Identification of two autoantigens recognised by circulating autoantibodies as potential biomarkers for diagnosing giant cell arteritis

E. Pesce^{1,2}, M. Bombaci², S. Croci³, M. Bonacini³, C. Marvisi⁴, C. Ricordi⁵,

S. Monti⁶, F. Muratore^{4,5}, S. Abrignani^{1,2}, R. Caporali^{1,7}, M.O. Borghi^{1,6},

C. Salvarani^{4,5}, P.M. Villiger⁸,

R. Grifantini², P.L. Meroni¹

¹Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, University of Milan; ²Istituto Nazionale Genetica Molecolare, Milan;

³Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia;

⁴Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia; ⁵University of Modena and Reggio Emilia, Modena;

⁶IRCCS Istituto Auxologico Italiano, Laboratory of Immunorheumatologic Researches, Milan; ⁷Department of Rheumatology, ASST PINI-CTO, Milan, Italy;

⁸Medical Center Monbijou and University of Bern, Switzerland.

Supplementary material and methods

Protein array platform:

staining and image acquisition In the discovery phase, two different types of protein array were used to detect and identify autoantibodies in human sera. The first was the ProtoArray v5.0 Human Protein Microarray (PAH05251020, Thermo Fisher Scientific), containing over 9,000 unique antigens. All proteins were expressed as glutathione s-transferase (GST) fusion proteins in insect cells and purified under native conditions. The second was a proprietary human protein array comprising about 1,650 recombinant human proteins predicted to be secreted or membrane-associated, most of which are still poorly characterised. These proteins were expressed as His-tag proteins in E. coli (1, 2).

Microarrays were initially blocked using Blocking Buffer (PA017, Thermo Fisher Scientific) for 1 hour and then incubated with sera diluted to 1:500 in washing buffer TPBS (PBS buffer with 0.05% Tween 20) for 1 hour. After washing, the arrays were probed with a-human IgG conjugated to AlexaFluor-647 (A-21445, Thermo Fisher Scientific) at a dilution of 1:1000 for 1 hour at room temperature. Finally, the microarrays were washed, dried, and scanned using the ScanArray Gx PLUS (PerkinElmer). 16-bit images were generated and analyzed using Protoarray Prospector software v5.2.3 (ThermoFisher Scientific) for the ProtoArray v5.0 and ImaGene 8.0 software (Biodiscovery Inc) for the in house developed array.

Protein array data analysis

For each sample, the Mean Fluorescence Intensity (MFI) value was determined by subtracting the background given by the controls used and then averaging the replicates. Subsequently, the value was normalised based on the human IgG curve to allow comparison of data from different experiments. MFI values for each protein were normalised accordingly (3). A normalised MFI value of 5.000, corresponding to the normalised MFI value of negative controls, was chosen as the lowest signal threshold for scoring a protein as positively recognised by human sera. Recognition frequency was defined as the percentage of sera reacting with a particular antigen in the protein array with an MFI \geq 12.500, and it was calculated for each group of sera compared to HC sera. The localisation prediction of the selected proteins was conducted using the Deeploc 2.0 predictive algorithm (4).

Expression and purification of candidate autoantigens

Candidate autoantigens were expressed as His-tagged recombinant forms in the E. coli BL21 (DE3) system. The recombinant proteins were affinity-purified from the bacterial inclusion bodies by means of Immobilized Metal Affinity Chromatography (IMAC) (GE). Purification of the recombinant protein under denaturing condition was performed using Ni Sepharose 6 Fast Flow (Cytiva) according to the manufacturer's recommendations. Purity and identity of the recombinant protein was confirmed by 4-12% Bolt Bis-Tris (Thermo Fisher Scientific) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE.

ELISA

96-well microplate (Nunc Maxisorp) were coated with 2.5 µg/ml of each purified recombinant proteins in PBS (pH 7.4) overnight at 4°C. After washing four times with PBS containing 0.05% Tween 20 (PBST), plates were blocked with 10% BSA in PBST for 1h at 37°C, then incubated with 1:100 diluted sera in 1% BSA in PBST for 1h at 37°C. Plates were washed five times with PBST solution and probed with 1:2000 HRP-conjugated α-human IgG secondary antibody (Cytiva) for 45 minutes at RT. After washing, plates were developed by addition 100 µL of 3, 3',5,5'-tetramethylbenzidine chromogenic (TMB) substrate (Thermo Fisher Scientific) for 10 minutes. The reaction was stopped by adding 100µl 2 M H₂SO₄ after 5-10 min, and the absorbance was measured at λ =450 nm by InfiniteF200 PRO plate reader (Tecan). The cutoff was calculated by adding two standard deviations to the mean optical density (OD) value of ELISA runs on the samples of HC.

Serum autoantibodies as new GCA biomarkers / E. Pesce et al.

