Systematic literature review on economic implications and pharmacoeconomic issues of rheumatoid arthritis

G. Furneri¹, L.G. Mantovani², A. Belisari¹, M. Mosca³, M. Cristiani¹, S. Bellelli⁴, P.A. Cortesi¹,⁵, G. Turchetti⁴

¹Fondazione Charta, Milan, Italy; ²Faculty of Pharmacy, Federico II University of Naples, Naples, Italy; ³Rheumatology Unit, Department of Internal Medicine, University of Pisa, Italy; ⁴Istituto di Management, Scuola Superiore Sant’Anna, Pisa, Italy; ⁵CESP, Centre of Research in Public Health, University of Milano Bicocca, Milan, Italy.

Gianluca Furneri
Lorenzo G. Mantovani, DSc
Andrea Belisari, PharmD, MSc
Marta Mosca, MD, PhD
Marco Cristiani
Stefania Bellelli, PhD
Paolo A. Cortesi, PharmD, PhD
Giuseppe Turchetti, PhD, Fulbright Scholar

Please address correspondence to:
Lorenzo G. Mantovani, Facoltà di Farmacia, Federico II, Università di Napoli, Via Domenico Montesano 49, 80131 Napoli, Italy.
E-mail: lorenzo_mantovani@hotmail.com

Received and accepted on September 28, 2012.

Clin Exp Rheumatol 2012; 30 (Suppl. 73): S72-S84.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2012.

Key words: rheumatoid arthritis, cost, economic, pharmacoeconomic, review

ABSTRACT

Objective. To provide a state of the art of economic analyses applied to rheumatoid arthritis (RA).

Methods. A systematic literature review on economic consequences and pharmacoeconomic issues of RA was performed.

Results. 127 valid articles were examined in this review. Generally, the financial impact of RA is substantial for health-care systems and society worldwide, although differences exist among national economies. Both direct and indirect (i.e. loss of productivity) costs contribute to economic burden of RA and must be taken into account when estimating overall impact to society. Disease severity, disease activity, age and socioeconomic status have been found to be the most relevant predictors of cost increase in RA. Moreover, introduction of biological anti-rheumatic agents has significantly raised direct medical costs in certain patients, but has also led to marked improvements in reducing disease activity, joint damage, and productivity loss in many of these patients. RA has also a significant impact on all aspects of quality of life; recent publications on health utility scores showed RA to be one of the diseases associated with poorest quality of life.

Conclusions. RA represents a clinical and economic burden for healthcare systems. Although attributable RA costs have been extensively evaluated over the last decades, several issues, especially concerning the use of expensive therapies, must be addressed and frequently updated. Future research should also provide health economic evidence from usual practice settings, and on the economic impact of different therapeutic approaches to pursue specific clinical targets in individual patients.

Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease affecting approximately 0.05–1% of the population (1, 2). The course of RA is variable, but for a substantial proportion of patients it is characterised by persistent pain and stiffness, progressive joint destruction, functional disability, and premature mortality (3). RA also presents a serious socio-economic burden in terms of both direct medical and non-medical costs, and indirect costs (i.e. productivity loss, premature mortality, and burden for caregivers) (4-9).

The introduction of early therapy with disease-modifying anti-rheumatic drugs (DMARDs), particularly widespread use of methotrexate, led to substantial improvement in status of many patients. Nonetheless, about 10–40% of patients have incomplete responses to methotrexate and other DMARDs, for whom biological therapies have led to marked improvements in disease activity control and prevention of joint damage. However, biological therapies are far more costly than traditional DMARDs, and the higher direct medical costs limit prescription of biologic agents in RA. Market access conditions such as reimbursement status, level of co-payment, prescribing restrictions, will impact payers’ level of acceptance of biologic agents for specific patients. As per-capita healthcare expenditures reflect payers’ willingness to pay, prescription of biological drugs is much more developed in high-income countries (10).

The high societal costs of RA and new biological therapies have led healthcare payers and providers to increase their level of attention on this condition, particularly in the current period of budget constraints. By using cost-effectiveness analysis to evaluate the economic “value” of a drug, public payers dictate to some extent what treatments can
or cannot be charged on their budget. This is particularly important in the RA treatment landscape, where few patients could afford costs of biological therapies without health insurance, be it public or private.

In particular, GRADE (Grading of Recommendations Assessment, Development and Evaluation) encourage incorporation of economic issues in RA recommendations regarding treatment (11). We systematically reviewed existing economic studies in RA to better understand the economic consequences of this disease and its treatment, as presented in this report.

Materials and methods
Search strategy and inclusion / exclusion criteria
To collect and review the evidence, we performed a systematic literature review aimed to select economic evaluations in RA. In order to focus on the most recent clinical practice, we included studies, analyses and reviews on RA economic topics published over the last 5 years (from May 2007 until June 2012) through a MEDLINE search (however some publications older than 5 years mentioned in selected reviews could have been reported in this article). As the aim of the review was to perform an assessment of therapeutic classes and not active principles individually, head-to-head studies comparing single active principles were not included. To maximise retrieval of all pertinent papers we applied medical subject headings (“MeSH”) terms, or keyword searches when at all appropriate. Box 1 and Table I provide details of the search strategy. After scanning all titles and abstracts, we retrieved the full text for all potentially relevant studies.

