>Keystone et al. (20)</td>
</tr>
<tr>
<td>RA</td>
<td>434</td>
<td>20 or 40 mg weekly or 40 mg eow</td>
<td>26 weeks</td>
<td>ELISA</td>
<td>12%</td>
<td>n.r.</td>
<td>Yes</td>
<td>van de Putte et al. (21)</td>
</tr>
<tr>
<td>RA</td>
<td>121</td>
<td>40 mg sc eow</td>
<td>28 weeks</td>
<td>RIA</td>
<td>17%</td>
<td>1 ADA levels</td>
<td>Yes</td>
<td>Bartelds et al. (22)</td>
</tr>
<tr>
<td>RA</td>
<td>15</td>
<td>40 mg sc eow</td>
<td>18 months</td>
<td>ELISA</td>
<td>87%</td>
<td>n.r.</td>
<td>Yes</td>
<td>Bender et al. (23)</td>
</tr>
<tr>
<td>RA</td>
<td>34</td>
<td>40 mg sc eow</td>
<td>6 months</td>
<td>RIA</td>
<td>29%</td>
<td>1 ADA levels</td>
<td>Yes</td>
<td>Radstake et al. (9)</td>
</tr>
<tr>
<td>RA</td>
<td>30</td>
<td>40 mg sc eow</td>
<td>28 weeks</td>
<td>ABT/PIA</td>
<td>17/70%</td>
<td>n.r.</td>
<td>NR</td>
<td>van Schovenburg et al. (24)</td>
</tr>
<tr>
<td>RA</td>
<td>235</td>
<td>40 mg sc eow</td>
<td>28 weeks</td>
<td>RIA</td>
<td>20%</td>
<td>1 ADA levels</td>
<td>Yes</td>
<td>Bartelds et al. (25)</td>
</tr>
<tr>
<td>RA</td>
<td>272</td>
<td>40 mg sc eow</td>
<td>3 years</td>
<td>RIA</td>
<td>28%</td>
<td>1 ADA levels</td>
<td>Yes</td>
<td>Bartelds et al. (26)</td>
</tr>
<tr>
<td>RA</td>
<td>30</td>
<td>40 mg sc eow</td>
<td>56 weeks</td>
<td>ELISA</td>
<td>4.9%</td>
<td>n.r.</td>
<td>No</td>
<td>van der Bijl (27)</td>
</tr>
<tr>
<td>PsA</td>
<td>22</td>
<td>40 mg sc eow</td>
<td>12 months</td>
<td>RIA</td>
<td>18%</td>
<td>1 ADA levels</td>
<td>Yes</td>
<td>van Kuijk et al. (29)</td>
</tr>
<tr>
<td>AS</td>
<td>35</td>
<td>40 mg sc eow</td>
<td>6 months</td>
<td>RIA</td>
<td>31%</td>
<td>1 ADA levels</td>
<td>Yes</td>
<td>de Vries et al. (28)</td>
</tr>
<tr>
<td>JIA</td>
<td>20</td>
<td>20 or 40 mg eow</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>16%</td>
<td>1 ADA levels</td>
<td>NR</td>
<td>Imagawa et al. (30)</td>
</tr>
</tbody>
</table>

ABT: antigen binding test; ADA: adalimumab; AS: ankylosing spondylitis; ELISA: enzyme-linked immunosorbent assay; eow: every other week; PIA: pH-shift anti-idiotype ABT; NR: not reported; PsA: psoriatic arthritis; RA: rheumatoid arthritis; RIA: radioimmunoassay.

Search criteria

Key studies for inclusion were identified by a MEDLINE search, based on several interrelated queries (e.g. “immunogenicity” OR “anti-drug” AND “anti TNF” AND “rheumatoid arthritis” OR “psoriatic arthritis” OR “ankylosing spondylitis” OR “juvenile idiopathic arthritis”). Restrictions in terms of time were not applied. Only studies in English were considered. The articles retrieved were chosen according to their relevance, as judged by the authors. The search results were then supplemented by browsing the reference lists of identified articles, and by including other documents suggested by authors’ experience.

Incidence of anti-drug antibodies

The incidence of anti-drug antibodies with anti-TNF agents are summarised in Tables I–V.

Infliximab

Occurrence of anti-IFX antibodies has been observed in 12–60% of patients receiving treatment for rheumatoid arthritis (RA) and anti-drug antibodies...
appear mostly between the third and sixth month of therapy (5-13) (Table I). A recent publication has investigated the kinetics of anti-drug emergence in serum of 27 RA patients collected at 5 time-points during a single IFX cycle (one hour before the first infusion, one hour after, at 50% and 75% of the cycle and at the time of the subsequent infusion) (14). The mean interval between the two IFX infusions was 6.8±2 weeks: about 70% of anti-IFX antibodies was already detectable halfway through an infusion cycle, and correlated with IFX serum levels (14). Data on IFX immunogenicity in anklyosing spondylitis (AS) and spondyloarthritis (SpA) are scant (12, 15-17): anti-IFX antibodies have been detected in 5–6.4% of patients receiving ETA 25 mg twice weekly or 50 mg once weekly, with a maximum degree of drug trough level of the drug (Table I).

