Fibromyalgia: a critical digest of the recent literature

C. Giacomelli¹, F. Sernissi¹, P. Sarzi-Puttini², M. Di Franco³, F. Atzeni², L. Bazzichi¹

Introduction
Fibromyalgia (FM) syndrome is a chronic disease with unknown etiology, characterised by widespread pain and fatigue. Moreover, several patients manifest non-specific symptoms such as sleep disturbances, mood disorders, and neurocognitive impairment. We have reviewed the literature of the past year to underline the progress of research in the fields of etiopathogenesis, therapies and assessment, considering articles published between November 2012 and November 2013.

Ethiopathogenesis
With regard to the pathogenesis of FM some hypotheses have been formulated. Menzies et al. studied the epigenetic alteration to determine whether spontaneously occurring micronuclei and genome-wide methylation patterns could be related to FM (1). They found significant differences in methylation patterns in FM with respect to the control subjects and the majority of differentially methylated sites occurred in neuron differentiation and in the skeletal system. The genetic basis of FM emerged from a work published by Feng et al. (2). They performed a complete exome sequencing in a large cohort of FM patients and found a close relationship between C11orf40 mutation and plasma levels of cytokines, MCP-1 and IP-40. Other genetic alterations were found by a Turkish group who studied the polymorphism of the IL4 gene in a large cohort of 300 FM patients (3). They found a significant difference in the genome of IL4 in patients compared to the controls, and they suggested an association of IL-4 gene 70 bp VNTR polymorphism with susceptibility to develop FM. Some other polymorphisms were found in guanosine triphosphate cyclohydrolase 1 (4), the catechol-O-methyltrasferase (5), and alpha-1-antitrypsin polymorphisms (6); the related studies confirmed the previous findings, and underlined the familiar aggregation for FM. Muscular pain is the main symptom of FM and among several authors searching for possible alterations in muscular fibres in FM patients, Klaver-Krol and colleagues measured the conduction velocity in FM patients and controls using surface electromyography (7). These authors found higher values of CV in FM patients and a correlation between CV scores and tender point scores.

An interesting point of view on pathogenesis is the one that takes into account the frequent diagnosis of FM in other rheumatic diseases. In fact several patients who suffer from rheumatic disease, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), were found to be in comorbidity with FM. Donmez et al. investigated this interesting observation, reporting that a concomitant FM was associated with depression and somatisation, rather than with the presence of autoantibodies (8). Another study that underlined the relationship between FM and other rheumatic diseases was published by Roussou and Ciurtin. In particular they observed an increase

Competing interests: none declared.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2013.

Key words: fibromyalgia, recent literature

ABSTRACT
Fibromyalgia (FM) syndrome is a chronic disease with unknown etiology, characterised by widespread pain and fatigue. Moreover, several patients manifest non-specific symptoms such as sleep disturbances, mood disorders, and neurocognitive impairment. We have reviewed the literature of the past year to underline the progress of research in the fields of etiopathogenesis, therapies and assessment, considering articles published between November 2012 and November 2013.

Introduction
Fibromyalgia (FM) syndrome is a chronic disease with unknown etiology, characterised by widespread pain and fatigue. Moreover, several patients manifest non-specific symptoms such as sleep disturbances, mood disorders, and neurocognitive impairment. We have reviewed the literature of the past year to underline the progress of research in the fields of etiopathogenesis, therapies and assessment. For this reason, we propose an overview of the articles published between November 2012 and November 2013.

Ethiopathogenesis
With regard to the pathogenesis of FM some hypotheses have been formulated. Menzies et al. studied the epigenetic alteration to determine whether spontaneously occurring micronuclei and genome-wide methylation patterns could be related to FM (1). They found significant differences in methylation patterns in FM with respect to the control subjects and the majority of differentially methylated sites occurred in neuron differentiation and in the skeletal system. The genetic basis of FM emerged from a work published by Feng et al. (2). They performed a complete exome sequencing in a large cohort of FM patients and found a close relationship between C11orf40 mutation and plasma levels of cytokines, MCP-1 and IP-40. Other genetic alterations were found by a Turkish group who studied the polymorphism of the IL4 gene in a large cohort of 300 FM patients (3). They found a significant difference in the genome of IL4 in patients compared to the controls, and they suggested an association of IL-4 gene 70 bp VNTR polymorphism with susceptibility to develop FM. Some other polymorphisms were found in guanosine triphosphate cyclohydrolase 1 (4), the catechol-O-methyltrasferase (5), and alpha-1-antitrypsin polymorphisms (6); the related studies confirmed the previous findings, and underlined the familiar aggregation for FM. Muscular pain is the main symptom of FM and among several authors searching for possible alterations in muscular fibres in FM patients, Klaver-Krol and colleagues measured the conduction velocity in FM patients and controls using surface electromyography (7). These authors found higher values of CV in FM patients and a correlation between CV scores and tender point scores.