Data review and analysis
Two members of the review team examined studies in a three-step process. First, the title list was considered; second, abstracts of those that passed the title review were examined; third, potentially relevant articles were reviewed. Disagreement between the two reviewers was resolved by consensus of a third party. Data from eligible studies were extracted and a spreadsheet was used for data entry. The articles were also categorised according the classification illustrated in Figure 1.

Results
We screened 505 non-duplicate citations (last update: May 25, 2012), 378 of which (74.9%) were excluded as they did not meet pre-defined inclusion criteria. 127 economic evaluations were included, 19 of which (15%) were reviews. Research details are shown in Figure 1. These retrieved articles were NOT hand searched for further references.

Results Costs of RA
A large number of economic evaluations have been performed in recent years to assess the burden of RA for patients, healthcare providers (public and private), and society in general. Tables II and III summarise main findings with regard of direct and indirect costs. Of course, methodological approaches and primary objectives vary consider-

<table>
<thead>
<tr>
<th>Box 1 Search terms and strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(“rheumatoid arthritis”[TIAB]) AND (“cost” OR “economic” OR “cost of illness” OR “burden” [TIAB]) AND (“Humans”[Mesh])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table I. Search inclusion/exclusion criteria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion</td>
</tr>
<tr>
<td>Exclusion</td>
</tr>
<tr>
<td>Including quantitative assessment</td>
</tr>
<tr>
<td>Including qualitative assessment only</td>
</tr>
<tr>
<td>Informing about the economic impact of RA</td>
</tr>
<tr>
<td>Article non in English</td>
</tr>
<tr>
<td>Informing about the economic analysis of RA treatments</td>
</tr>
<tr>
<td>Head-to-head drug pharmacoeconomic comparisons</td>
</tr>
<tr>
<td>Published from May 2007 until June 2012</td>
</tr>
<tr>
<td>Published before May 2007</td>
</tr>
</tbody>
</table>

Fig. 1. Strategy search results*
*The sum of articles by category is not equal to 127 as some categories are not mutually exclusive.
**Includes cost-effectiveness, cost-utility, cost-benefit, cost-minimisation and budget impact analyses.
Economic implications of RA / G. Furneri et al.

