Single nucleotide polymorphism of RANKL and OPG genes may play a role in bone and joint injury in rheumatoid arthritis

S. Xu¹, X. Ma¹, L. Hu¹, L. Peng¹, F. Pan², J. Xu¹

¹Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University; ²Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China.

Abstract

Objective
This paper aims to investigate the influence of single-nucleotide polymorphisms (SNPs) in the receptor of activator of nuclear factor kappaB ligand (RANKL) gene (TNFSF11) and osteoprotegerin (OPG) gene (TNFRSF11B) on bone and joint injury in patients with rheumatoid arthritis (RA).

Methods
Two hundred RA patients and 201 matched controls were analysed by case-control design, and their samples were genotyped. Bone mineral density (BMD) and serum OPG and RANKL levels were measured. Clinical and laboratory parameters were recorded, and the radiographic changes in both hands of RA were evaluated by Sharp’s method.

Results
Our results showed no significant differences in the distribution frequency of the alleles and genotypes of TNFRSF11B (rs2073618 and rs3102735) and TNFSF11 (rs2277438) between the RA group and controls (p>0.05). Compared to patients with TNFSF11 (rs2277438) AA or GG genotype, RA with TNFSF11 (rs2277438) AG genotype had significantly decreased BMD values at lumbar spine 3, lumbar spine 4, lumbar spine 2–4 (p<0.05–0.01), and apparently elevated Sharp scores (p<0.05), respectively. The RA group showed significantly higher serum levels of RANKL, RANKL/OPG ratio and a lower serum level of OPG than that of the controls (p<0.05–0.0001). RA patients with RANKL-rs2277438 heterozygotic genotype (AG) had significantly increased serum levels of RANKL (p<0.05), compared to homozygotic genotype (AA or GG).

Conclusion
These results indicate that SNP of TNFRSF11B (rs2073618 and rs3102735) and TNFSF11 (rs2277438) may not be susceptibility factors for RA in Chinese Han population. SNP of TNFSF11 (rs2277438) may have an important influence on bone and joint injury in RA.

Key words
OPG gene (TNFRSF11B), RANKL gene (TNFSF11), single nucleotide polymorphism, rheumatoid arthritis, bone and joint injury
Sheng-qian Xu, MD
Xi-xi Ma, MD
Lin-wei Hu, MD
Li-ping Peng, MD
Fa-ming Pan, PhD
Jian-hua Xu, MD

Address correspondence and reprint requests to:
Sheng-qian Xu, MD,
Department of Rheumatology and Immunology,
The First Affiliated Hospital of Anhui Medical University,
Ji-xi Road 218,
Hefei 230022 Anhui, China.
E-mail: xsqian-1112@163.com

Received on December 29, 2013; accepted in revised form on April 7, 2014.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2014

Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterised by chronic inflammation of the joints, which may lead to invasion of synovium into the adjacent cartilage matrix with bone erosion as a consequence. In addition, RA may have negative effects on bone metabolism, resulting in a low bone mineral density (BMD) both at the adjoining site of involved joints and at sites far from the inflammatory articulations, such as the vertebra. As a result, RA patients may have a higher risk of developing osteoporosis and osteoporotic fracture, particularly at the femur or lumbar spine (1).

Local bone erosion and general bone loss, which are always found simultaneously in individuals with RA, are the major and characteristic manifestations of bone and joint injury in RA. The pathophysiological mechanisms of this kind of bone and joint damage in RA are not completely understood. It is now clear that abundant generation and activation of osteoclasts at the cartilage-pannus junction is the key mediator in the degeneration of joint cartilage and destruction of bone in patients with RA (2-4). Cumulative studies have indicated that RANKL, the ligand of receptor of activator of nuclear factor kappa B (RANK), is an essential factor for osteoclast formation by cells in the rheumatic joints and that osteoprotegerin (OPG), the decoy receptor of RANK, could prevent the bone erosion in the joints of RA by binding to RANK and hence inhibiting RANKL (5-7).