An interesting point of view on pathogenesis is the one that takes into account the frequent diagnosis of FM in other rheumatic diseases. In fact several patients who suffer from rheumatic disease, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), were found to be in comorbidity with FM. Donmez et al. investigated this interesting observation, reporting that a concomitant FM was associated with depression and somatisation, rather than with the presence of autoantibodies (8). Another study that underlined the relationship between FM and other rheumatic diseases was published by Roussou and Ciurtin. In particular they observed an increase
of FM diagnosis in patients with spondyloarthritis (SPA); with one third of patients with inflammatory back pain belonging to their cohort who fulfilled the criteria for FM (9). In addition, it is noteworthy that fatigue and pain, two of the main symptoms of FM, are debilitating symptoms that negatively impact the quality of life in patients with SLE and primary Sjögren’s syndrome (pSS). Indeed Iannucci et al. found a high percentage of FM in these diseases and speculated that FM seems to contribute to constitutional symptoms in SLE and pSS by the evaluation of tender points, the Health Assessment Questionnaire, the Fibromyalgia Impact Questionnaire and Zung Depression and Anxiety Scales (10).

The hypothesis that FM is a central sensitisation and dysregulation emerge from a large study performed on 11,288 patients with FM, RA and osteoarthritis (OA) (11). The authors observed in FM more sensory and non-sensory symptoms than in other patients with rheumatic disease. In particular, FM patients showed an increased hearing loss frequency than other patients, and this finding may support the central sensitisation of FM.

Despite the non-inflammatory origin of FM, several studies have reported the alteration of several cytokines in FM. Garcia et al. evaluated serum concentration of various chemokines (12), such as thymus and activation-regulated chemokine (TARC)/(CCL17), monokine induced by gamma-interferon (MIG)/(CXCL9), macrophage-derived chemokine (MDC)/(CCL22), interferon-inducible T-cell alpha chemoattractant (I-TAC)/(CXCL11), eotaxin (CCL11), pulmonary and activation-regulated chemokine (PARC)/(CCL18) and haemofiltrate CC-chemokine-4 (HCC-4)/(CCL16) in a small cohort of FM patients. They observed elevated serum levels of TARC, MIG, MED, I-TAC and eotaxin, and these results could be useful to characterise a subgroup of patients. Cytokine pattern was also studied by Oktayoglu et al. by the detection of high mobility group box 1 protein (HMGB1), a proinflammatory cytokine, in 29 FM patients. The researcher found higher levels of HMGB1 in FM patients and a positive correlation between this cytokine and FIQ score (13). Cordero et al. in a study of coenzyme Q10 reported the deficiency and mitochondrial dysfunction in FM. Mitochondrial dysfunction was accompanied by increased levels of interleukin-1 and interleukin-18, and the concept of inflammosome, therefore, seemed to play a central role in FM (14).

Assessment
The controversy between new and old diagnostic criteria remains open, and in a recent editorial, Professors Salaffi and Sarzi-Puttini were keen to point out that the results of the validation are currently still ongoing. Moreover, they reported that as many as 25% of patients diagnosed according new proposed criteria do not meet the older ones (15).

Another important aspect of FM evaluation is the focus on treatment satisfaction. A German group recently published an interesting cross sectional study, that evaluated putative patients-related predictors of treatment satisfaction in 1651 FM patients by means of a self reported questionnaire (16). They concluded that starting with the treatment of comorbidities such as depression could be an effective strategy to actively cope with the disease, and that this approach might prove to be successful in improving overall treatment satisfaction of FM-patients.

A common challenge in the assessment of fibromyalgia is represented by the psychiatric comorbidity. Veltri and colleagues recently evaluated a number of tools potentially able to evaluate the depressive comorbidity in FM, and they concluded that the mood spectrum self-report (MOOD-SR) is particularly appropriate for screening FM patients (17). In addition, Alciati and colleagues (18) studied the presence of bipolar spectrum disorders using both a categorical and a dimensional approach. The first one was based on a version of the DSM-IV SCID-CV interview, modified to improve the detection of bipolar spectrum disorders; the second one was based on the hypomania symptom checklist HCL-32, which adopts a dimensional perspective of the manic/hypomanic component of mood, by including sub-syndromal hypomania. The results showed an higher frequency of bipolar spectrum in FM with both approaches, suggesting that fibromyalgia may be related to bipolar spectrum disorders, and in particular to the hypomania/overactivity components.