<table>
<thead>
<tr>
<th>Main Author</th>
<th>Year of publication (Country)</th>
<th>Summary of results</th>
<th>Methodological notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee TJ (12)</td>
<td>2012 (South Korea)</td>
<td>Total annual costs by functional severity: - Class I: 4,230,204 Korean won - Class II: 7,250,674 Korean won - Class III: 8,046,434 Korean won - Class IV: 8,206,215 Korean won</td>
<td>Evaluation of direct medical + non-medical + indirect costs (societal perspective)</td>
</tr>
<tr>
<td>Simons WR (13)</td>
<td>2012 (USA)</td>
<td>Per patient annual costs by year: - $4,422: year I - $2,902: year II - $1,882: year III</td>
<td>Evaluation of healthcare direct costs during three consecutive years</td>
</tr>
<tr>
<td>McBride S (19)</td>
<td>2011 (USA)</td>
<td>Per patient annual costs: - Group 1 (patients receiving a single anti-TNF: drug costs=$7,058; RA related costs=$13,312 - Group 2: patients switching from anti-TNF: drug costs=$8,340; RA related costs=$15,048 - Costs in Group 2 were significantly higher than in Group 1</td>
<td>Evaluation of drug costs and total healthcare costs (during first year since anti-TNF initiation)</td>
</tr>
<tr>
<td>Metsios GS (21)</td>
<td>2011 (UK)</td>
<td>Significant predictors (p<0.05) of increased number of hospital admissions / increased length of stay: - Disease activity (measured with disease activity score: DAS28) - Physical activity (measured with International Physical Activity Questionnaire)</td>
<td>Evaluation of hospital number of admissions and hospital length of stay (regression analysis)</td>
</tr>
<tr>
<td>Zhu TY (26)</td>
<td>2011 (Hong Kong)</td>
<td>Per patient annual costs: - Total costs: US$ 9,286 - Direct costs: 40% of total costs</td>
<td>Longitudinal evaluation (follow-up=10.8 years) of direct + indirect costs</td>
</tr>
<tr>
<td>Kirchhoff T (28)</td>
<td>2011 (Germany)</td>
<td>Per patient annual costs: - Total costs (direct + indirect): €4,280 in 1997-98; €3,830 in 2002 (p<0.05 for the difference) - Higher costs in 2002 (vs. 1997-98; p<0.001) for medications and hospitalisations</td>
<td>Evaluation of direct medical + indirect costs (societal perspective) in two different periods: 1997-98 vs. 2002</td>
</tr>
<tr>
<td>Beresniak A (29)</td>
<td>2011 (France)</td>
<td>Per patient 6-months costs: - Remitted patients: DAS28 ≤ 2.6): €771 - Low disease activity state (DAS28 ≤ 2.6): €905 - Moderate to high disease activity (DAS28 >2.6): €1,215</td>
<td>Evaluation of 6-months direct costs (excluding drugs), by disease severity (measured with Disease Activity Score 28-joint count)</td>
</tr>
<tr>
<td>Brach M (32)</td>
<td>2011 (Switzerland)</td>
<td>Per patient annual direct costs: - CET: €7,945.34 - SET: €5,619.25</td>
<td>Evaluation of direct costs in two different groups of patients (cognitive-behavioural group therapy, CET, and supportive-experiential group therapy, SET)</td>
</tr>
<tr>
<td>Franke LC (35)</td>
<td>2009 (Netherlands)</td>
<td>Per patient annual costs: - RA: €14,906 - Ankylosing spondylitis: €9,374</td>
<td>Comparison of direct medical + family burden + indirect costs (societal perspective) in RA vs. ankylosing spondylitis</td>
</tr>
<tr>
<td>Boonen A (36)</td>
<td>2009 (Netherlands)</td>
<td>Qualitative assessment: - RA is associated to higher direct costs than ankylosing spondylitis - Main cost predictor of increased costs: reduced physical activity</td>
<td>Evaluation of direct and indirect cost predictors in RA and ankylosing spondylitis</td>
</tr>
<tr>
<td>Saraux A (37)</td>
<td>2010 (France)</td>
<td>Per patient 6 months direct costs: - Patients remitted/achieving low disease activity: €905 - Patients NOT achieving low disease activity: €1,215</td>
<td>Evaluation of 6-months direct costs, by achievement of remission/or low disease activity</td>
</tr>
<tr>
<td>Kohelt G (38)</td>
<td>2009 (Sweden)</td>
<td>Direct + indirect costs over 10-year period: - US$336,000</td>
<td>Modelling the 10-year direct + indirect costs of RA patients receiving biological drugs</td>
</tr>
<tr>
<td>Tanaka E (41)</td>
<td>2009 (Japan)</td>
<td>Out-patient healthcare costs: - JPY271,498 in 2000 - JPY292,417 in 2004 - 7.7% increase from 2000 to 2004 - Predictors of increased out-patient costs: aging, longer RA duration, higher Disease Activity Score of 28 Joints (DAS28), and higher Health Assessment Questionnaire (J-HAQ) score</td>
<td>Evaluation of out-patient healthcare costs before introduction of biological therapies (from 2000 to 2004)</td>
