Bone mass in rheumatoid arthritis

E.J.A. Kroot, R.F.J.M. Laan

Department of Rheumatology, University Medical Center Nijmegen, The Netherlands.

Please address correspondence and reprint request to: Roland F.J.M. Laan, Associate Professor of Rheumatology, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.

E-mail: R.Laan@reuma.azn.nl

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2000.

Key words: Bone mass, rheumatoid arthritis, bone mineral density, fractures, disease activity, physical activity, glucocorticoids.

ABSTRACT

Osteoporosis is a common finding in patients with rheumatoid arthritis. Increased rates of bone loss have been observed, especially in the first year of the disease, in patients with active inflammation and low levels of physical activity and in those using glucocorticoids. This bone loss is responsible for increased rates of vertebral and hip fractures.

Introduction

Generalized osteoporosis has been frequently described in patients with rheumatoid arthritis (RA). This may only in part be explained by the high prevalence of both RA and osteoporosis in postmenopausal women. The available data suggest that patients with RA lose bone at increased rates and that they are at increased risk of low bone mass and of osteoporotic fractures when compared to normal subjects. We will first review these data and discuss the possible pathogenetic mechanisms thereafter.

Changes of bone mass in RA

Increased rates of bone loss at both the spine and hip have been documented in longitudinal studies especially in patients with early RA. In patients with a disease duration of more than 6 - 12 months, the differences in rates of bone loss with normal controls have been less pronounced and in general not reaching statistical significance (1-3). Bone loss was particularly increased in patients with active disease or low levels of physical activity, as will be discussed in more detail below.

In the study of Gough et al., bone mineral density (BMD) was measured at baseline and after 12 months in 59 female patients with early RA before treatment with corticosteroids or disease-modifying drugs, and in 50 controls matched for menopausal status. Bone loss was greater in RA patients in comparison with controls. Patients with early disease lost significantly more bone at both the spine (mean [SEM] percentage change in BMD from baseline -2.4% [0.5%] versus -0.6% [0.4%], p < 0.05) and trochanter (-4.3% [0.8%] versus -0.4% [0.5%], p < 0.001). At the lumbar spine high levels of CRP predicted bone loss. In the hip both high scores on the health assessment questionnaire (HAQ), indicating greater physical disability, and high levels of CRP were predictive of bone loss.

In the study by Shenstone et al., BMD was measured twice over a 12-month period in 67 non-steroid treated RA patients with disease duration of less than 5 years. No significant changes in BMD, expressed as a percentage of the initial BMD measurement, were found between RA patients and 72 control patients. This study also included 16 patients with a disease duration of less than 6 months. These patients suffered a significantly greater loss of BMD at the femoral neck (mean [SEM] change -3.9% [1.5%]) than the remainder of the cohort (-0.2% [0.7%], p = 0.02) and the control subjects (-0.8% [0.6%]). Patients with high disease activity at baseline experienced greater lumbar bone loss. HAQ scores did not correlate with changes in BMD at all (2).

Kroot et al. measured BMD twice in 76 RA patients with a mean disease duration of 2.3 years at the first, and 8.9 years at the second BMD measurement. At the first BMD measurement RA patients had a lower BMD in comparison with the reference population (Z-score -0.2). Between both measurements only a small decrease in BMD was observed (-0.28% /year) and the rate of bone loss was smaller than expected in comparison with age- and sex-matched reference values. The use of prednisone was significantly associated with excessive bone loss in all patients. In a separate analysis, in which only postmenopausal women were included, both increased physical activity and a longer time since menopause were also associated with decreased bone loss.
loss. A high erythrocyte sedimentation rate (ESR) was associated with increased bone loss, but this did not reach statistical significance (3).

Low bone mass in RA

Although the evidence of longitudinal studies points to increased rates of bone loss in patients with early RA only, many cross-sectional studies have documented lower mean bone mass in RA patients in general than in controls. This has been shown in both glucocorticoid treated (4-9) and untreated (6-8, 10) patients. The prevalence of low bone mass in RA patients is probably more important than a comparison of mean BMD levels between RA patients and controls, and has been studied using different threshold values, involving both T-scores and Z-scores. According to the 1994 World Health Organization definition of osteoporosis, those with a bone mass that is 2.5 standard deviations or more lower than the mean value in young healthy women (T-score ≤ -2.5) are considered to suffer from osteoporosis (11). An alternative approach is the use of Z-scores, which are calculated by comparison with age- and sex-matched controls. By definition, in the normal population 15.9% will have a Z-score ≤ -1 and 2.3% a Z-score ≤ -2.

