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ABSTRACT

Antineutrophil cytoplasmic antibody
(ANCA)-associated vasculitis (AAV)
is a potentially lethal autoimmune
disease whose pathology comprises
disturbed T cell differentiation and
Sfunctionality accompanied by dysfunc-
tional autoreactive immunoglobulin
development, culminating in destruc-
tive innate immune response as well.
Purines, adenine nucleotides and
adenosine in particular, have been
elucidated as potent extracellular me-
diators for fine adjustment of these
pivotal processes establishing human
immunity. Therefore, the extracellular
purinergic microenvironment is under
control of ectonucleotidases CD39
and CD73 degrading pro-inflamma-
tory adenosine triphosphate (ATP) to
anti-inflammatory adenosine as well
as adenosine deaminase bound to
CD26 deactivating adenosine. Accord-
ingly, the ATP P2X, receptor was elic-
ited to be responsible for promotion of
inflammation, while predominantly the
adenosine A,, receptor demonstrated
the opposite. Recent reports pointed
at the adenosinergic system to be cru-
cially involved in AAV pathogenesis.
Here, experimental evidence on ecto-
engzymes controlling extracellular ad-
enine nucleotide concentrations and
purinergic signalling in the immune
system with respect to its contribu-
tion to the AAV pathomechanism is
reviewed besides unsolved problems
being identified that require further
investigation in order to develop new
treatment strategies for AAV.

Introduction

Antineutrophil cytoplasmic antibody
(ANCA)-associated vasculitis (AAV) is
defined as small vessel vasculitis highly
associated with presumably pathogenic
auto-antibodies detectable in patients’

peripheral blood (1). It is a life-threat-
ening disease potentially affecting all
organs (2), but necrotising vasculitis is
most commonly found in the respira-
tory tract and the kidneys (as reviewed
previously) (3). Its pathogenesis is not
completely elucidated yet, but increas-
ing experimental evidence and under-
standing of the disease resulted in the
current pathogenetic model summa-
rised by the extended ANCA-cytokine
sequence theory (4, 5). In short, AAV
patients present with disturbed adap-
tive immunity forming dysfunctional
lymphocyte populations (for example
persistently activated T cell subsets,
impaired regulatory T lymphocytes,
autoreactive Th17 as well as B cells)
and producing ANCA which are able
to trigger neutrophil driven inflamma-
tion of the vessel walls by binding their
epitopes (mainly proteinase 3 (PR3) or
myeloperoxidase (MPO)) expressed on
the activated neutrophil cell surface.
Subsequently, released cytokines and
chemokines (e.g., TNF-a, IL-6, IL-8,
C5a, monocyte chemoattractant pro-
tein 1/CCL2) (6) cause other immune
cells including lymphocytes to migrate
to the damaged vessel wall, thus, main-
taining the inflammatory destruction of
vascular tissue and surrounding paren-
chyma.

More recently, purinergic signalling
was recognised as a key player involved
in homeostasis of immunity. Specifi-
cally, adenosine triphosphate (ATP) is
generally perceived to enhance inflam-
mation, while adenosine demonstrated
the opposite. This review focuses on
ecto-enzymes controlling extracel-
lular concentrations of indispensable
adenine nucleotides for purinergic sig-
nalling (such as ATP, ADP, AMP, NAD
and the nucleoside adenosine) and both
their contribution to pathogenic pro-
cesses in AAV.
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The extracellular adenosine
microenvironment:

CD39, CD73, CD26

The fate of extracellular adenine de-
rivatives including ATP, ADP, AMP and
adenosine is determined by the local
expression of ectonucleotidases CD39
and CD73 degrading nucleotides, aden-
osine deaminase metabolising adeno-
sine as well as receptors binding - thus
capture - the different purine molecules
mentioned with various affinity (7, 8).
The intracellular location of ATP is well
established and its involvement in cel-
lular energy supply is undoubted (9).
However, compelling evidence describ-
ing different mechanisms of ATP trans-
port into the extracellular compartment
including exocytosis and secretion was
discussed in the literature. Moreover,
data on its extracellular presence and
function in intercellular signalling is
available (9, 10).

CD39 belongs to the group of ecto-
nucleoside triphosphate diphosphohy-
drolases (E-NTPDases) with different
names used in the literature, e.g., ecto-
apyrase, ecto ATP diphosphohydrolase
or NTPDasel (11). CD39 is able to hy-
drolyze ATP to adenosine diphosphate
(ADP) and subsequently to adenosine
monophosphate (AMP) with a resulting
product ratio of 1:10 (ADP:AMP) (11).
Several pro-inflammatory cytokines
(e.g., TGFp, IL-6 (12)), oxidative stress
and hypoxia, involving transcription
factors STAT3 and Spl, control CD39
expression (12, 13). CD39 expression
has been widely observed, including
the endothelium (14) and lymphocytic
populations (15).