</tr>
<tr>
<td>Malhan S (42)</td>
<td>2010 (Turkey)</td>
<td>Per patient annual direct costs: - Total direct costs: €2,669.14 - Out-patient costs: €240.40 - Cost for single hospital stay: €37.76 - Costs per medication: €2,238</td>
<td>Evaluation of direct healthcare costs, using reimbursement agencies perspective</td>
</tr>
<tr>
<td>Flipon E (44)</td>
<td>2009 (France)</td>
<td>Per patient annual costs: - €5,928 in RA patients - €2,424 in patients with undifferentiated arthritis</td>
<td>Evaluation of direct medical + indirect RA attributable costs (2003 data)</td>
</tr>
</tbody>
</table>
Europe). Per-patient annual costs were around €21,000 in the US and €13,500 in Europe (Fig. 2 shows costs for US and larger European countries). In Europe, medical costs accounted for about one-third of overall expenditure; the majority of costs were direct costs (49% of total costs), production losses (32%) and informal care (19%). Costs in the United States were considerably higher than in Europe, due to a higher use of biological DMARDs. Results highlighted relevant cost variability across countries, potentially attributable to different factors: i) proportions of patients treated with biological drugs, ii) differences among patients on disease severity, level of comorbidity. Several studies have demonstrated that disease severity and functional disabili-

<table>
<thead>
<tr>
<th>Main Author</th>
<th>Year of publication (Country)</th>
<th>Summary of results</th>
<th>Methodological notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>March LM (48)</td>
<td>2008 (Australia)</td>
<td>Qualitative assessment: - Reduction of out-of-pocket costs and service utilisation during the first year after TKR and THR patients</td>
<td>Evaluation of out-of-pocket expenditure (patient’s perspective) in RA patients undergoing total knee replacement (TKR) or total hip replacement (THR) surgery</td>
</tr>
<tr>
<td>Kobelt G (49)</td>
<td>2008 (France)</td>
<td>Per patient annual costs: - Direct healthcare costs in societal perspective (health insurance + patient): €11,757 - Direct costs in health insurance perspective (€9,216) - Direct non-medical costs in societal perspective (health insurance + patient): €11,757</td>
<td>Evaluation of direct medical + non-medical + indirect costs (societal perspective)</td>
</tr>
<tr>
<td>Favalli EG (51)</td>
<td>2008 (Italy)</td>
<td>Per patient annual treatment costs: - Without vial optimisation: €8,454.65 - With vial optimisation (reducing drug wastage): €7,505.85</td>
<td>Evaluation of treatment costs in RA patients receiving a biological therapy (infliximab)</td>
</tr>
<tr>
<td>Chermon GC (52)</td>
<td>2008 (Brazil)</td>
<td>Per patient annual costs: - Total costs: US$424.14 - Direct costs: 95% of total costs - Drug costs: 59% of total costs - Indirect costs: 5% of total costs</td>
<td>Evaluation of direct + indirect costs for RA patients and health public service (societal perspective)</td>
</tr>
<tr>
<td>Khanna R (55)</td>
<td>2007 (USA)</td>
<td>Medical costs covered by Medicare: - $2,379 per year Patients with ≥1 prescription: - Narcotic analgesic: 67.8% - Nonsteroidal anti-inflammatory drugs: 58.8% - Oral steroid: 48.3% - Disease-modifying anti-rheumatic drug: 40.1% - Biologic agent: 12.4%</td>
<td>Evaluation of resources consumption and medical services covered by Medicare in RA US patients</td>
</tr>
<tr>
<td>Lundkvist J (2)</td>
<td>2008 (Multi-countries)</td>
<td>Total health costs: - €45.3 billion/year in Europe - €41.6 billion/year in the US</td>
<td>Review of RA cost-of-illness studies measuring direct and/or indirect costs, or evaluating overall economic burden</td>
</tr>
<tr>
<td>Juillard-Condat B (59)</td>
<td>2007 (France)</td>
<td>Annual RA costs: - Total costs: €15,148.57 after etanercept initiation - Total costs: €5,248.95 prior to etanercept initiation - Drug costs: €9,995.23 after etanercept initiation - Drug costs: €120.12 prior to etanercept initiation - No difference between indirect costs before and after therapy initiation</td>
<td>Evaluation of direct + indirect costs for RA patients, prior and after treatment initiation with etanercept</td>
</tr>
<tr>
<td>Jacobsson LT (61)</td>
<td>2007 (Sweden)</td>
<td>Annual RA costs: - Total costs: €12,020 - Direct costs: 41% of total costs (mainly drugs, community services and hospitalisations)</td>
<td>Evaluation of direct + indirect costs for RA patients (2002 data)</td>
</tr>
</tbody>
</table>