Genetic factors have been demonstrated to play an important role in susceptibility and bone metabolism in RA (8-9). Several single nucleotide polymorphisms (SNPs) in the RANKL gene (TNFSF11) and OPG gene (TNFRSF11B), which might affect the binding of transcription factors, have recently been shown to be significantly associated with bone metabolism and susceptibility in multiple autoimmune diseases including RA (9-10). Appraising the relationship between these SNPs and RA might be helpful in targeting preventive measures to individuals with higher risk of developing RA and inhibiting the progression of serious clinical outcomes such as bone destruction and the development of osteoporosis.

To our knowledge, no studies published thus far have described an association between genetic polymorphisms of RANKL and OPG genes and RA in the Han Chinese, particularly its possible potential linkage with bone and joint injury in RA. The aim of our study was to investigate the possible association between RANKL and OPG gene polymorphisms and susceptibility to RA, and more importantly to discover whether SNPs of RANKL and OPG genes play a role in bone and joint injury in RA or not.

Methods

Study participants

We studied a total of 200 RA patients from the Han Chinese population, who fulfilled the 1987 revised criteria of the American College of Rheumatology (11), and had never accepted therapy with disease-modifying anti-rheumatic drugs before (28 men and 172 women, age range 23–82 years, mean age 53.5±11.9 years, body mass index [BMI], 22.2±3.4 kg/m²). They were all from the Department of Rheumatology and Immunology of the First Affiliated Hospital of Anhui Medical University in China. Patients with thyroid disease or parathyroid glands disease, other endocrine disorders, serious liver or kidney disease, radiological abnormalities (scoliosis, platyspondyly, and others) were excluded from the study. Patients were also excluded if they had concomitant use of steroid, oestrogen, androgen, anticonvulsant or anticoagulant drugs. Moreover, we recruited 201 healthy volunteer subjects matched for age, sex, height and weight to the patients (30 men and 171 women, age range 25–78 years, mean age 51.9±10.2 years, BMI 21.6±3.6 kg/m²).

Our study had been approved by the ethics committee of Anhui Medical University and had therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. According to principles of the Declaration of Helsinki, written permission was obtained from all individuals who were enrolled in our study.
before measurements. After providing informed consent, patients underwent physical examination and laboratory testing at screening. They were questioned about age, gender, height, weight and duration of disease. Joint counts for tenderness and swelling, Health Assessment Questionnaire (HAQ) score, Visual Analogue Score (VAS) of overall pain, disease activity scores (DAS28), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrulline polypeptide (anti-CCP) values were recorded simultaneously by rheumatologists. Radiographs were assessed using Sharp’s method by two independent readers blinded to each other; this method evaluated each hand, including 17 areas for bone erosions and 18 areas for joint space narrowing (JSN) with a maximum total Sharp score of 314 (12).

Genotyping
Two SNPs of the OPG gene (TNFRSF11B) and one SNP of the RANKL gene (TNFRSF11A) were selected from NCBI dbSNP (the dbSNP homepage) in our study because they are often selected for investigation with positive results in many other fields such as osteoporosis. SNP rs2073618 (G/C transition) is located in exon 1 (amino acid position 1181) of the OPG gene (TNFRSF11B), while SNP rs3102735 (A/G transition) is located in promoter (amino acid position 163) of the OPG gene (TNFRSF11B). SNP rs2277438 (A/G transition) is located in intron (amino acid position 401) of the RANKL gene (TNFRSF11A). The genotyping of SNPs (rs2073618, rs3102735, rs2277438) was conducted by the Shanghai Biowing Applied Biotechnology Company (http://www.biowing.com.cn) using ligase detection reactions (LDR) (13). The polymorphic regions of the OPG and RANKL genes were amplified by a multiplex polymerase chain reaction (PCR) method with specific forward primers (CCCAAGCCCTGAGGTTTCC for rs2073618, TCTCTTCCCTGAGGTTG for rs3102735, and ACATGTATCCTCTCTGTCGCC for rs2277438) and with specific reverse primers (CCCGGGACTTACACGAG for rs2073618, CTAAAGC-CGTTGCTATTCTGC for rs3102735 and TGGAGTCTCAATATTCTATAATGCAG for rs2277438). After the amplification, we performed a second-round PCR, of which the reaction mixture consisted of 1 μl genome DNA (50 ng/μl), 2 μl buffer (1×), 1.2 μl Mg++ (3 mmol/l), 2 μl dNTP (2 mmol/l), 0.3 μl 1 U Taq DNA polymerase (Qiagen hotstar), 7.5 μl H2O, 4 μl Q-solution (1×) and 2 μl primer mix. The amplification procedure consisted of initial denaturation at 95°C for 15 min, 35 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 90 s and extension at 72°C for 60 s, followed by a final extension at 72°C for 7 min. A Perkin Elmer Gene Amp PCR system 9600 was used. The ligation reaction was carried out in a final volume of 10 μl containing 1 μl buffer (1×), 1 μl Prob mix (12.5 pmol/μl), 1 μl of multi-PCR product (100 ng/μl), 12.5 pmol/μl of each common probe and 0.05 μl of 2 U/μl Taq DNA ligase (New England Biolabs, Ipswich, MA, USA). The LDR was performed using 35 cycles of denaturation at 95°C for 2 min, annealing at 94°C for 30 s and extension at 60°C for 2 min. The LDR fluorescent product was analysed by ABI sequencer 377.