Adalimumab
The emergence of anti-ADA antibodies in RA patients has been investigated in short-term and long-term studies (28 weeks to 3 years) and ranges from less than 1% to 87% (Table II) (9, 19-27); anti-drug antibodies have been identified as early as 4 weeks after treatment initiation in up to 10% of patients (22, 26). The rate of anti-ADA antibodies in psoriatic arthritis (PsA) and AS patients was estimated to be 18% over a 12-month follow-up and 31% over 6 months, respectively (28, 29). Anti-ADA antibodies have also been detected in 16% of JIA patients (30). The emergence of anti-ADA antibodies has been associated to a decrease in drug serum levels (9, 22, 25, 26, 28-30).

Table III. Incidence of anti-etanercept antibodies in rheumatic diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>n.</th>
<th>ETA dosage</th>
<th>Follow-up</th>
<th>Method</th>
<th>% Ab</th>
<th>Neutralising (y/n)</th>
<th>Effect on clinical response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>367</td>
<td>25x2 or 50/week</td>
<td>16 week</td>
<td>n.r.</td>
<td>3%</td>
<td>no</td>
<td>No</td>
<td>Keestone et al. (32)</td>
</tr>
<tr>
<td>RA</td>
<td>222</td>
<td>50 mg/week</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>5.6%</td>
<td>no'</td>
<td>No</td>
<td>Dore et al. (31)</td>
</tr>
<tr>
<td>RA</td>
<td>40</td>
<td>25 mg x2/week</td>
<td>32 weeks</td>
<td>RIA</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
<td>Hoshino et al. (13)</td>
</tr>
<tr>
<td>RA</td>
<td>549</td>
<td>25 mg x2/week</td>
<td>193 weeks</td>
<td>ELISA</td>
<td>5%</td>
<td>n.r.</td>
<td>n.r.</td>
<td>Klareskog et al. (33)</td>
</tr>
<tr>
<td>RA</td>
<td>292</td>
<td>50 mg/week</td>
<td>6 months</td>
<td>RIA/ELISA/IgG4 ABT</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
<td>Jamintski et al. (34)</td>
</tr>
<tr>
<td>PsA</td>
<td>104</td>
<td>25 mg x2/week</td>
<td>24 weeks</td>
<td>n.r.</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
<td>Mease et al. (36)</td>
</tr>
<tr>
<td>AS</td>
<td>53</td>
<td>25 mg x2/week</td>
<td>24 weeks</td>
<td>RIA</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
<td>deVries et al. (35)</td>
</tr>
</tbody>
</table>

ABT: antigen binding test; AS: anklyosing spondylitis; ELISA: enzyme-linked immunosorbent assay; ETA: etanercept; NA: not applicable; NR: not reported; PsA: psoriatic arthritis; RA: rheumatoid arthritis; RIA: radioimmunoassay.

*neutralising assay: sera are defined as neutralising if able to reduce drug concentration by at least 50%.

Factor influencing drug immunogenicity
Several different factors belonging both to the drug administered (i.e. degree of humanisation, dosing regimen, route of administration) or the patient (i.e. concomitant use of immunosuppressant, disease activity) may influence the development of anti-drug antibodies.

Concomitant therapies
Immunosuppressant therapy is a key factor affecting development of anti-drug antibodies; however, it is still unclear whether immunosuppressant co-administration reduces immunogenicity (3). Most of the studies investigating the emergence of anti-IFX antibodies in patients with rheumatic disease have not demonstrated any effect of concomitant MTX on anti-IFX antibody development (6-8, 10, 11, 53). In a 26-week clinical trial of IFX in 101 RA patients, co-administration of
low-dose MTX lowered the incidence of antibodies from 53%, 21% and 7% to 15%, 7% and 0% in RA patients receiving 1, 3 and 10 mg/kg IFX, respectively (5). Similarly, two studies in patients with SpA patients have demonstrated a lower incidence of anti-IFX antibodies in patients receiving MTX (12, 15). Moreover, Pascual-Salcedo et al. demonstrated that the combined therapy was associated to lower levels of anti-drug antibodies (11). More consistent data on immunosuppressant effects in preventing anti-IFX antibodies come from patients with Crohn’s disease; however, this information is out of the scope of this review and will not be discussed.

Concomitant MTX has been associated with a lower production of anti-ADA antibodies in a few studies (22, 23, 26). In 272 patients with RA who were followed in a long-term study, those who later developed anti-ADA antibodies received concomitant MTX less often (52% vs. 82%, \(p = 0.0001 \)), and more often required no concomitant disease-modifying anti-rheumatic drug (DMARD) (26). In the same population, the dose-effect of MTX administration on reduction of immunogenicity has been recently demonstrated (54). The role of MTX on reducing anti-drug antibody emergence has been related to its immunosuppressive properties. Drug-induced tolerance has been studied in mice and could be responsible for the effect in humans (55, 56). However, MTX also exerts an anti-inflammatory effect, decreasing TNF produced by inflamed tissue; thus, reduced circulating TNF levels might consume fewer anti-TNF antibodies and the resulting higher circulating drug levels may induce human anti-drug antibody formation (57). However, other immunosuppressive drugs have not shown a clear association with lower levels of anti-drug antibodies in rheumatic disease (8, 10, 22). In a small study on 20 RA patients, 100% of patients with anti-ADA antibody received ADA as monotherapy, while anti-ADA antibodies were detected in 72.7% of those treated with combination therapy (ADA + DMARDs) (23). The effect of corticosteroid therapy on anti-drug development seems less evident (6, 8). A study designed to address the effect of anti-IFX antibodies on the need for dose escalation in RA patients demonstrated that a lower corticosteroid dose correlated with increased antibody production (6). In another study, concomitant corticosteroids did not affect antibody emergence (8).