Data taken from abstracts of selected articles.
Table III. Main findings from studies evaluating indirect costs in RA*.

<table>
<thead>
<tr>
<th>Main Author</th>
<th>Year of publication</th>
<th>Lost working days: summary of results</th>
<th>Economic impact of productivity loss: summary of results</th>
<th>Effects on working rate retirement/disability pensions: summary of results</th>
<th>Methodological notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simons WR (13)</td>
<td>2012 (USA)</td>
<td>Lost working days attributable to RA: 4.86 days: year I - 1.70 days: year II - 2.99 days: year III</td>
<td>Reduction of annual income: $2,404: year I - $2,207: year II - $1,212: year III</td>
<td>Rate of employment in RA patients: 36.8%: year I - 40.5%: year II - 44.0%: year III</td>
<td>Evaluation of working status and productivity loss during three consecutive years</td>
</tr>
<tr>
<td>Hallert E (27)</td>
<td>2012 (Sweden)</td>
<td>Lost working days (per-month), attributable to medication errors: - 3 days/month</td>
<td>Rate of disability pensions (DP): 1990: 1.9% of total DPs - 2000: 1.5% of total DPs - 2009: 1.0% of total DPs</td>
<td>Rate of disability pensions attributable to RA over three decades, using the Swedish National Social Insurance Register</td>
<td>Evaluation of effect medication errors on productivity loss, in rheumatology patients (292 out of 381 had RA)</td>
</tr>
<tr>
<td>Aceves-Avila FJ (63)</td>
<td>2011 (Mexico)</td>
<td>Annual sick leave and disability pension days: 78 days - DMARD monotherapy: 132 days - Biological therapies: 190 days</td>
<td>Rate of disability pensions (DP), before therapy initiation: - DMARD monotherapy: 10% - DMARD combination: 12% - Biological therapies: 43%</td>
<td>Evaluation of sick leave and disability pension rates from national registers, over the period 1999-2007 (RA population stratified by type of therapy)</td>
<td>Evaluation of progression of sick leave and disability pension rates over time, from national registers, in RA patients diagnosed during the period 1999-2007</td>
</tr>
<tr>
<td>Langley PC (18)</td>
<td>2011 (China)</td>
<td>Annual sick leave and disability pension days: 43 days/year: year I from diagnosis - 77 days/year: year II from diagnosis - 147 days/year: year III from diagnosis</td>
<td>Rate of disability pensions (DP), before therapy initiation: - DMARD monotherapy: 10% - DMARD combination: 12% - Biological therapies: 43%</td>
<td>Evaluation of sick leave and disability pension rates from national registers, over the period 1999-2007 (RA population stratified by type of therapy)</td>
<td>Comparison of progression of sick leave and disability pension rates over time, from national registers, in RA patients diagnosed during the period 1999-2007</td>
</tr>
<tr>
<td>Zhu TY (26)</td>
<td>2011 (Hong Kong)</td>
<td>Per patient annual productivity costs: Total costs: US$ 9,286 Direct costs: 40% of total costs</td>
<td>Per patient annual productivity costs: Total costs: US$ 9,286 Direct costs: 40% of total costs</td>
<td>Evaluation of direct medical + indirect costs (societal perspective) in two different periods: 1997-98 vs. 2002</td>
<td>Evaluation of direct medical + indirect costs (societal perspective) in two different periods: 1997-98 vs. 2002</td>
</tr>
<tr>
<td>Kirchhoff T (28)</td>
<td>2011 (Germany)</td>
<td>Per patient annual productivity costs: €1,480 in 1997-98; €380 in 2002 (p<0.05 for the difference)</td>
<td>Per patient annual productivity costs: Total costs: €7,677 Direct costs: 40% of total costs</td>
<td>Evaluation of direct medical + indirect costs during the difference (1997-98 vs. 2002)</td>
<td>Evaluation of direct medical + indirect costs during the difference (1997-98 vs. 2002)</td>
</tr>
<tr>
<td>Bowman SJ (69)</td>
<td>2010 (UK)</td>
<td>Per patient annual productivity costs: pSS patients: £7,677 RA patients: £10,444 - Community controls: £892</td>
<td>Per patient annual productivity costs: Total costs in RA: £14,906 Direct costs in RA: more than 50% of total costs</td>
<td>Evaluation of indirect costs in three groups of women: RA patients, primary Sjögren’s syndrome (pSS) patients, community controls</td>
<td>Evaluation of indirect costs in three groups of women: RA patients, primary Sjögren’s syndrome (pSS) patients, community controls</td>
</tr>
<tr>
<td>Sokka T (70)</td>
<td>2010 (Multi-countries)</td>
<td>Probabilities of continuing to work: 80% at 2 years - 68% at 5 years</td>
<td>Probabilities of continuing to work: 80% at 2 years - 68% at 5 years</td>
<td>Evaluation of probabilities of continuing to work in patients with RA</td>
<td>Evaluation of probabilities of continuing to work in patients with RA</td>
</tr>
<tr>
<td>Franke LC (35)</td>
<td>2009 (Netherlands)</td>
<td>Per patient annual productivity costs: Adalimumab: $9.071 - Other RA therapies: $16.335 - Cost for reduced productivity: 5% of total indirect costs - Costs for absenteeism/disability 21% of total indirect costs - Costs job turnover: 21% of total indirect costs</td>
<td>Per patient annual productivity costs: Total costs in RA: €14,906 Direct costs in RA: more than 50% of total costs</td>
<td>Evaluation of direct medical + family burden + indirect costs (societal perspective) in RA vs. ankylosing spondylitis</td>
<td>Comparison of direct medical + family burden + indirect costs (societal perspective) in RA vs. ankylosing spondylitis</td>
</tr>
<tr>
<td>Birnbaum H (72)</td>
<td>2009 (USA)</td>
<td>Per patient weekly productivity gain vs. baseline: $8.169 (p<0.05)</td>
<td>Per patient weekly productivity gain vs. baseline: $8.169 (p<0.05)</td>
<td>Model estimation of indirect costs in RA patients receiving adalimumab vs. other RA therapies</td>
<td>Model estimation of indirect costs in RA patients receiving adalimumab vs. other RA therapies</td>
</tr>
<tr>
<td>Hoving JL (73)</td>
<td>2009 (Netherlands)</td>
<td>Per patient weekly productivity gain vs. baseline: $8.169 (p<0.05)</td>
<td>Per patient weekly productivity gain vs. baseline: $8.169 (p<0.05)</td>
<td>Evaluation of productivity in RA patients after a 6-months treatment with TNF inhibitors</td>
<td>Evaluation of productivity in RA patients after a 6-months treatment with TNF inhibitors</td>
</tr>
</tbody>
</table>
Some studies evaluated costs (or resource consumption) of RA by disease severity/activity. Disease activity progression was found to predict an increase of costs (21, 41). A French study published in 2011 (29) assessed the use of direct medical resources, excluding drugs, according to level of disease activity (using DAS score as the stratification variable). Results indicated that costs for patients achieving remission were €771 over the first 6 months period and €511 during the next 6 months period. For patients achieving a low disease activity state, costs were estimated at €905 for the first 6 months and €696 for each 6 months period. Finally, patients still in moderate to high disease activity had higher costs (€1,215 for the first 6 months). In the same year, a similar study conducted in Sweden (27) analysed the relationship between the level of disease activity at 3-month follow-up and costs over the following 4 years. Patients with low disease activity score levels incurred relatively low direct costs (€2,760 per year 1; €2,447 per year 2; €1,693 for year 3 and €2,073 per year 4) and patients with moderate to high disease activity score levels incurred higher direct costs (€4,147 per year 1; €3,173 per year 2; €3,085 per year 3 and €3,666 per year 4) independent of age and gender.

Some studies have also examined out-of-pocket expenditure. In Belgium, long-standing RA patients (>12 years since diagnosis) spent more than twice, compared to early-diagnosed RA patients (<1 year: €1,098 vs. €469: (137, study published in 2005, included in article ref. 23). Out-of-pocket expenditures were estimated to be AUS$1,523 per patient per year in Australia; higher expenses were seen with increasing disability and in women (138, study published in 2002, included in article ref. 23). A US study linked out-of-pocket expenditure to health outcomes, showing that adherence to drug treatment, particularly for expensive drugs, was lower in patients with the highest co-payments or co-insurance (47).

Over the past five years, 45 studies reporting the impact of RA on work loss and work disability have been published. Almost all studies found that productivity loss (i.e. absenteeism and presenteeism) in RA determines relevant expenditure for both employers and employees, but work disability rates and associated indirect costs vary across studies. A recent review published in 2011 evaluated 12 cross-sectional and 9 longitudinal studies aimed to measure indirect costs or lost working days (23). One of the studies examined in this review (139) reported that RA patients had an increased risk to lose working days/retire, compared with matched controls (odds ratio; OR: 1.2–3.4). Three longitudinal studies in early RA showed that one of three working patients voluntarily retired within the first 2 years after diagnosis, while another study found even higher figures (percentage of patients leaving work by 2.5 years and 6 years from diagnosis: 40% and 53%, respectively) (140, study published in 2007, included in article ref. 23). A large US observational study on work disability in RA (average duration of follow-up: 12.8 years) found an incidence rate of 8.7% for stopping work and 4.0% for stopping and not resuming work (141, published in 2007, included in article ref. 23).