The proportion of RA patients with low bone mass according to these Z-score definitions has been documented in two studies (4, 12). Haugeberg et al. studied a representative sample from a population-based register of 394 female RA patients with a mean disease duration of 13 years, using both T-scores and Z-scores. The prevalence of osteoporosis (T-scores ≤ -2.5) was 14.7% (95% CI 11.1 - 18.3) in the femoral neck, 14.7% (95% CI 11.1 - 18.3) in the total hip, and 16.8% (95% CI 13.1 - 20.5) in the spine. The prevalence of reduced bone mass (Z-scores ≤ -1) was greater than expected (15.9%) in the femoral neck 27.6% (95% CI 23.1 - 32.1), the total hip 31.6% (95% CI 26.9 - 36.3), and the spine 19.6% (95% CI 15.7 - 23.5) (4). Laan et al. examined BMD in 97 patients with recent onset RA and a mean disease duration of 30 months. Low bone mass (Z-score ≤ -1.0) was found in 32.0% (95% CI 22.7 - 41.2) of the patients in the lumbar spine and in 24.2% (95% CI 15.4 - 33.0) in the hip. The results of these two studies are shown in Figure 1. They confirm that low bone mass as defined in comparison with healthy age- and sex-matched controls occurs frequently in patients with RA.

Fractures in RA

Low bone mass is generally recognized as a risk factor for fractures, which are the clinically relevant consequence of osteoporosis (13). An increased risk of fracture has been shown in patients with RA both for the spine and the hip (6, 9, 14-16). The relative risk for fractures in RA is about 1.5 - 2.5 higher than in non-RA controls and is most probably even higher after glucocorticoid treatment (15). The relative risk of fractures may be highest for the pelvic region (RR = 2.6), and somewhat lower for the hip (RR = 1.5) (6). Other fractures reported were of the proximal femur, vertebrae, proximal humerus, pelvis and distal forearm (6). Low bone mass is by no means the only risk factor for fractures in RA patients. An increased rate of falls secondary to functional impairment may also result in an increased fracture rate (6, 17).

Mechanisms of low bone mass in RA

Three different disease-dependent mechanisms have been identified that may be responsible for the increased prevalence of low bone mass in RA. These include
high levels of disease activity, reduced physical activity and the use of glucocorticoids. Further potential risk factors for bone loss in RA include treatment with methotrexate or cyclosporin A.

Disease activity
Several cytokines such as interleukin-1, interleukin-6 and tumor necrosis factor are involved in the regulation of osteoclasts (18, 19). The importance of osteoprotegerin ligand and macrophage colony stimulating factor as final effectors in the regulation of osteoclastogenesis has been recognized (20). The effects of pro-inflammatory cytokines on bone cells may explain the observations that patients with active RA are at increased risk of developing osteoporosis (21). Several studies have now shown that patients with high acute phase responses lose more bone than those with less severe disease activity. Gough et al. compared patients with high (> 20 mg/dl) and low (< 20 mg/dl) CRP levels. Patients with active disease lost more bone at the spine and hip than patients with inactive disease (1). Similar results were reported by Laan et al. who found a negative association between the mean ESR values in the 6 months preceding the bone mass measurement and bone mass values in the hip. Other indices of disease activity were not associated with low bone mass (12). Finally, Shenstone et al. showed larger decreases in spinal bone mass in patients with more active disease at the start of their study (2). The observation that bone loss is most pronounced in the first year after the diagnosis of RA (1, 2, 12) also supports the important role of disease activity in causing bone loss.

Reduced physical activity
A low level of physical activity is a risk factor for low bone mass and fractures (22-24) and there are now reports that exercise training programs have positive effects on bone mass (25). In patients with RA the effect of reduced physical activity has been evaluated mostly using capacity oriented questionnaires such as the HAQ. In the large study by Haageberg et al. a high level of physical disability, as measured with the HAQ, predicted reduced bone mass in the hip but not in the spine (4). The cross-sectional design of this study, however, makes it difficult to separate the effect of reduced physical activity from that of disease activity. In the longitudinal study by Gough et al. greater bone loss was observed in patients with high versus low levels of physical disability, both in the spine and hip (1). Laan et al. showed that bone mass was negatively associated with the mean value of the HAQ in the 18 months before the bone mass measurement only at the hip (12). In both of these studies the effect of disability was observed independently of the effect of disease activity. The HAQ may not be the most suitable instrument for evaluating the influence of reduced physical activity on bone mass. In the study by Kroot et al. a performance capacity oriented questionnaire was used. Interestingly, they showed that postmenopausal women with higher levels of physical activity had reduced rates of bone loss (3).