Measurement of BMD
The BMD of the lumbar spine 2–4 (L2–4) and proximal femur, including femoral neck, Ward’s triangle, greater trochanter, and total hip was measured in 116 RA patients who were chosen at random from the whole enrolled RA group and 120 controls who were well matched for age, sex, height and weight to RA patients. BMD was measured using dual-energy x-ray absorptiometry (DXA) (Lunar Prodigy DF +310504, GE Healthcare, USA). BMD was automatically calculated from the bone area (cm2) and bone mineral content (g) and expressed absolutely in g/cm2. The default diagnostic threshold for osteoporosis was a T-score calculated from gender-matched BMD data in young adults derived in China (14). After acquisition of the BMD T-score, both RA patients and healthy individuals were divided into normal, osteopenic, and osteoporotic groups according to WHO criteria (15).

Detection of serum OPG and RANKL
Serum concentrations of OPG and RANKL from 116 RA patients and 120 controls were both measured by ELISA using reagents supplied by Yaji Biological Technology Limited Company (Shanghai, China). The ELISA tests were performed according to the manufacturer’s instructions. The RANKL/OPG ratio was obtained for all individuals. The optical density was measured at 450 nm using an automatic ELISA reader (Sunrise, Austria). One hundred and thirteen eligible samples from patients and 100 qualified control specimens from all the individuals who had BMD measurements had valid levels of OPG and RANKL. The intra- and inter-assay CVs were less than 10% for both tests. All the specimens were measured in duplicate according to the manufacturer’s instruction and then averaged.

Statistical analysis
Statistical analyses were performed using SPSS software (version 13.0). All the allele and genotype frequencies between patients and controls and Hardy–Weinberg equilibrium analysis were computed online using http://analysis.bio-x.cn (16). Normally distributed parameters were presented as mean (x) ± standard deviation (SD). Data of serum OPG, RANKL, ratio of RANKL/OPG and Sharp score were skewed parameters and presented as median (M) and quartile range (Q). The two-tailed independent samples t-test (for normally distributed data) or two-tailed independent samples non-parametric test (Mann–Whitney U-test for skewed distributed data) was performed to evaluate the diversity of parameters between different groups. Comparison of distribution frequencies of allele, genotype, bone metabolic state between RA and control were conducted using Pearson chi-square test or ridit analysis. Multiple linear regression and logistic regression analysis were used as appropriate. All p-values are two-sided, and values <0.05 were considered to be statistically significant.

Results
The research included 200 Chinese women or men with RA and 201 Chinese women or men subjects normal.
who were all enrolled from March 2010 to February 2011. The characteristic of the subjects in the RA and control groups are shown in Table I. The subjects in both groups were well matched. Among the cases or controls, the genotype distributions of all three SNPs were in Hardy-Weinberg equilibrium. Hardy-Weinberg equilibrium test for case: $\chi^2=0.044$, Fisher’s $p=0.835$ (TNFRSF11B, rs2073618), $\chi^2=0.143$, Fisher’s $p=0.706$ (TNFRSF11B, rs3102735), $\chi^2=0.338$, Fisher’s $p=0.561$ (TNFSF11, rs2277438). Hardy-Weinberg equilibrium test for control: $\chi^2=0.168$, Fisher’s $p=0.682$ (TNFRSF11B, rs2073618), $\chi^2=0.014$, Fisher’s $p=0.907$ (TNFRSF11B, rs3102735), $\chi^2=1.020$, Fisher’s $p=0.312$ (TNFSF11, rs2277438). No significant differences in the distribution frequency of the alleles and genotypes were observed between the case group and control group ($p>0.05$) in the three SNPs (Table II).