Estimation of indirect costs depended on the approach adopted: loss of productivity amounted to €8,452 using human capital approach vs. €1,441 using friction cost approach. Accord-
Economic implications of RA / G. Furneri et al.

Fig. 2. Distribution of costs from a recent cost-of-illness review (adapted from 2).

...ing to Lundkvist’s review (2), indirect costs were €16,584 billion per year in Europe and €8,716 billion per year in the US. Per patient annual values were quite similar: €4,300 in Europe and €4,400 in the US. However, the average value for Europe is the result of very different estimations. In general terms, studies conducted in Western Europe reported much higher indirect costs than Eastern countries. The highest value has been reported for Germany (€11,400), perhaps a country with one of the most developed public welfare system. Variability of indirect costs across countries might be attributable to different reasons, such as social security systems and welfare, clinic conditions of enrolled patients, duration of follow-up, which could realistically have affected productivity loss. Increasing age, manual work, larger impact on physical function (measured by the Health Assessment Questionnaire, HAQ), level of co-morbidity and duration have been found statistically significant predictors of increased indirect costs (142, 143 studies published in 2006, included in article ref. 75). There were also geographic differences, indicating the importance of social security systems and unemployment rates. For example, a study comparing patients with early RA in Finland and the USA found that Finnish patients had higher rates of work disability (expressed as probability of working at 36 months: 0.84 vs. 0.89; p=0.02) despite better scores for pain and function. This was attributed to less stringent criteria for receiving disability benefits in Finland (144, study published in 2006, included in article ref. 75).

Although these methodological issues can determine different results, it is acknowledged that RA is strictly related to work limitations, high rates of absenteeism and presenteeism. Therefore most studies highlight the opportunity of including these type of costs and adopt a broad economic perspective when evaluating the economic burden of RA and comparing cost-effectiveness of different alternatives for patient management.

Quality of Life in RA

Different generic and specific quality-of-life measures have been used to assess RA. The most widely used were Short-Form (SF) 36, EuroQoL (EQ-5D) and the HAQ. RA has a significant impact on all components of the SF-36. The most recent review, published in 2011, reported 17 observational studies and 6 randomised controlled trials (79) using SF-36 to evaluate the impact of RA on quality of life assessed. These results come from data of 5,090 patients with a mean age of 56 years (range 43–64) and mean disease duration of 9.5 years (range <1–16) and showed that physical component scores (PCSs) were lower than mental component scores (MCSs), with the exception of vitality. The lowest scores were seen for the role physical domain. Poorer quality of life scores were associated with higher disease activity.

Data from trials have showed that biological drugs provide greater benefits in PCS scores (weighted mean difference of 4.55; 95% confidence interval (CI) 3.80–5.31; p<0.00001) compared with MCS scores (weighted mean difference of 2.59 (95% CI 1.66–3.52, p<0.00001).

The HAQ is widely used in RA because of its effectiveness in measuring patient function. Total score of the HAQ ranges from 0 to 3, with scores of 0–1 indicating mild/moderate disability, 1–2 moderate/severe disability and 2–3 severe/very severe disability (145). In RA, an improvement of at least 0.22 is considered indicative of improved functional status (146, 147). Moreover, HAQ scoring variations are strongly correlated with EQ-5D, SF-6D, and Health Utilities Index (HUI)-3 (148). HAQ scores are traditionally increased over time at varying rates (Figure 3), although in general, at slower rates in recent years. HAQ score is high in patients with active disease (149, 150), and it lowers with the improvement of inflammatory synovitis. In addition HAQ is affected by joint damage with a strong correlation, in established RA, between HAQ scores and measures of erosive damage (149). Other factors associated with higher HAQ scores include depression, low socioeconomic status (151, 152) and co-morbidities (153). As the EuroQol is used to evaluate health costs, it is interesting to observe that this index is closely associated with socioeconomic deprivation. An analysis of EuroQol scores in a trial of intensive DMARD treatment by Harrison et al. (155) showed that RA patients who have high levels of deprivation have low EuroQol scores compared to patients with low levels of deprivation. There is also strong evidence that EuroQol scores are worse in RA patients with multiple co-morbidities (156). Many studies have evaluated utilities to assess QoL in RA patients (18, 84, 85 98). Moreover, utilities have been used in cost-utility analyses comparing pharmacological alternatives (38, 108). A comparison of utilities across studies is extremely complex, due to different clinical and demographic characteristics of RA populations. However these
Cost-effectiveness analyses in RA
The high-cost of new biologic therapies has raised several concerns on their prescribing cost-opportunity. In particular, health-economists have tried to address under which conditions (monotherapy vs. combination with conventional DMARDs, first vs. second line treatment) usage of biologics is sustainable from an economic viewpoint (158), including several systematic reviews to assess cost-effectiveness of different therapeutic strategies of RA, including biologic agents (79, 103, 105). Nevertheless, a clear assessment of cost effectiveness is difficult due to the high variability of methodologies and approaches used. Results vary according to adopted perspective (payer perspective vs. societal perspective), choice of comparators (head-to-head vs. placebo controlled settings), and type of selected patients (e.g. patients with severe or highly active disease vs. remitted patients).