Therapeutic regimen

Dose and therapeutic regimen may play a central role in the anti-IFX antibody development. Interestingly, a lower IFX dose was associated with a higher incidence of anti-IFX antibodies with 57%, 25% and 10% of patients who received 1, 3 and 10 mg/kg, testing positive; this is likely due to the direct immunosuppressive effect of anti-TNF treatment (5). While the “episodic” regimen employed for Crohn’s disease seems to be more immunogenic (58), in rheumatic diseases a continuous maintenance schedule is utilised. Data on effect of therapeutic regimen and dosage can be gathered from the observation of patients needing a dose escalation for inadequate clinical response. In a study conducted by de Vries et al., 11 out of 38 AS patients tested positive for anti-IFX after a follow-up of 54 weeks. Among these patients, 9 (75%) needed dose escalation for insufficient response; however, the increased IFX dose was not associated with an increase in IFX trough levels, nor a significant decrease in anti-IFX antibodies levels (17). The emergence of anti-IFX in a high percentage of AS patients treated with IFX suggests that dose augmentation might induce more frequent antibody development. On the contrary, two different studies in RA patients treated with a TNF inhibitor demonstrated a decrease of anti-drug antibodies after dose escalation or an increase in dosing frequency (3, 22). Wolbink et al. studied the rate of anti-IFX antibodies at 1 year in 51 patients with RA and observed that 3 out of 22 anti-drug positive patients needed an increase of IFX dose (3). Increasing the IFX dose led to reduction of anti-IFX below the detection level (3). In another study, anti-ADA antibodies were no longer detectable after increasing dosing frequency in 10 out of 121 RA patients who were followed-up for 28 weeks (22). Finally, in a recently published prospective, observational, longitudinal study in 147 RA patients, a 5.2 relative risk (RR) of anti-IFX emergence after drug administration interval increase and a 4.9 RR of disappearance after interval decrease were demonstrated (53).

The disappearance of anti-drug antibodies after dose escalation could be explained by the induction of immunotolerance (3). High-dose tolerance is an immunologic phenomenon that can explain the inverse dose-response effect in immunogenicity of TNF antagonists. Interestingly, in some anti-IFX positive patients with inadequate response, higher doses of drug resulted in decreased levels of anti-IFX antibodies

Table IV. Incidence of anti-certolizumab antibodies in rheumatoid arthritis.

<table>
<thead>
<tr>
<th>n.</th>
<th>CZP dosage</th>
<th>Follow-up</th>
<th>Method</th>
<th>% Ab</th>
<th>Neutralising (y/n)</th>
<th>Effect on clinical response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>783</td>
<td>400 w 0, 2, 4 than 200 or 400 q2w</td>
<td>52 weeks</td>
<td>ELISA</td>
<td>6.4</td>
<td>n.r.</td>
<td>n.r.</td>
<td>Keystone et al. (37)</td>
</tr>
<tr>
<td>492</td>
<td>400 w 0, 2, 4 than 200 or 400 q2w</td>
<td>24 weeks</td>
<td>n.r.</td>
<td>5.1%</td>
<td>yes (36%)</td>
<td>n.r.</td>
<td>Smolen et al. (39)</td>
</tr>
<tr>
<td>111</td>
<td>400 mg q4w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>8.1%</td>
<td>yes</td>
<td>Yes</td>
<td>Fleischmann et al. (38)</td>
</tr>
<tr>
<td>126</td>
<td>400 mg q4w</td>
<td>24 weeks</td>
<td>n.r.</td>
<td>5%</td>
<td>n.r.</td>
<td>n.r.</td>
<td>Choy et al. (40)</td>
</tr>
</tbody>
</table>

CZP: certolizumab; **ELISA:** enzyme-linked immunosorbent assay; **q2w:** every 2 weeks; **q4w:** every 4 weeks.

*number of patients exposed to CZP during clinical trials.
To date, different methodological approaches have been utilised to investigate the emergence of anti-drug antibodies during short-term and long-term treatment in systemic inflammatory diseases; however a standardisation of these different assays is still lacking. The assessment of the immunogenicity profile of biotherapeutics comprises the detection of antibodies in the serum by immunochemical assays (60). These include different types of enzyme-linked immunosorbetant assay (ELISA) in which an IgG construct, bound to an immobilised TNF-α, is detected with rabbit or goat anti-human IgG-Fc antibody (60, 61). However, a lack of secondary reagents able to discriminate between “normal” Ig and “induced” anti-drug antibodies is an issue (62, 63). Attempts to minimise the effect of circulating antibodies on anti-drug testing have utilised different approaches. The use of F(ab)’2 fragments of ADA or IFX for anti-drug antibody binding could give a highly specific response because binding of unspecific antibodies to the Fc portion of ADA or IFX is prevented (64). Moreover, when trying to detect anti-drug antibodies, a significant problem arises when the drug itself is an antibody. Excess serum MAb may also interfere with antibody binding to the immobilised biotherapeutic agent. A two-site, bridging ELISA for the detection of anti-drug antibodies takes advantage of the monovalency of the two arms of IgG subclasses 1, 2 and 3, which allows crosslinking of the biotherapeutic agent coated onto ELISA plates to biotinylated circulating drug (11). However, bridging ELISA may underestimate the immunogenicity of a biotherapeutic because it does not recognise IgG4 class antibodies which are generated during long-term exposure to the drug. This is because of the functional monovalency of the IgG4 that renders the molecule unable to cross-link the same antigen (64). Using an antigen binging test (ABT) carried out with both protein A sepharose and IgG4-coupled sepharose capturing anti-ADA 125I-labelled F(ab)2, van Schowenburg et al. have recently confirmed an IgG4 response to ADA (65). The radioimmunoassay (RIA) for detecting serum anti-IFX antibody levels exploits the fact that IFX comprises only kappa light chains and any radiative complex extracted by anti-human lambda light chain antibodies would be IFX bound to antibody (8). The antigen-binding assay is based on capturing serum antibodies by a sepharose-bound reagent and subsequently measuring the antibody reactivity by incubation with 125I-labelled Fab fragments of the biotherapeutic antibody (7). The RIA method has some advantages: it is a fluid-phase assay resembling the in vivo situation and the biotherapeutic agent used is not denatured by coating. Moreover, RIA is a functional assay proving the capacity of the drug to bind TNF, rather than simply revealing a protein, which may or may