Glucocorticoid use
The use of glucocorticoids is associated with increased bone loss and an increased risk of fractures (26, 27). Histologically, reduced bone formation detectable by increased osteoblast and osteocyte apoptosis and areas of necrosis caused by the accumulation of apoptotic osteocytes, also known as aseptic or avascular necrosis, are the most important findings in steroid-induced osteoporosis (21, 28). The effects of glucocorticoids on the number and activity of osteoblasts have been considered the central pathogenetic mechanisms (28). The pathogenesis of glucocorticoid-induced osteoporosis will be discussed in more detail elsewhere in this supplement.

In patients with RA the effects of glucocorticoids on bone mass have long been discussed. In most (4-6, 29) but not all (6, 7, 30, 31) studies the use of glucocorticoids was associated with lower bone mass. Two reasons can be identified for the discrepancies in the literature. First, non-randomized studies are subject to selection bias because RA itself and its concomitant decreased mobility may cause bone loss. Second, the negative effect of glucocorticoids on bone mass may be most pronounced in the initial phase of therapy (27, 29). In a small, but well designed randomized trial, Laan et
al. determined the effects of low-dose oral prednisone (initial dose 10 mg/d; mean dose over 20 weeks 7.5 mg/d) on bone mass. Forty RA patients received intramuscular gold salts and were randomly allocated to receive either prednisone or placebo. Trabecular BMD was measured by quantitative computerised tomography. Rapid trabecular bone loss in the spine was observed in the patients treated with prednisone (mean change -8.2%; 95% CI -12.7% - 3.7%; p = 0.001), despite improvement in disease activity and functional capacity. Interestingly, as shown in Figure 2, an increase in trabecular BMD (mean change 5.3%; 95% CI, 0.7% - 9.9%; p = 0.03) was found between weeks 20 and 44 after the cessation of prednisone (29).

Use of methotrexate and cyclosporin A

Both methotrexate and cyclosporin have been associated with the development of osteoporosis in animal models. The administration of methotrexate has been linked with suppression of osteoblastic activity and the stimulation of osteoclastic activity in rats (32). Cyclosporin induces high turnover osteoporosis in rats (33). Patients treated with cyclosporin after organ transplantation also show rapid bone loss (34). However, these effects cannot be separated easily from the effects of high dose glucocorticoids. Neither methotrexate nor cyclosporin have been shown to cause bone loss in patients with RA.

Conclusion

Patients with RA are at increased risk of developing osteoporosis. The RA patients with the highest risk of bone loss are those with persistently high levels of inflammation, with low levels of physical activity, and those who use glucocorticoids. In general, we recommend bone mass measurements wherever possible to further assess fracture risk in the patient. As will be discussed in other papers in this issue, treatment options to reduce fracture risk are available for patients with low bone mass.

References

14. Hooyman JR, Melton LJ 4th, Nelson AM, O’Fallon WM, RIGGS BL: Fractures after organ transplantation also show rapid bone loss (33). Patients treated with cyclosporin after organ transplantation also show rapid bone loss (34). However, these effects cannot be separated easily from the effects of high dose glucocorticoids. Neither methotrexate nor cyclosporin have been shown to cause bone loss in patients with RA.

Conclusion

Patients with RA are at increased risk of developing osteoporosis. The RA patients with the highest risk of bone loss are those with persistently high levels of inflammation, with low levels of physical activity, and those who use glucocorticoids. In general, we recommend bone mass measurements wherever possible to further assess fracture risk in the patient. As will be discussed in other papers in this issue, treatment options to reduce fracture risk are available for patients with low bone mass.

References

14. Hooyman JR, Melton LJ 4th, Nelson AM, O’Fallon WM, RIGGS BL: Fractures after organ transplantation also show rapid bone loss (33). Patients treated with cyclosporin after organ transplantation also show rapid bone loss (34). However, these effects cannot be separated easily from the effects of high dose glucocorticoids. Neither methotrexate nor cyclosporin have been shown to cause bone loss in patients with RA.

Conclusion

Patients with RA are at increased risk of developing osteoporosis. The RA patients with the highest risk of bone loss are those with persistently high levels of inflammation, with low levels of physical activity, and those who use glucocorticoids. In general, we recommend bone mass measurements wherever possible to further assess fracture risk in the patient. As will be discussed in other papers in this issue, treatment options to reduce fracture risk are available for patients with low bone mass.

References