Summarising, the above-mentioned reviews suggest that usage of biologics (mainly TNF antagonists) either in monotherapy or in association with DMARDs, would not be recommended in RA naïve patients, due to high incremental cost-effectiveness ratios vs. alternatives (mainly methotrexate and other traditional DMARDs), along with evidence that similar efficacy with small molecule traditional DMARDs is seen in 50−80% of patients, and higher levels of adverse events are seen with biological agents. Feely et al. (34) confirm these findings, also highlighting the importance of early initiation with conventional DMARDs to improve cost-effectiveness of the intervention.

On the other hand, the usage of these new-generation agents (both in monotherapy and in combination with MTX) is cost-effective compared to DMARDs in patients who have failed DMARD treatment or for whom DMARDs treatment is contra-indicated, using a willingness to pay threshold of £50,000 per QALY (105). However in one of these reviews (103), the authors argued that cost-effectiveness results were favourable for biologics due to the choice of drug as second line treatment comparator (in most cases methotrexate, the same agent used in first line treatment), and that more appropriate design should be set up to confirm these findings. Brennan et al. modeled cost-effectiveness of anti-TNFs vs. conventional DMARDs in patients who failed two traditional disease-modifying anti-rheumatic drugs (121). Therapy with anti-TNF was found cost-effective (£23,882/QALY gained for the base case), with 84% probability to be below the accepted threshold of £30,000. The two main issues, early treatment with conventional DMARDs and switch to biologics after (at least one) conventional DMARDs failure, have been simultaneously evaluated by Finckh et al. (113), who compared three different therapeutic strategies: i) “pyramid” strategy with initial nonsteroidal anti-inflammatory drugs, patient education, pain management, and low-dose glucocorticoids, and disease-modifying antirheumatic drugs (DMARDs) at 1 year for non-responders; ii) early DMARD therapy with methotrexate (159); iii) early therapy with biologics and methotrexate. In this study early DMARD treatment was more cost-effective (lower ICER) than early biologic treatment, vs. pyramid strategy, used as reference.

Discussion
As all inflammatory connective tissue diseases, rheumatoid arthritis is a chronic disease with a relevant burden for national healthcare services, healthcare providers, and society in general.

Fig. 3. Annual HAQ progression in 14 studies published between 2000 and 2010 (adapted from 79).
The definition of appropriate time-frames to adopt biological therapies based on clinical manifestations, on the identification of novel biomarkers as well as economic considerations, would represent, in the next years, the main challenges for health economists involved in decision making support in RA and other rheumatic diseases (163-169).

References
27. HALLERTE E, HUSBERS M, SKOGHT J: 28-Joint count disease activity score at 3 months after diagnosis of early rheumatoid arthritis is strongly associated with direct and indirect costs over the following 4 years; the Swedish TIRA project. Rheumatology (Oxford) 2011; 50: 1259-67.
50. NEOVIUS M, SIMARD JF, ASKLING J; ARTIS STUDY GROUP: How large are the productivity losses in contemporary patients with RA, and how soon in relation to diagnosis do they develop? *Ann Rheum Dis* 2011; 70: 1010-5.
Economic implications of RA / G. Furneri et al.

91. HLATKY MA: What we can learn from a decision model. comment on "Cost-effective-ness of adding magnetic resonance imaging to rheumatoid arthritis management". Arch Intern Med 2011; 171: 667-8.

S-82
from undifferentiated arthritis to rheuma-
toid arthritis: the clinical and economic im-

120. STOCKL KM, SHIN JS, LEW HC et al.: Out-
comes of a rheumatoid arthritis disease
therapy management program focusing on
medication adherence. J Manag Care Pharm
2010; 16: 593-604.

121. BRENNAN A, BANSBACK N, NIXON R

122. BENUCCI M, IANNAZZO S, ZANIOLO O,

123. CHOI HK : Statin therapy in rheumatoid ar-

124. COOPER J, YUEN R, WARD S, ANIS A,

125. TUOMINEN R, AZBEL M, HEMMIL

126. OZDEMIR S, JOHNSON FR, HAUBER AB:

127. SCHIFF MH: Preventing the progression

128. STOCKL KM, SHIN JS, LEW HC et al.: Out-
comes of a rheumatoid arthritis disease
therapy management program focusing on
medication adherence. J Manag Care Pharm
2010; 16: 593-604.

129. SMOLEN JS, LANDERWE R, BREDDEVLD FC
et al.: EULAR recommendations for the
management of rheumatoid arthritis with
synthetic and biological disease-modifying
antirheumatic drugs. Ann Rheum Dis 2010;
69: 964-75.

130. BELL KJ, IRWIG L, MARCH LM, HAYEN A,
MACASKILL P, CRAIG JC: Should response
rules be used to decide continued subsidy
of very expensive drugs? A checklist for
decision makers. Pharmacoeplidimelon Drug Saf

131. OSTERGAARD M, CONAGHAN PG,
O’CONNOR P et al.: Reducing invasiveness,
duration, and complexity of magnetic resonance
imaging in rheumatoid arthritis by omit-
ing intravenous contrast injection – Does it
change the assessment of inflammatory and
destructive joint changes by the OMERACT

132. POLINSKI JM, MOHR PE, JOHNSON L: Im-
pact of Medicare Part D on access to and cost
sharing for specialty biologic medications
for beneficiaries with rheumatoid arthritis.