RA patients had a higher incidence of osteoporosis (36/113, 31.9%) than that in healthy controls (18/120, 15.0%) ($\chi^2=9.290$, $p=0.002$) when all subjects were divided into normal, osteopenic, and osteoporotic groups according to WHO criteria (15). Ridit analyses showed that the distribution frequencies of bone metabolic state between RA patients and controls were notably different ($z=3.947$, $p<0.0001$). The results also showed that RA patients with TNFSF11-rs2277438 AG genotype (n=39) had significantly lower BMD values compared to those with AA or GG genotype (n=62) at L3 ($z=2.314$, $p=0.023$), L4 ($z=2.207$, $p=0.030$), L2-L4 ($z=2.788$, $p=0.007$) (Table III). No any associations were found between SNPs (rs2073618 and rs3102735) of TNFRSF11B and BMD in RA. Sharp score of RA with TNFSF11-rs2277438 heterozygous genotype was accordingly higher than that with homozygous genotype (43.00 [108.75] vs. 15.50 [46.75], $z=2.491$, $p=0.013$) SNPs (rs2073618 and rs3102735) of TNFRSF11B failed to show any associations with Sharp score in RA ($p=0.866$, $p=0.242$) (Fig. 1).

Serum concentrations of OPG and RANKL in RA patients and healthy individuals are shown in Table IV. Patients with RA showed obviously higher plasma levels of RANKL and lower plasma levels of OPG compared with controls, with a consequently significantly higher RANKL/OPG ratio. More interesting findings showed that the concentration of serum RANKL in patients with RANKL gene (rs2277438) AG genotype (heterozygous genotype) was higher than that in patients with AA or GG genotype (homozygous genotype) (84.51 [73.09] vs. 66.18 [29.05], $z=2.491$, $p=0.013$), while the serum OPG level between heterozygous genotype and homozygous genotype of the OPG gene (rs2073618 and rs3102735) in RA patients did not differ from each other ($p=0.588$, $p=0.834$) (Fig. 2).

As far as the possible correlations between evaluated parameters in RA patients are concerned, multivariate linear regression analysis was performed to evaluate the potential risk factors for RA-induced osteoporosis (backward: LR) was executed to investigate the potential risk factor for RA-induced osteoporosis. A new target, accounting for whether one patient with RA accompanied with osteoporosis or not, was defined as a dependent variable, and osteoporosis was defined as a dependent variable, whether the Sharp score in RA patients. The results revealed that age (B=0.931, 95%CI -1.746 to -0.115, $r=2.274$, $p=0.026$), disease duration (B=5.785, 95%CI 4.515-7.054, $r=0.978$, $p<0.0001$) and ratio of RANKL to OPG in peripheral blood (B=5.012, 95%CI 3.986-9.548, $r=2.104$, $p=0.039$) were the contributors for the Sharp score ($R^2=0.570$, $F=33.137$, $p<0.0001$).

Analysis of binary logistic regression analysis (backward: LR) was executed to investigate the potential risk factor for RA-induced osteoporosis. A new target, accounting for whether one patient with RA accompanied with osteoporosis or not, was defined as a dependent variable, and osteoporosis was defined as a dependent variable, whether the Sharp score in RA patients. The results revealed that age (B=0.931, 95%CI -1.746 to -0.115, $r=2.274$, $p=0.026$), disease duration (B=5.785, 95%CI 4.515-7.054, $r=0.978$, $p<0.0001$) and ratio of RANKL to OPG in peripheral blood (B=5.012, 95%CI 3.986-9.548, $r=2.104$, $p=0.039$) were the contributors for the Sharp score ($R^2=0.570$, $F=33.137$, $p<0.0001$).