Table V. Incidence of anti-GLM antibodies in rheumatic diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>n.*</th>
<th>GLM dosage</th>
<th>Follow-up</th>
<th>Method</th>
<th>% Ab</th>
<th>Neutralising (y/n)</th>
<th>Effect on clinical response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>107</td>
<td>50 or 100 mg sc q2 or q4w</td>
<td>48 weeks</td>
<td>ELISA</td>
<td>6.5%</td>
<td>↓ GLM levels</td>
<td>NR</td>
<td>Kay et al. (41)</td>
</tr>
<tr>
<td>RA</td>
<td>315</td>
<td>50 or 100 mg sc q4w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>6.3%</td>
<td>NR</td>
<td>NR</td>
<td>Emery et al. (42)</td>
</tr>
<tr>
<td>RA</td>
<td>236</td>
<td>50 or 100 mg sc q4w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>2.1%</td>
<td>NR</td>
<td>NR</td>
<td>Keystone et al. (43)</td>
</tr>
<tr>
<td>RA</td>
<td>264</td>
<td>50 or 100 mg sc q4w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>3%</td>
<td>NR</td>
<td>Yes</td>
<td>Kremer et al. (45)</td>
</tr>
<tr>
<td>RA</td>
<td>529</td>
<td>2 or 4 mg/kg iv q12w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>5%</td>
<td>NR</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>RA</td>
<td>173</td>
<td>50 or 100 mg sc q4w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
<td>Tanaka et al. (46)</td>
</tr>
<tr>
<td>RA</td>
<td>440</td>
<td>2 mg/kg iv 0, 4, then q8w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>3%</td>
<td>↓ GLM levels</td>
<td>NR</td>
<td>Weinblatt et al. (47)</td>
</tr>
<tr>
<td>RA</td>
<td>33+16</td>
<td>100 mg sv vs. 2 mg/kg iv 0–12 w</td>
<td>30 weeks</td>
<td>ABT</td>
<td>6.25% vs. 0%</td>
<td>NR</td>
<td>NR</td>
<td>Zhuang et al. (48)</td>
</tr>
<tr>
<td>PsA</td>
<td>292</td>
<td>50 or 100 mg sc q4w (untl w 20)</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>4.6%</td>
<td>NR</td>
<td>Kavaunagh et al. (49)</td>
<td></td>
</tr>
<tr>
<td>PsA</td>
<td>292</td>
<td>50 or 100 mg sc q4w (w 24–52)</td>
<td>52 weeks</td>
<td>NR</td>
<td>4.9%</td>
<td>Yes</td>
<td>NR</td>
<td>Kavaunagh et al. (50)</td>
</tr>
<tr>
<td>AS</td>
<td>278</td>
<td>50 or 100 mg sc q4w</td>
<td>24 weeks</td>
<td>ELISA</td>
<td>4.1%</td>
<td>↓ GLM levels</td>
<td>NR</td>
<td>Inman et al. (51)</td>
</tr>
<tr>
<td>AS</td>
<td>356**</td>
<td>50 or 100 mg sc q4w</td>
<td>104 weeks</td>
<td>ELISA</td>
<td>1.4%</td>
<td>NR</td>
<td>NR</td>
<td>Braun et al. (52)</td>
</tr>
</tbody>
</table>

ABT: antigen binding test; AS: ankylosing spondylitis; ELISA: enzyme-linked immunosorbent assay; i.v.: intravenous; NA: not applicable; NR: not reported; PsA: psoriatic arthritis; q2w: every 2 weeks; q4w: every 4 weeks; RA: rheumatoid arthritis; s.c.: subcutaneous. *number of patients exposed to GLM during clinical trials; **whole population.
not be functional. As the available monoclonal anti-TNF antibodies are human IgG1κ constructs, which do not react with anti-human lambda light-chain antibodies, RIA can be used to monitor antibodies to these compounds by binding radiolabelled drug to an anti-lambda light-chain affinity matrix, revealing the drug-lambda light-chain antibody complexes. As ETA does not contain light chains, both anti-lambda and -kappa light-chain antibodies may be used (66).

