Bickerstaff brainstem encephalitis in a patient with ankylosing spondylitis on tumour necrosis factor-alpha inhibitor

Sirs,

TNF-alpha inhibitors effectively reduce disease activity and spinal pain in ankylosing spondylitis (AS) (1). However, demyelination disorders such as autoimmune encephalitides may develop following TNF-alpha inhibitor treatment (2-4). Bickerstaff brainstem encephalitis (BBE) is an autoimmune encephalitis characterised by ophthalmoplegia, ataxia, and altered consciousness (5). BBE in patients being treated with TNF-alpha inhibitors has not been reported. Here, we report a 30-year-old woman who developed BBE while using adalimumab. She visited our hospital due to general weakness and dizziness. She had been diagnosed with AS and was being treated with adalimumab for the past two years. She had no antecedent infections and her AS was well controlled (Ankylosing Spondylitis Disease Activity Score=1.6). Results of physical and neurological examinations were unremarkable except for a non-whirling type of dizziness. Results of laboratory tests and cultures of blood, sputum, and urine for detection of viral and bacterial pathogens including CMV, HSV, EBV, VZV, and Japanese-B encephalitis virus antibody were all negative. CT scans of the chest and abdomen were negative for infections or neoplasms. The cerebrospinal fluid test showed no evidence of meningeis (leukocytes: 0 cells/mm³; erythrocytes: 1 cell/mm³; glucose concentration: 58 mg/dL; and protein levels: 21.3 mg/dL). Brain magnetic resonance imaging and angiography also found no evidence of meningeis or encephalitis (Fig. 1A-B).

On the fourth day of admission, the patient developed limb ataxia, spasticity, acute ophthalmoplegia, and disturbed consciousness (drowsiness). Results of a nerve conduction study, electromyogram, and assessment of evoked potentials were normal. We suspected autoimmune encephalitis; therefore, we measured levels of GM1, Hu, Ri, Yo, NMO, NDMAR, AMPA1, LGI1, CASPR2, GABAB, Ma2, CV2/CRMP5, SX01 and GQ1b antibodies and initiated treatment with an anti-viral agent, methylprednisolone, and intravenous gamma globulin (IVIG). After the sixth day, the patient was still experiencing ophthalmoplegia, ataxia, and disturbed consciousness. CT scans of the chest and abdomen were also normal. We suspected autoimmune encephalitis, and negative for other antibodies. Finally, she was diagnosed with BBE based on the symptoms (ophthalmoplegia, ataxia, and impaired consciousness) and the antibody test.

Guillain-Barré syndrome (GBS), Miller Fisher syndrome (MFS), and BBE represent a continuous spectrum of demyelinating disorders, however, there are several manifestations and serologic finding that allow clinicians to distinguish BBE from GBS and MFS. GBS is characterised by flaccid paralysis without ophthalmoplegia or altered mentation. MFS and BBE present with ataxia, ophthalmoplegia, and humoral factors, including the presence of anti-GQ1b antibodies. However, drowsiness is only present in BBE (5, 6). Our patient had progressive ataxia and ophthalmoplegia; therefore, we could rule out GBS. In addition, she developed drowsiness, a semiotic feature of BBE, and was positive for anti-GQ1b antibodies. Therefore, we diagnosed her with BBE.

Plasma exchange, IVIG, or gluccorticoids may be effective treatment options for BBE (6). Since the GQ1b antibody binds to presynaptic motor nerve endings causing complement activation and membrane attack complex formation (7), rituximab might be effective for BBE by blocking antibodies and complement-dependent immune responses (8).

Although the role of anti-TNF alpha inhibitors in the development of demyelinating disorders remains unclear, a lack of TNF alpha may augment or prolong the myelin-specific T cell response and increase the risk of developing or prolonging an immune-mediated neuropathy (2-4). Therefore, we believe that BBE in our patient may be related to TNF-alpha inhibitors through augmentation of the number of activated peripheral T cells or disturbance in the intrinsic balance between TNF-alpha and its receptors, even though a causal relationship between BBE and TNF-alpha inhibitors is difficult to prove.

M. Kim1
M.-J. Kim2
Y.S. Suh3
H.-O. Kim4
S.-I. Lee5
Y.-H. Cheon6

1Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University Graduate School of Medicine, Jinju, Republic of Korea; 2Department of Neurology, Gyeongsang National University Hospital, Jinju, Republic of Korea.

Competing interests: none declared.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2018.

References