Table I. Characteristics of RA patients and controls.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>RA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>201</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>51.9 ± 10.2</td>
<td>53.5 ± 11.9</td>
<td>0.623</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>57.5 ± 9.1</td>
<td>56.8 ± 10.9</td>
<td>0.357</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163.2 ± 15.2</td>
<td>160.4 ± 18.1</td>
<td>0.167</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.6 ± 3.6</td>
<td>22.2 ± 3.4</td>
<td>0.355</td>
</tr>
<tr>
<td>Male/female</td>
<td>30:171</td>
<td>28:172</td>
<td>0.792</td>
</tr>
<tr>
<td>Pre-menopausal/amenopausal</td>
<td>50:121</td>
<td>58:114</td>
<td>0.372</td>
</tr>
</tbody>
</table>

Values are mean ± standard deviation or number.
Table III. Comparison of BMD between different genotypes of TNFSF11 (rs2277438) in RA patients.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>BMD (g/cm²)</th>
<th>t-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA or GG (n=62)</td>
<td>AG (n=39)</td>
<td></td>
</tr>
<tr>
<td>Femoral neck</td>
<td>0.88 ± 0.27</td>
<td>0.81 ± 0.16</td>
<td>1.602</td>
</tr>
<tr>
<td>Ward’s triangle</td>
<td>0.74 ± 0.27</td>
<td>0.65 ± 0.20</td>
<td>1.643</td>
</tr>
<tr>
<td>Greater trochanter</td>
<td>0.73 ± 0.22</td>
<td>0.69 ± 0.18</td>
<td>0.815</td>
</tr>
<tr>
<td>Total hip</td>
<td>0.91 ± 0.20</td>
<td>0.86 ± 0.18</td>
<td>1.104</td>
</tr>
<tr>
<td>L2</td>
<td>0.97 ± 0.21</td>
<td>0.90 ± 0.20</td>
<td>1.405</td>
</tr>
<tr>
<td>L3</td>
<td>1.05 ± 0.22</td>
<td>0.93 ± 0.26</td>
<td>2.314</td>
</tr>
<tr>
<td>L4</td>
<td>1.06 ± 0.24</td>
<td>0.94 ± 0.28</td>
<td>2.207</td>
</tr>
<tr>
<td>L2-4</td>
<td>1.04 ± 0.21</td>
<td>0.89 ± 0.28</td>
<td>2.788</td>
</tr>
</tbody>
</table>

Values are mean ± standard deviation and analysed by two-tailed independent sample t-test.

Table IV. Serum levels of OPG, RANKL and the RANKL/OPG ratio in RA patients and controls.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Group</th>
<th>z</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPG (pg/ml) M (Q)</td>
<td>RA (n=113)</td>
<td>202.86 (125.44)</td>
<td>285.14 (318.61)</td>
</tr>
<tr>
<td>RANKL (pg/ml) M (Q)</td>
<td>Control (n=100)</td>
<td>79.69 (43.59)</td>
<td>70.13 (30.61)</td>
</tr>
<tr>
<td>RANKL/OPG ratio M (Q)</td>
<td>RA (n=113)</td>
<td>0.41 (0.20)</td>
<td>0.27 (0.26)</td>
</tr>
</tbody>
</table>

*Non-parametric tests (Mann-Whitney U-test).

Discussion

The RANK/RANKL/OPG system plays an important role in the immune system and bone, linking it to bone in what is known as osteoimmunology, which is a new interdisciplinary field of study integrating the disciplines of immunology and bone biology, thus providing a new perspective on the pathogenesis of RA (17-20). RANKL, known as the OPG ligand, is a member of the tumour necrosis factor (TNF) ligand superfamily of cytokines, and has been shown to play a major role in regulating bone metabolism. RANKL induces osteoclastic bone destruction, and OPG protects against bone destruction by preventing the binding of RANKL with its receptor RANK (21). The molecular triad composed of RANKL/OPG/RANK has been described as a key cytokine system for controlling the differentiation and function of osteoclasts, and hence osteoporosis and other bone diseases (22), especially participating in the mechanism of bone and articular injury in RA (23).