The immune response against a drug includes antibodies directed against epitopes localised within the hypervariable regions of heavy and light chains (i.e. anti-idiotyp, neutralising antibodies) and antibodies directed against allotypes, epitopes not localised in the antigen-binding region (i.e. anti-allotype). To be considered neutralising, anti-drug antibodies should be able to suppress binding of biotherapeutic to its target. Svenson et al. tested the neutralising effect of anti-I邢 antibodies in fluid phase RIA by demonstrating the competitive effect of the addition of I邢 to anti-I邢 positive sera on 125I-labelled-TNF binding (66). To confirm the neutralising nature of anti-I邢 a Fab neutralisation assay has been performed by adding IFX Fab fragment previously incubated with patients’ serum to immobilised recombinant human TNF in a competition ELISA (18). Anti-drug antibody detection is particularly problematic if sera are taken shortly after drug administration; therapeutic MAbs have long circulation half-lives, often resulting in the presence of residual therapeutic agent in serum drawn for analysis. For example, IFX can affect antibody detection at concentrations as little as 2 mg/mL (8). When IFX is added to anti-I邢 antibody positive sera, some patients become negative, suggesting a competitive effect; hence, anti-drug antibodies can be detected reliably only in patients who have no detectable serum IFX and accurate detection of anti-I邢 may require a prolonged wash-out period (10).

A reporter-gene assay which can detect the neutralising activity of anti-drug antibodies has recently been developed (62). This method does not appear to be influenced by the presence of drug nor TNF (or other cytokines) in the tested samples. Briefly, a human erythroleukaemic cell line was transfected with Nuclear Factor κB (NFκB) regulated reporter-gene (firefly luciferase – FL); the cells were then transfected with Renilla luciferase (RL) gene, which is regulated by a constitutive promoter, to normalise unspecific effects linked to cell number or serum matrix effect. Human TNF and TNF-inhibitors prior incubated with the cytokine was added to the cell line; since no other cytokines signalling through NFκB were able to activate the reporter gene, the response observed was specific for TNF. The reported-gene assay is able to quantify both residual anti-TNF drug activity and anti-drug neutralising antibodies by demonstrating increase or reduction of FL/RL expression (62).

Human MAb treatment can cause the formation of anti-allotype antibodies in patients lacking that allotype (67). Recently, an association has been found between patient allotype and anti-I邢 antibody concentration (67). Similar to I邢 (68), ADA expresses the G1m1,17-allotype (69). Bartelds et al. used RIA and a two-sided bridging ELISA to investigate the immunogenicity of the ADA allotype, but failed to confirm the hypothesis that a mismatch between ADA allotype and the allotypes of the IgG of ADA-treated RA patients is associated with a higher anti-ADA frequency (69). A possible interference of RF in anti-drug detection has been hypothesised, but little influence of RF on anti-I邢 ELISA or RIA tests has been detected (8, 14, 17).

Influence of anti-drug antibodies on clinical response

The response to TNF antagonists parallels the drug trough levels. As long as the anti-drug antibody level is lower than drug trough level, treatment can be effective; when antibody production exceeds serum drug levels, the therapy becomes ineffective and free anti-drug antibodies can be detected (3). To our knowledge, mature and relevant data on neutralising antibodies are available only for IFX and ADA, whereas neutralising antibodies have never been reported with ETA. Data on CZP and GLM have been collected only in registrative trials, and definite conclusions on the potential reduction of clinical response following the development of antibodies against these molecules cannot yet be drawn.

Infliximab

Repeated infusions of IFX, increased doses or more frequent drug administration may be required because of loss of response and (in almost 50% of patients) discontinuation due to infusion-related adverse events may occur. Enhanced drug clearance due to immune complex formation could represent a mechanism by which anti-IFX antibodies mediate a reduction in clinical efficacy.

A study conducted by van der Laken et al. investigated the mechanism of non-response to anti-TNF treatment by using radiolabelled drug (70). Two responding and two non-responding RA patients were infused with 99mTc-IFX. In both non-responders, all infused IFX was bound to circulating anti-IFX antibodies within the first 30 minutes of infusion, resulting in low levels of drug. At 30–60 min of infusion, the concentration of IFX dominated that of anti-IFX antibody and drug levels increased. Imaging suggested a faster clearance and higher liver and spleen uptake of IFX in non-responders, possibly due to removal of immune complexes by the macrophages-phagocytes system (70). Clinical studies have confirmed that anti-IFX antibody levels inversely correlate with trough IFX levels and clinical response (7, 8, 11, 17), and anti-drug antibodies have been detected in up to 100% of non-responders (9). Two studies found that 42–47% of patients with acquired drug resistance, requiring higher doses of IFX or shorter infusion interval, had high circulating anti-IFX and low post-infusion IFX concentrations (6, 10). Moreover, the kinetics of anti-drug emergence could influence long-term clinical outcome; in a cohort of 106 RA patients, early formation (within 3 months) of anti-IFX antibodies has been associated with therapy discontinuation (8).
through IFX concentration and lower response. In a study investigating the effect on clinical response in 38 SA patients, only 9% of patients with detectable anti-IFX antibodies were responders at week 54, compared with 74% of patients without antibodies (17). More recently, in a larger, long-term study in 94 SpA patients, a significantly higher disease activity at 6, 12 and 48 months has been associated with anti-drug antibody positivity (p=0.038, p=0.042 and p=0.024 versus anti-IFX antibody negative patients, respectively) (15).