Therapies
During the last year, researchers from all around the globe have published a number of papers concerning the therapy for the treatment of FM and its symptoms. In particular, many of these were focused on physical activities, rehabilitation and alternative medicine and, with respect to previous years, a lower number were related to pharmacological therapies.

Baptista et al. investigated the role of belly dance in FM patients (19). They studied 80 FM patients and showed a significant improvement of pain in the dance group, as well as higher Fibromyalgia Impact questionnaire (FIQ) scores and lower mental and emotional activity scores evaluated by SF-36 questionnaire. The authors point out the improvement of self-image as an improvement of quality of life in FM patients.

Another paper investigating the role of physical activity was published by Maddali-Bongi et al. (20). They evaluated the application of the Resseguier Method and Qi Gong in FM patients. The Resseguier Method is classified as a mind-body therapy aiming to obtain greater control of body perception, while Qi Gong is an ancient oriental method based on respiratory and mental training. The patients treated with both methods showed a significant improvement of pain, disability, and quality of life (QoL) at the end of the treatment protocol (15 weeks). The physical role and pain improvement was also studied by Berti-Carrillo et al. (21). In a small cohort of patients, they evaluated the role of a nine-month physical exercise programme on FM symptoms, highlighting the usefulness of physical activity not only for pain but also for social interaction, mood and cognitive impairment. A different opinion is instead found by the authors of a review on yoga and rheumatic disease (22).
who came to the conclusion that yoga may have only a weak recommendation for the ancillary management of FM. Another study investigating the impact of physical therapy on FM patients was published by Liptan et al. who evaluated two techniques of body massage – myofascial release therapy versus Swedish massage – in 12 FM patients (23). In particular, 8 patients received the myofascial release therapy and 4 the Swedish approach, and the authors observed an improvement of symptoms in both groups. Obviously, as admitted by the authors, it is necessary to extend the number of patients to support these data. An alternative treatment was studied also by Iannuccelli et al. (24), who evaluated acupuncture practice in 30 FM patients, with good results in terms of pain relief. As for pharmacological therapies, an important therapeutic option for FM is still represented by serotonin/noradrenaline reuptake inhibitor (SNRI). Bateman et al. (25) evaluated the switch to milnacipran in patients with inadequate response to duloxetine, suggesting that this approach may have a beneficial effect in many patients with FM. The drug Milnacipran was the object of another study published by Bernstein et al. (26) who underlined the modest activity of milnacipran in pain relief, especially when used alone. Nonetheless, milnacipran has been confirmed to be effective for the treatment of some symptoms associated with FM, such as fatigue and cognitive impairment. Also Ang et al. (27) investigated the effect of milnacipran in combination with cognitive-behavioural therapy. Fifty-eight FM patients were randomised in three study arms: combination therapy, milnacipran plus education programme, and cognitive-behavioural therapy plus placebo. They observed a moderate effect of combination therapy in physical function domain and a small effect on pain reduction. The limit of the study was the small number of patients, however, it confirmed the importance of a multidimensional approach for the treatment of FM. New promising therapies for FM are the agonists of 5-HT(2C) receptor. Three 5-HT(2C) receptor agonists (lorcaserin, vabicaserin and YM348), which were found to be useful in the treatment of several central nervous system diseases, including obesity and schizophrenia, were evaluated. Ogino et al. studied the effects of these molecules in a animal model of FM (28). The effect of systemic administration of these agents on the muscular hyperalgesia developed by reserpine-induced myalgia rats – a putative model of FM – generates a decrease in muscle pain threshold. These results, in addition to the possibility to develop new drugs for FM, are also of great interest for studies on serotonin as a central neurotransmitter with a role in muscular hyperalgesia. Another drug studied in a randomised double blind trial was naltrexone (29). In this small size study the researchers evaluated the effectiveness of a low dosage of naltrexone (4.5 mg/day) in pain reduction. The small cohort of patients treated with the drug reported a specific and clinically beneficial impact on fibromyalgia pain without safety concerns. The authors suggested a large clinical trial to investigate the real efficacy of this drug. A meta-analysis on the FM management evaluated the pharmacological and non-pharmacological approach in FM (30). By analysing the literature the authors speculated that the most relevant benefit for FM derived from pregabalin and SNRI as pharmacological interventions, together with multi-component therapy, aerobic exercise and cognitive behavioural therapy as non-pharmacological interventions. The multidisciplinary approach seem to be very useful in FM management. In a randomised trial published by Martin et al., the authors evaluated the approach based on psychological, medical, educational, and physiotherapeutic components over time, compared to standard pharmacological care (31). They observed a significant improvement in quality of life, physical function and pain in patients treated using the multidisciplinary programme with respect to the group of patients treated with a traditional approach. In a review recently published, Bernardy et al. studied the importance of cognitive behavioural therapy in FM (32). The authors underlined the low grade of accuracy of studies performed, which can only suggest a small incremental benefit in the reduction of pain, negative mood and disability. Another non-traditional technique recently evaluated for FM was the transcutaneous electrical nerve stimulation (TENS). Carbonaro et al. (33) evaluated the TENS results in a small cohort of FM patients, by an assessment of QoL, pain and tender points pain threshold. The patients treated by TENS reached a pain decrease higher than the control group, as well as an improvement of QoL and a reduction of anxiety. In conclusion, they reported an effective role of TENS in pain relief and FM symptoms control with short-term FM management. Moreover, for studies investigated the effectiveness of transcranial direct current stimulation in FM patients (tDCS). The tDCS induces changes in neuronal activity that may affect cognition and analgesia. Villamar et al. evaluated the effects of tDCS in 18 FM patients, with interesting results in term of perceived pain (34). The same results, evaluated by the functional magnetic resonance, were proposed by Taylor et al. (35), who observed a decreased activation in pain processing regions. Another small trial on tDCS was proposed by Lee et al., who observed a significant reduction in Beck Depression Questionnaire scores and FIQ scores by the application of a repetitive transcranial magnetic stimulation (36). Using the same technique, Baudic et al. obtained an improvement of cognitive aspect in FM patients (37). Although all studies were performed on a few patients, the randomisation with a sham treatment was always performed, and the results seem to be interesting especially with respect to pain and cognitive disorders. In recent years also nutritional aspects and the use of appropriated supplementation for the treatment of FM have been the objects of extensive research activities. For instance, Cordero et al. proposed a small double blind, placebo controlled, clinical trial on the effectiveness of coenzyme Q10 in FM patients (38). They underlined the clinical improvement in terms of FIQ reduc-
Fibromyalgia: a critical digest of the recent literature / C. Giacomelli et al.