To the best of our knowledge, this is the first study of the association between the SNP of the RANKL gene (TNFSF11), the OPG gene (TNFRSF11B) and RA in the Han Chinese population. In our study, we did not find any associations between these SNPs and susceptibility to RA. However, Assmann et al. reported a definite association between the SNP in the RANKL gene and susceptibility to RA in the white population (10). The study, a cohort of 534 patients with RA and 516 healthy controls, showed that the RANKL gene SNP (rs2277438) was significantly associated with RA ($p=0.039$), resulting in a three times higher susceptibility to RA for the homozygous genotype of the minor allele (AA vs. GG: OR 0.35, 95% CI 0.15–0.80; AA vs. AG: OR 1.10, 95% CI 0.78–1.55). In addition,
the RANKL gene SNP (rs9533156) also correlated with RA and there was an obviously higher frequency of the minor allele in the RA patients than in controls (OR 0.84, 95%CI 0.71–0.99, p=0.047), while the genotype distribution did not display any significant dissimilarities in this SNP (p=0.144). This research failed to show any effect of the other SNP (rs1054016) of the RANKL gene, and no differences were shown in the OPG gene SNPs (rs3102735, rs2073618), which is the same result we have found in our investigation. Another observation reported by Wu et al. also revealed that SNP rs922996 of the RANKL gene was significantly associated with age at onset of symptoms in RA (24). Patients who presented as CC genotypes of rs922996 had younger ages at onset of disease than those with CT or TT genotypes, suggesting a role for RANKL variants in the etiology of RA. Six years later, findings that a single promoter SNP rs7984870 of the RANKL gene was consistently significantly associated with earlier age of RA onset in three independent seropositive (RF or anti-cyclic citrullinated peptide antibody positive) RA cohorts but not in seronegative RA patients were reported by the same researchers (25). The risk C allele of rs7984870 of the RANKL gene conferred 2-fold higher plasma RANKL levels in RF-positive RA patients. Although the above studies concerning the SNP of the RANKL gene in RA were always reported with positive outcomes, discrepancies about the susceptibility to RA still exist, and perhaps this is due to racial differences between western and eastern patients. Further in-depth studies that enroll more participants and select patients with a more involved locus of the OPG and RANKL genes are required to confirm this.

Genetic variation involved in the RANKL/RANK/OPG bone remodeling pathway are strongly associated with BMD at different skeletal sites in normal subjects (26–27), which was explored by Hsu et al., who reported a significantly positive association for rs3102735 polymorphisms of the OPG gene, rs9594782 SNP of the RANKL gene with BMD in adult men only, but not in women (26). They also found men with TC/CC genotypes of the rs9594782 SNP had a 2.1 times higher risk of extremely low hip BMD (p=0.004), and lower whole body BMD (p<0.001); subjects with the GG genotype of the rs3102735 polymorphism had a 70% reduced risk of having extremely low hip BMD (p<0.05), and higher whole body BMD (p<0.01). These observations clearly showed SNP of some gene were correlated with reduced BMD in specific site of bone. Furthermore, it was well-known to us that osteoporosis in RA at different sites involved factors. An association between the RANKL gene SNP (rs2277438) and reduced BMD only at site of lumbar might be due to this reason. These results preliminarily revealed associations between SNP of RANKL or OPG and bone loss in normal subjects, and prompted a series of similar research studies in RA, with some significant discoveries. Furuya et al. found that RA patients in Japan with the G allele in SNP rs2277438 of the RANKL gene led to more severe joint damage evaluated using Larsen’s methods at 2 years than those who did not possess this allele (17). Their results were duplicated in our study showing that RA patients with AG genotype in the RANKL gene (rs2277438) had more severe bone erosion (higher Sharp score) and bone loss (lower BMD). In the subgroup of RA with BMD in our paper, there was only 4 cases with GG genotype (rs2277438), so we combined groups of AA and GG into group of homozygous genotype. That meant GG genotype just accounted for 6.5% (4/62) of the group of homozygous genotype, so differences between groups of homozygous genotype (AA or GG) and heterozygous genotype (AG) actually reflected differences between AA and AG. Therefore, our findings about association between RANKL gene SNP (rs2277438) with osteoporosis and bone damage in RA patients were consistent with reports of Furuya et al.