Adalimumab

A direct effect on trough serum drug concentration and treatment efficacy has been also been described for anti-ADA antibodies. In a cohort of 272 RA patients, those with anti-ADA antibodies had significantly lower ADA concentrations compared with patients showing no immune response to the drug, regardless of the antibodies titre (26); moreover, after 3 years of follow-up, patients with anti-ADA positivity have had a significantly worse clinical response compared to those who tested negative (54). Anti-ADA antibodies could be predictors of clinical response and were detected more often in non-responders compared with moderate/good responders; moreover, anti-ADA positive patients showed lower improvement in DAS28 and less often achieved sustained low disease activity or remission (9, 22, 26). In a long-term study, drop out for treatment failure was recorded more often in patients who tested positive for anti-ADA antibodies (26). In poorly-responding patients, the increase in dosing frequency often resulted in the disappearance of anti-ADA and in an increase of ADA serum concentration, either as a result of immunotolerance or due to excess drug (22, 26). However, the clinical benefit of ADA dose escalation is debatable: approximately 80% of non-responders did not achieve minimal disease activity after increased dosing even when anti-ADA become undetectable (26).

Other anti-TNF

Among the various studies investigating immunogenicity of ETA in rheumatic diseases (13, 32, 34, 35), only Dore et al. detected anti-ETA antibodies in 5.6% of 222 RA patients during a 24-week observation period (32); since all the antibodies were non-neutralising (as detected by neutralising antibody ELISA), no effect on drug efficacy was observed (32). Data on whether anti-drug antibodies to CZP and GLM might affect the clinical response are too scant to conclude. One study has shown that the ACR20 response rate at week 24 was reduced by approximately 5% in patients positive for anti-CZP antibody (38). Differences in clinical response among patients with and without anti-GLM were not significant, although a higher percentage of ACR20 and ACR50 responders belonged to the anti-GLM negative group (45).

Effects on switching to a second anti-TNF

Clinical response to a second TNF inhibitor is similar in patients who developed anti-drug antibodies to the first anti-TNF and in patients who are TNF naïve (25). Among a population of 235 RA patients treated with ADA, anti-ADA antibodies were detected in 20% of patients and were associated with a lower DAS28 score improvement (25). Moreover, 52 patients received IFX prior to ADA, and among switchers, 33 (63%) tested positive for anti-IFX at ADA baseline and formed anti-ADA antibodies more often compared with TNF naïve patients. After 28 weeks, clinical response to ADA was significantly greater in TNF naïve and slightly higher in switched patients with anti-IFX antibodies than in anti-IFX negative switched patients; the response to ADA in the two groups of switched patients was not significantly influenced by the previous development of anti-IFX antibodies (25). In another study, a clinically meaningful improvement in all effectiveness endpoints was observed after 16 weeks of exposure to ADA, regardless of the anti-IFX status at baseline (47% anti-IFX positive vs. 43% negative); anti-ADA antibodies were detected in 2 (out of 41) patients, both of whom were also anti-IFX positive (27).

The effect of anti-IFX and anti-ADA antibodies on the efficacy of ETA has been tested in a cohort of 292 patients (71). Among these, 30 patients were previously treated with IFX and 59 with ADA; anti-IFX and anti-ADA, assessed at baseline by RIA at time of switch to ETA, were positive in 53% of patients (71). After 28 weeks of ETA treatment, patients who switched from a previous anti-TNF achieved a clinical response comparable to TNF naïve patients. As previously described (25), the immunogenicity of the first anti-TNF did not affect the efficacy of the subsequent drug since switchers who were anti-IFX or anti-ADA negative showed a lower response to ETA compared to those patients who were anti-drug antibody positive or TNF naïve (71). Therefore, different mechanisms may account for different type of non-response to a second TNF antagonist.

Influence of anti-drug antibodies on drug safety

Patients who develop anti-drug antibodies are more likely to experience infusion-related reactions (3) and other potential adverse events, such as thromboembolic events (72). To our knowledge, to date such events have only been associated with IFX and ADA.

Infliximab

Several types of acute infusion reactions have been described during IFX treatment (Table VI). Data from RA patients demonstrated that infusion reactions were associated with anti-IFX positivity (7, 11) and early anti-drug detection seems to be associated to discontinuation of therapy for acute reactions, but not for other adverse events. In the study by van der Laken et al., the single patient with severe infusion reaction showed IFX-anti-IFX complexes of various sizes, including ones weighing >1.000.000 Da) (70). Simi-

<table>
<thead>
<tr>
<th>Table VI. Acute local and systemic reactions during infliximab infusions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glottal/labial/facial oedema</td>
</tr>
<tr>
<td>Urticaria</td>
</tr>
<tr>
<td>Chest pain, dyspnœa</td>
</tr>
<tr>
<td>Cough/tickling throat</td>
</tr>
<tr>
<td>Hypotension, shock</td>
</tr>
</tbody>
</table>

960
Immunogenicity of anti-TNFs in rheumatology / F.R. Spinelli et al.

larly, in a study in AS patients, infusion reactions occurred only in patients who were anti-IFX positive (17). In another study, conducted in 108 rheumatic patients treated with IFX, infusion reactions were observed in 52% of anti-IFX positive and 1% of anti-IFX negative patients (12). Finally, in a recent study conducted by Vultaggio et al., infusion reactions were observed in 11 out of 71 IFX treated patients (15.4%): serum anti-IFX were detected in a significantly higher percentage of patients who experienced an infusion reactions (“reactive”) compared to “unreactive” patients (72.7% vs. 18.1%, p<0.03) (73). Among “reactive” patients, 3/11 (27.2%) tested positive for anti-IFX IgE and developed a positive skin test (at least 3 mm wheal area) 15 minutes after the intradermal inoculation of 1:10 diluted IFX (73). Conversely, in another study, among 315 patients exposed to IFX, 8% developed infusion reactions which were strongly associated with an IgG, but not with an IgE response to IFX (74).