Abnormal musculoskeletal function in fibromyalgia patients (41). In an open-label study, they evaluated the effectiveness and tolerability of local insufflations of ozone. They observed a reduction of FIQ total score and a significant improvement was also seen both in depression scores and in the Physical Summary Score of the SF-12. As one can easily suppose, meteorism was the most frequently reported side effect.

Some limitations of clinical trials carried out with FM patients derive from the study design, in particular for placebo-controlled studies. An interesting meta-analysis that evaluated 18 studies for a total of 3546 patients enrolled (42), asserted that the placebo and nocebo response in FM clinical trials is a crucial issue, with a pooled estimated at 50% in pain reduction which is 18.6%, as well as a drop out rate of 10.9% in placebo groups. These findings impose a critical observation of clinical trials on FM.

Conclusion

During last year, no significant novelty was introduced in FM concerning ethiopathogenesis, therapeutic approach or assessment. As far as FM treatment is concerned, complementary and alternative medicine seem to dominate the scene, especially if we consider the number of papers on physical therapies. The criticism of most of these studies is related to the number of patients treated and the presence of control groups. None of the traditional drugs has been developed for FM, and the few studies published last year involved SNRI. The same negative observation is related to pathogenesis; in fact none of the recent papers seems to represent a milestone for scientific research in the field of FM. Over the years many hypotheses on the onset of disease have been formulated, and the most accredited ones remain those involving cytokines, inflammation and oxidative stress. Nevertheless, some original and innovative papers have been submitted in the last year; one of these is probably the one evaluating FM comorbidity in other rheumatic diseases (37). Indeed the presence of FM could aggravate the symptoms of other rheumatic diseases, also leading to misdiagnosis and overtreatment of patients; this finding certainly plays a crucial role in terms of socioeconomic burden, both for FM and the other rheumatic diseases.

References