	GCA pool		Prot Id	Description	Gene Symbol	MFI		Frequency		Ratio
01	02	03	03			HC	GCA	HC	GCA	
			Q8ND87	nucleosome assembly protein 1-like 5 (NAP1L5)	NAP1L5	986	19158	0	33	19.4
			P19957	peptidase inhibitor 3, skin-derived (SKALP) (PI3)	PI3	1946	19158	0	33	9.8
			Q9H3Q1	CDC42 effector protein (Rho GTPase binding) 4 (CDC42EP4)	CDC42EP4	3085	19006	0	33	6.8
			Q9ULJ7	ankyrin repeat domain 50 (ANKRD50)	ANKRD50	4927	20927	0	33	3.2
			Q8N1L9	basic leucine zipper transcription factor, ATF-like 2 (BATF2)	BATF2	2778	15822	0	67	4.6
			Q13432	unc-119 homolog (C. elegans) (UNC119), transcript variant 1	UNC119	1783	12875	0	33	7.6
			Q9BRL4	PCTAIRE protein kinase 1 (PCTK1), transcript variant 3	PCTK1	3464	13606	0	33	5.3
			P17677	growth associated protein 43 (GAP43)	GAP43	1236	18314	0	33	12.9
			Q86XR8	centrosomal protein 57kDa (CEP57)	CEP57	2945	15887	0	33	5.6
			Q9BTY8	EF-hand domain family, member D2 (EFHD2)	EFHD2	2365	16579	0	33	6.1
			Q14498	RNA binding motif protein 39 (RBM39), transcript variant 3	RBM39	467	14372	0	33	41.0
V	\checkmark		Q04206	v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3,	RELA	1710	19147	0	67	7.7
	,	,		p65 (avian) (RELA)						
	V	V	Q96AA8	janus kinase and microtubule interacting protein 2 (JAKMIP2)	JAKMIP2	1178	13185	0	67	17.1
	V		NA	cDNA clone IMAGE:4829245	LOC100505540	1678	20193	0	67	7.9
,	V		P55347	PBX/knotted 1 homeobox 1 (PKNOX1)	PKNOX1	946	13256	0	33	20.7
√			P49137	MAP kinase-activated protein kinase 2	MAPKAPK2	1494	19541	0	67	9.8
√,			Q13432	unc-119 homolog (C. elegans) (UNC119), transcript variant 2	UNC119	191	14648	0	33	67.2
V	(Q96BX8	MOB1, Mps One Binder kinase activator-like 2A (yeast) (MOBKL2A)	MOBKL2A	1309	12846	0	33	11.5
	V		Q9H4G0	erythrocyte membrane protein band 4.1-like 1 (EPB41L1), transcript variant 2	EPB41L1	2607	15019	0	33	7.2
,			Q9H3Q1	CDC42 effector protein (Rho GTPase binding) 4 (CDC42EP4)	CDC42EP4	1960	18841	0	33	8.2
V	,		O14645	dynein, axonemal, light intermediate chain 1 (DNALI1)	DNALI1	3453	16156	0	33	5.3
	V		Q9BZE9	alveolar soft part sarcoma chromosome region, candidate 1 (ASPSCR1)	ASPSCR1	1977	18273	0	33	6.3
	V	,	Q9NP73	asparagine-linked glycosylation 13 homolog (S. cerevisiae) (ALG13)	ALG13	200	12510	0	33	71.6
	V	v	A8M108	Leukocyte specific transcript I (LSTI), transcript variant 2, mRNA	LSTI	3532	14298	0	67	5.0
	\checkmark	v	Q9H668	heat shock 10kDa protein 1 (chaperonin 10) (HSPE1) oligonucleotide/oligosaccharide-binding fold containing 1	OBFC1	2327	15865	0	33 33	20.4 5.8
	./	./	D11766	(UBFCI) alashal dahudasaanaa 5 (alasa III) shi nalumentida (ADII5)	ADU5	710	12606	0	67	212
	$\sqrt[n]{}$	v	Q66K14	TBC1 domain family, member 9B (with GRAM domain)	TBC1D9B	119	15122	0	67	21.5 158.9
	2/	2/	00N700	(TBC1D9B) ubiquitin associated protein 1 (UBAP1)		2642	18070	0	67	57
	v v	v	Q311203	LIM domain binding 2 (LDB2)	UDAF1 LDB2	1225	15130	0	67	15.7
	1	v	045075	hypothetical protein MCC23270 (MCC23270)	MGC23270	1225	18873	0	33	10.0
	N N		000506	soring/threaning kingsg 25 (STE20 homolog, yeast) (STK25)	STK25	2521	12282	0	22	81
	v v		P00017	arachidonate 5 liporygenase (ALOY5)	ALOY5	1106	20452	0	33	17.0
\checkmark	$\sqrt[v]{}$		Q9UNP9	peptidylprolyl isomerase E (cyclophilin E) (PPIE), transcript variant 3	PPIE	862	18787	0	67	23.0
			O8TB22	spermatogenesis associated 20 (SPATA20)	SPATA20	1304	19793	0	67	10.9
	v		075940	survival motor neuron domain containing 1 (SMNDC1)	SMNDC1	1750	14174	0	67	81
			Q13094	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa) (LCP2)	LCP2	2901	14198	0	33	5.4
			Q14498	RNA-binding protein 39	RBM39	762	15806	0	33	22.3
			Q9Y3A3	Mps one binder kinase activator-like 3	MOBKL3	233	16979	0	33	84.7
			Q9BY44	eukaryotic translation initiation factor 2A, 65kDa (EIF2A)	EIF2A	2300	19773	0	33	6.3
			O00506	serine/threonine kinase 25 (STE20 homolog, yeast) (STK25)	STK25	1483	14423	0	33	12.0
			P22459	Potassium voltage-gated channel, shaker-related subfamily, member 4 (KCNA4), mRNA	KCNA4	609	17823	0	33	22.3
			Q9BSF8	BTB (POZ) domain containing 10 (BTBD10)	BTBD10	610	13576	0	33	30.0
			Q9H7Z7	prostaglandin E synthase 2 (PTGES2), transcript variant 2	PTGES2	323	18265	0	67	72.2
			Q8N8Z6	Discoidin, CUB and LCCL domain-containing protein 1 Precursor	DCBLD1	4705	23290	0	67	2.8
√			Q02985	Complement factor H-related protein 3 Precursor	CFHR3	2010	12977	0	100	8.6
			Q8N3G9	Transmembrane protein 130	TMEM130	2960	17340	0	67	5.6
√		√.	O75951	Lysozyme-like protein 6 Precursor	LYZL6	3925	16500	0	100	4.1
√			Q8N755	PQ-loop repeat-containing protein 3 Precursor	PQLC3	3103	16135	0	67	4.1
			Q9H6B9	Abhydrolase domain-containing protein 9 Precursor	EPHX3	4779	12788	0	67	2.9
			Q86YB7	Enoyl-CoA hydratase domain-containing protein 2, mitochondrial Precursor	ECHDC2	4359	13629	0	100	3.8
√			A2A2V5	Serine-rich and transmembrane domain-containing protein 1	SERTM1	3431	16604	0	67	3.8
√			Q6ZPD9	Protein dpy-19 homolog 3	DPY19L3	4686	12990	0	67	2.7
			O95377	Gap junction beta-5 protein	GJB5	4716	12688	0	67	2.7
,		\checkmark	Q8N2F6	Armadillo repeat-containing protein 10	ARMC10	3930	12593	0	33	3.3
V			Q12893	Transmembrane protein 115	TMEM115	1991	12852	0	33	7.0
√			Q86VR7	V-set and immunoglobulin domain containing 10 like	VSIG10L	4345	13840	0	100	3.8
√			O15335	Chondroadherin Precursor	CHAD	4600	16678	0	67	3.0
\checkmark			Q8TEZ7	Membrane progestin receptor beta	PAQR8	2883	13765	0	67	4.9