Adalimumab

In a cohort study, anti-ADA antibodies have been implicated in increased thrombotic risk (72): among 272 patients, 8 cases of thromboembolic events were reported and the incidence rate was higher in those with detectable anti-ADA antibodies than those without (HR 3.8 [95% confidence interval 0.9–15.3]; p=0.064). The formation of immune complexes might be implicated in the occurrence of venous thromboembolism due to their ability to induce a prothrombotic state: immune complexes can activate platelets via the Fcγ receptor and complement system, and stimulate aggregation and procoagulant microparticle release (72). Alternatively, anti-ADA emergence could represent an epiphenomenon associated to the inflammation status related to the thrombotic episode.

Conclusions and implications for clinical practice

Before concluding, we should point out that these views and conclusions are drawn from a narrative review, which is subject to the usual limitations due to the non-systematic nature of the selection of studies and data included were not subject to any formal statistical analysis. However, heterogeneity of the reported data and differences in methodological approach to immunogenicity of anti-TNF drugs makes a systematic review on this topic difficult.

All available anti-TNF drugs may induce an immune response. However, the variation in incidence of anti-drug antibodies, as well as the impact on efficacy and safety, can be explained by drug conformation, use of concomitant immunosuppressant, dosing regimen and route of administration. Data on new anti-TNFs (e.g., CZP and GLM) are still scant, and their immunogenic potential needs to be ascertained from large surveillance studies and clinical experience. An association between anti-drug antibodies and low serum drug concentrations is clinically relevant, since it is likely related to a low response. In this regard, knowledge of the relevance of non-neutralising versus neutralising anti-drug antibodies needs to be extended, since the latter can actually affect clinical response; however, other mechanisms, such as modified clearance of drug bound within immune complexes, might also be responsible for reduction of drug levels and loss of response. Strict monitoring of both trough drug levels and anti-drug antibodies might be useful for tailoring therapy in individuals and immunogenicity assessment is needed in order to identify patients who will benefit from a change in anti-TNF therapy. Patients who failed their first-course TNF inhibitor for reasons other than an immunogenic response to the drug will probably gain more from switching to a treatment with a different mechanism of action. Conversely, TNF inhibitor immunogenicity does not affect the effectiveness of a different anti-TNF agent in patients who develop anti-drug antibodies specific to the first anti-TNF; therefore, switching to a drug of the same class might be effective. Further investigation in well-designed clinical trials is required to optimise the identification and selection of patients who may benefit from switching to another anti-TNF.

To date, it is difficult to compare the immunogenicity of the different TNF inhibitors; the huge variability of results due to methodological heterogeneity in the approach if this issue precludes the comparison between different molecules. The actual impact of immunogenicity will be fully realised when drug and anti-drug antibodies levels will be monitored routinely. In order to optimise effectiveness and safety of therapeutic proteins, careful monitoring of their bioavailability and immunogenicity is desirable; however, in order to routinely monitoring anti-drug antibodies, further investigation of accurate and cost-effective methods of antibody detection is needed.