In spite of the discrepancy in conclusions from the different investigations, these results generally suggest that

Fig. 2. Comparison of serum levels of OPG, RANKL between homozygotic type and heterozygotic type of OPG rs2073618 (A), OPG rs3102735 (B) and RANKL rs2277438 (C) in the RA group.

Boxes, 25th and 75th percentiles; horizontal lines within boxes, 50th percentiles; vertical lines below and above boxes, 10th and 90th percentiles. Non-parametric tests (Mann-Whitney U-test).
SNPs of the RANKL and OPG genes might have certain effects on bone erosion and bone loss in RA patients. However, there are currently not enough programmes to explore the exact relationship between SNPs of the RANKL or OPG genes and bone and joint injury in RA patients, especially to investigate whether SNPs of the RANKL and OPG genes influence bone destruction or bone loss via alteration of serum RANKL and OPG as a result of SNPs of the RANKL and OPG genes. In our study, we demonstrated that there existed an association between the SNP of the RANKL gene and BMD as well as Sharp score in RA patients. Our discovery showed that patients with AG genotypes of the rs2277438 polymorphism had apparently lower BMD values at lumbar spine 3, lumbar spine 4, lumbar spine 2-4 and obviously higher Sharp scores compared with subjects with AA or GG genotypes. What is more important and more interesting is that we also found patients with AG genotypes of the RANKL gene (rs2277438) had higher serum RANKL levels than that in patients with AA or GG genotypes. Thus, we can draw a probable conclusion that SNP (rs2277438) of the RANKL gene contributes to the elevated circulating RANKL levels in RA. The inference was also made in a previous investigation that the C allele of rs7984870 of the RANKL gene conferred 2-fold higher plasma RANKL levels in RF-positive RA patients (25). We did not find any notable difference between the two SNPs of the OPG gene and BMD or Sharp score in RA, which was in accordance with the data of Masi et al., who did not observe any distinct difference in BMD at lumbar spine between the groups of different genotypes of OPG gene either (28).

Bone erosion, along with bone loss and the resulting osteoporosis, have become a major problem in RA. This phenomenon implies an inherent connection between bone erosion and bone loss in RA. RANKL and OPG acting as both immune modulators and regulators of bone homeostasis have been shown to mediate an imbalance in bone resorption and bone formation resulting in joint degeneration and bone loss (29-30). Evidence from the literature shows that serum RANKL in RA significantly increases, and is often accompanied with decreased serum OPG, and bone resorption is regulated by the relative levels of expression of RANKL and OPG (31). A study on patients with early untreated RA found that radiographic progression of the bone component of joint destruction was dependent on both inflammation (ESR) and osteoclast activation (the OPG:RANKL ratio) (32). In our previous and current studies, the RA group had significantly higher serum levels of RANKL, lower serum levels of OPG and a higher ratio of serum RANKL to serum OPG (5). Furthermore, linear regression analysis indicated that the ratio of serum RANKL to OPG positively correlated with Sharp score, the risk factor for the occurrence of osteoporosis in RA, which was confirmed by logistic regression simultaneously in our study. On the basis of these combined results, we believe it may be a rational explanation that the SNP of the RANKL gene (rs2277438) resulted in the increase of serum RANKL and accordingly the elevated ratio RANKL/OPG in RA, eventually leading to osteoporosis, as well as bone erosion in RA. This information is likely to become increasingly important as more bone-directed treatments become part of RA management paradigms.

Conclusion
Finally, our data do not provide definite evidence of associations between SNPs of TNFRSF11B (rs2073618 and rs3102735) or TNFSF11 (rs2277438) and susceptibility to RA in the Chinese Han population, perhaps due to an inadequate sample size and racial difference of TNFRSF11B and TNFSF11. Nevertheless, we can conclude that SNP (rs2277438) of the RANKL gene may be a predictor of bone and joint damage in patients with RA.

Acknowledgments
We would like to thank all the patients and professionals who participated in the study, particularly the Centre of Human Genetics Research, Shanghai Genesky Bio-Tech Co. Ltd. for their work in detecting SNPs of the RANKL and OPG genes.

References
14. LIU Z, PIAO J, PANG L et al.: The diagnostic criteria for primary osteoporosis and the