Supplementary Table S1. List of 59 autoantigens, selected by protein array analysis, that react specifically with GCA sera. The table shows Gene annotation, MFI values, and recognition frequency for GCA and HC classes. Reactivity was represented with the flag.

Serum autoantibodies as new GCA biomarkers / E. Pesce et al.

References

 GRIFANTINI R, PAGANI M, PIERLEONI A et al.: A novel polyclonal antibody library for expression profiling of poorly characterized, membrane and secreted human proteins. J Proteomics 2011; 75(2):532-47. https://doi.org/ 10.1016/j.jprot.2011.08.018

 ZINGARETTI C, ARIGÒ M, CARDACI A *et al.*: Identification of new autoantigens by protein array indicates a role for IL4 neutralization in autoimmune hepatitis. *Mol Cell Proteomics* 2012; 11(12):1885-97.

https://doi.org/10.1074/mcp.M112.018713
BOMBACI M, GRIFANTINI R, MORA M, REGUZZI V, PETRACCA R, MEONI E *et al.*: Protein array profiling of tic patient sera reveals a broad range and enhanced immune response against Group A Streptococcus an-

tigens. PLoS One 2009; 4(7): e6332.

- https://doi.org/10.1371/journal.pone.0006332 4. THUMULURI V, ALMAGRO ARMENTEROS
- JJ, JOHANSEN AR, NIELSEN H, WINTHER O: DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. *Nucleic Acids Res* 2022; 50(W1):W228-W234. https://doi.org/10.1093/nar/gkac278