133. OLDFIELD V, DHILLON S, PLOSKER GL:
Tocilizumab: a review of its use in the
management of rheumatoid arthritis. Drugs

134. BANSBACK N, MARRA CA, FINCKI A, ANIS
A: The economics of treatment in early rheumatoid
arthritis. Best Pract Res Clin Rheumatol

135. JOYCE GF, GOLDMAN DP, KARACA-MAN
DIC P, LAWLESS GD: Impact of specialty
drugs on the use of other medical services.

136. KOBELT G: Thoughts on health econom-
ics in rheumatoid arthritis, Ann Rheum Dis

137. WESTHOVENS R, BOOEN A, VERBRUG-
GEN L et al.: Healthcare consumption and
direct costs of rheumatoid arthritis in Bel-

138. LAPSLEY HM, MARCH LM, TRIBE KL, CROSS
GEN L: Utility-based outcomes made easy: the
Health Assessment Questionnaire score.

139. BANSBACK N, MARRA CA, FINCKI A, ANIS
A: The economics of treatment in early rheumatoid
arthritis. Best Pract Res Clin Rheumatol

140. JOYCE GF, GOLDMAN DP, KARACA-MAN
DIC P, LAWLESS GD: Impact of specialty
drugs on the use of other medical services.

141. KOEBELT G: Thoughts on health econom-
ics in rheumatoid arthritis, Ann Rheum Dis

142. WESTHOVENS R, BOOEN A, VERBRUG-
GEN L et al.: Healthcare consumption and
direct costs of rheumatoid arthritis in Bel-

143. LAPSLEY HM, MARCH LM, TRIBE KL, CROSS
GEN L: Utility-based outcomes made easy: the
Health Assessment Questionnaire score.

144. GEUKENS GA, BURDORF A, HAZES JM:
Consequences of rheumatoid arthritis for
performance of social roles—a literature re-

145. WOLFE F, ALLAIRE S, MICHAUD K: The
prevalence and incidence of work disabil-
ity in rheumatoid arthritis, and the effect of
anti-tumor necrosis factor on work disabil-

146. VERSTAPPEN SM, BIJLSMA JW, VERKLEI
H et al.: Overview of work disability in
rheumatoid arthritis patients as observed in
cross-sectional and longitudinal surveys.

147. DE CROON EM, SLUITER JK, NISSEN TF,
DUKMANS BA, LANKHORST GJ, FRINGS-
DRESEN MH: Predictive factors of work dis-
bility in rheumatoid arthritis: a systematic
literature review. Ann Rheum Dis 2004; 63:
1362-7.

148. CHUNG CP, SOKKA T, ARBOGAST PG, PIN-
CUS T: Work disability in early rheumatoid
arthritis: higher rates but better clinical sta-
tus in Finland compared with the US. Ann

149. BRUCE B, FRIES JF: The Stanford Health
Assessment Questionnaire: dimensions and
practical applications. Health Qual Life

150. WELLS GA, TUGWELL P, KRAAG GR, BAK-
ER PR, GROHL J, REDELMEIER DA: Minimum
important difference between patients with
rheumatoid arthritis: the ACR/EULAR

151. KOSINSKI M, ZHAO SZ, DEDHIYA S, OS-
TERHAUS JT, WARE JE Jr.: Determining
minimally important changes in generic and
disease-specific health-related quality of life
questionnaires in clinical trials of rheumatoid

152. MARRA CA, WOOLCOTT JC, KOPEC JA et al.:
A comparison of generic, indirect utility
tools (the HUI2, HUI3, SF-6D, and the
eq-5D) and disease-specific instruments
(the raqol and the haq) in rheumatoid

153. SCOTT DL, STRAND V: The effects of dis-
ease-modifying rheumatic drugs on the
Health Assessment Questionnaire score.
Lessons from the leflunomide clinical trials

154. SCOTT DL, SMITH C, KINGSLEY G: Joint
damage and disability in rheumatoid arthri-
tis: an updated systematic review. Clin Exp
Rheumatol 2003; 21 (Suppl. 31): 520-7.

155. MARGARETTEN M, YELIN E, IMBODEN J et al.: Predictors of depression in a multithrac-
ich cohort of patients with rheumatoid arthritis.

156. MARGARETTEN M, BARTON J, JULIAN L et al.: Socioeconomic determinants of disabili-

157. RADDNER H, SMOLEN JS, ALETAHA D:
Comorbidty affects all domains of physical
function and quality of life in patients with
rheumatoid arthritis. Rheumatology 2011;
50: 381-8.

158. GULFE A, KRISTENSEN LE, SAXNE T,
JACOBSSON LT, PETERSSON IF, GEBOREK P:
Utility-based outcomes made easy: the
number needed per quality-adjusted life year
gained. An observational cohort study of tu-
cor necrosis factor blockade in inflammato-
ry arthritis from Southern Sweden. Arthritis

159. HARRISON MJ, TRICKER KJ, DAVIES L et al.: The relationship between social deprivation,
disease outcome measures, and response to
treatment in patients with stable, long-stand-