References

38. KREMER J, RITCHLIN C, MENDELSOHN A et al.: Golimumab, a new human anti-tumor...
necrosis factor alpha antibody, administered intravenously in patients with active rheumato-
id arthritis: Forty-eight-week efficacy and safety results of a phase III randomized, dou-
46. TANAKA Y, HARIOI M, TAKEUCHI T et al.: Golimumab in combination with methotrexate-
in Japanese patients with active rheuma-
47. WEINBLATT ME, BINGHAM CO, SKO, MEN-
DELSOHN AM et al.: Intravenous golimumab is
effective in patients with active rheuma-
itoid arthritis despite methotrexate therapy
with responses as early as week 2; results of
the phase 3, randomised, multicentre,
double-blind, placebo-controlled GO-FUR-
48. ZHUANG Y, XU Z, FREDERICK B et al.:
Golimumab pharmacokinetics after repeated
subcutaneous and intravenous administra-
tions in patients with rheumatoid arthritis
and the effect of concomitant methotrexate:
an open-label, randomized study. *Clin Ther*
2012; 34: 77-90.
49. KAVAONAUGH A, MCINNES I, MEASE P et al.:
Golimumab, a new human tumor necrosis factor alpha antibody, administered every four
weeks as a subcutaneous injection in psoriatic arthritis: Twenty-four-week efficacy and safe-
ty results of a randomized, placebo-controlled study. *Arthritis Rheum* 2009; 60: 976-86.
50. KAVAONAUGH A, VAN DER HEIJDE D, MCINNES IB et al.: Golimumab in psoriatic arthritis:
one-year clinical efficacy, radiographic, and safety results from a phase III, randomized,
51. INMAN RD, DAVIS JC, JR., HEIJDE D et al.:
Efficacy and safety of golimumab in patients
with ankylosing spondylitis: results of a ran-
domized, double-blind, placebo-controlled,
52. BRAUN J, BARALIAXOS K, HERMANN KG et al.:
Golimumab reduces spinal inflammation
in ankylosing spondylitis: MRI results of the
randomised, placebo-controlled GO-RAISE
53. VAN DER MAAS A, VAN DEN BEMT BJ,
WOLBINK G, VAN DEN HOOGEN FH, VAN RIEL
PL, DEN BROEDER AA: Low infliximab serum
trough levels and anti-infliximab antibodies
are prevalent in rheumatoid arthritis patients
treated with infliximab in daily clinical prac-
54. KRIECKAERT CL, JAMNITSKI A, NUR-
MOHAMED MT, KOSTENSE PJ, BOERS M, WOLBINK G: Comparison of long-term clinical
outcome with etanercept treatment and adalimumab treatment of rheumatoid arthritis with respect to immunogenicity. *Ar-
thritis Rheum* 2012; 64: 3850-5.
55. MAYUMI H, GOOD RA: Long-lasting skin al-
lograft tolerance in adult mice induced across
fully allogeneic (multimajor H-2 plus multi-
tinmor histocompatibility) antigen barriers
by a tolerance-inducing method using cyclo-
56. MAYUMI H, HIMENO K, SHIN T, NOMOTO K:
Drug-induced tolerance to allografts in mice.
VI. Tolerance induction in H-2-haploty-
pe-identical strain combinations in mice. *Trans-
57. BENDTZEN K: Is there a need for immuno-
pharmacologic guidance of anti-tumor ne-
crosis factor therapies? *Arthritis Rheum*
2011; 63: 867-70.
58. CASSINOTTI A, TRAVIS S: Incidence and
clinical significance of immunogenicity to
infliximab in Crohn’s disease: a critical sys-
tematic review. *Inflamm Bowel Dis* 2009; 15:
1264-75.
59. WOLBINK GJ, VOSKUYL AE, LEMS WF et al.:
Relationship between serum trough inflixi-
imb levels, pretreatment C reactive protein
levels, and clinical response to infliximab
60. KALIYAPERUMAL A, JING S: Immunogenicity
assessment of therapeutic proteins and
polypeptides. *Curr Pharm Biotechnol* 2009; 10:
352-8.
61. GUDBRANDSSDOTTIR S, LARSEN R, SOREN-
SEN LI et al.: TNF and LT binding capacities
in the plasma of arthritis patients: effect of
etanercept treatment in juvenile idiopathic ar-
62. LALLEMAND C, KAYROCHORIANOU N,
STEENHOLDT C et al.: Reporter gene ass-
say for the quantification of the activity and
neutralizing antibody response to TNF-alpha
antagonists. *J Immunol Methods* 2011; 373:
229-39.
63. RISPENS T, DE VRIEZE H, DE GROOT E et al.:
Antibodies to constant domains of therapeu-
tic monoclonal antibodies: anti-hinge anti-
bodies in immunogenicity testing. *J Immunol
64. AARDELEN L, RUULS SR, WOLBINK G: Im-
munogenicity of anti-tumor necrosis factor
antibodies-ward improved methods of anti-
antibody measurement. *Curr Opin Immunol*
2008; 20: 431-5.
65. VAN SCHOUWENBURG PA, VAN DE STADT
LA, DE JONG RN et al.: Adalimumab elicits a
restricted anti-idiotypic antibody response in
autoimmune patients resulting in functional
neutralisation. *Ann Rheum Dis* 2013; 72:
104-9.
66. SVENSON M, GEBOREK P, SAXNE T, BENDT-
ZEN K: Monitoring patients treated with anti-
TNF-alpha biopharmaceuticals: assessing se-
rum infliximab and anti-infliximab antibodies.
67. MAGDELAINE-BEUZELIN C, VERMEIRE S,
GOODALL M et al.: IgG1 heavy chain-coding
gene polymorphism (G1m allotypes) and de-
velopment of antibodies-to-infliximab. *Phar-
68. JEFFERIS R, LEFRANC MP: Human immuno-
globulin allotypes: possible implications for
69. BARTELSD GM, DE GROOT E, NURMOHAM-
ED MT et al.: Surprising negative association
between IgG1 allotype disparity and anti-
adalimumab formation: a cohort study. *Ar-
thritis Res Ther* 2010; 12: R221.
70. VAN DER LAKEN CJ, VOSKUYL AE, ROOS JC
et al.: Imaging and serum analysis of immu-
ne complex formation of radiolabelled infliximab and anti-infliximab in responders and
non-responders to therapy for rheumatoid ar-
71. JAMNITSKI A, BARTELSD GM, NURMOHAM-
ED MT et al.: The presence or absence of antibodies to infliximab or adalimumab de-
termines the outcome of switching to etaner-
72. KORSWAGEN LA, BARTELSD GM, KRIECK-
AERT CL et al.: Venous and arterial throm-
boembolic events in adalimumab-treated
patients with antiadalimumab antibodies: a
case series and cohort study. *Arthritis Rheum*
2011; 63: 877-83.
73. VULTAGGIO A, MATUCCIA, NENCINI F et al.:
Anti-infliximab IgE and non-IgE antibodies
and induction of infusion-related severe ana-
phylactic reactions. *Allergy* 2010; 65:
657-61.
74. STEENHOLDT C, SVENSON M, BENDTZEN K,
THOMSEN OO, BRYNSKOV J, AINSWORTH
MA: Severe infusion reactions to infliximab:
aetiology, immunogenicity and risk factors
in patients with inflammatory bowel disease.