CD73, or ecto-5’-nucleotidase, also be-
longs to the group of ectonucleotidases
(16). Its enzymatic activity dephospho-
rises AMP to adenosine (17). Its expres-
sion is reduced by pro-inflammatory
cytokines like IL-6, IFNy and IL-12,
but enhanced by TGFf (18). Expres-
sional increase was demonstrated upon
hypoxia involving oxygen-sensitive
transcription factor hypoxia-inducible
factor-1a. (HIF-1a) (19) in addition to
cyclic AMP response element binding
protein (CREB) (19, 20). Various tis-
sues including human lymphocytes and
endothelial cells are described to ex-
press CD73 (15, 21).
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CD26 is an exopeptidase, also known as
dipeptidyl peptidase-4 (DPP-4), which
cleaves dipeptides from proteins that
contain alanine or proline in the second
last N-terminal position (22). Its tran-
scriptional regulation is influenced by
inter alia hepatocyte nuclear factor 1 al-
pha (HNF-1a) (23). Considerable CD26
expression is known in human epithelial
(24) and endothelial cells (25) as well as
lymphocytes (26) with regards to CD26
serving as a potent co-stimulatory recep-
tor in the activation of T cells (27). Al-
though CD26 has no related enzymatic
activity to nucleotides, it strongly binds
adenosine deaminase and therefore is
pivotal for purine metabolism (28).
Adenosine deaminase is ubiquitously
expressed in the cytoplasm with its pri-
mary structure lacking a transmembra-
nous domain. However, its ecto-enzyme
activity degrading adenosine to inosine
and ammonia has been detected re-
peatedly (29). Consistently, membrane
bound CD26 has previously been used
as surrogate parameter for the presence
and enzymatic activity of adenosine
deaminase as it is considered to be an
adenosine deaminase receptor (as also
expressed by its other name adenosine
deaminase-binding protein) (29, 30).

Alternative sources of extracellular

adenosine: CD38, CD157, CD203a

In addition, extracellular adenosine
can also be synthesised from nicoti-
namide dinucleotide (NAD*) by the
concerted action of CD38 and CD203a
(also known as plasma cell membrane
glycoprotein (31)/PC-1 (32), NPPase
(33), NPPy (34), major aFGF stimu-
lated protein/MAFP (35)) together with
CD73 (36). Evidence from in vitro
experiments with canine and murine
vessel and bladder specimen suggests
NAD" is constitutively released into
the extracellular space (37). Data sup-
ports NAD* first is converted to adeno-
sine diphosphate ribose (ADPR) - with
nicotinamide as side product - by CD38
which subsequently is digested into
AMP and pyrophosphate by activity
of CD203a (36). Furthermore, NAD*
was demonstrated to be also a direct
substrate for CD203a, which is able to
cleave it into AMP and nicotinamide
mononucleotide (NMN) as well (36).

Belonging to the same gene family as
CD38, CD157 (also known as bone
marrow stromal cell antigen 1/BST-1)
(38) metabolises extracellular NAD*
to either ADP ribose (ADPR) or cyclic
ADP ribose (cADPR) as well (39-41).
CD38, formerly referred to as T10 mol-
ecule (thymic cell surface antigen) (42),
is expressed on human thymocytes and
lymphocytes (43). In contrast to CD38,
CD157 is reported not to be expressed
on lymphocytes, eosinophils and den-
dritic cells (44), but on human mono-
cytes and neutrophils, synovial as well
as follicular dendritic cells (44) besides
human endothelium (45). Conceivably,
purine metabolism in the extracellular
compartment shapes the immune re-
sponse since activation of the different
purinergic receptors heavily depends on
the enzymatic activity of CD39, CD73,
adenosine deaminase bound to CD26
(29), CD38/CD157 and CD203a (36,
46) determining ligand concentrations.

Purinergic receptors and their
expression in the immune system
Purinergic receptors are categorised in
two families by their activating ligands:
P1 or adenosine receptors and P2 re-
ceptors recognising purine and pyrimi-
dine nucleotides, inter alia ATP, ADP,
uridine triphosphate (UTP) and uridine
diphosphate (UDP). The P2 receptor
group comprises of diverse ionotropic
P2X and metabotropic P2Y receptors.
To date, the P1 family contains four
different adenosine receptors (A, A,,,
A, and A;) which were reported to be
expressed in different tissues and al-
most all cells of the immune system.
The majority of cells express more than
one subtype of the P1 and P2 receptors
simultaneously (47). Expression of the
immunomodulatory A,, receptor (48,
49) was reported in human endothe-
lial cells (50, 51), neutrophils (52, 53),
monocytes (54), platelets (55), T cells
(56), B cells (56, 57) and dendritic cells
(58). IFNy was found to downregulate
A,, receptor expression, while TNF-a
and IL-1 stimulation were described
to enhance it (48). The lower affinity
A, and the A, receptor were detected
in dendritic cells (59, 60), T cells (61,
62), monocytes (54, 62) and human
neutrophils (62, 63). Expression of the
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fourth member of the P1 family, the A,
receptor, was found in neutrophils (64),
peripheral blood mononuclear cells
(PBMC) (65) and dendritic cells (58).
Ionotropic as well as metabotropic ATP
receptors from the P2 family also are
expressed in various immune cell types.
For example, there is data available on
neutrophils, monocytes and lympho-
cytes expressing the P2X,, P2X,, P2X,,
P2X, and P2Y,, subtypes (as reviewed
in (7)).

The co-expression of a myriad of dif-
ferent receptor subtypes from the Pl
and P2 family on immune cells im-
plies the high complexity of puriner-
gic signal transduction. In conclusion,
the intracellular signal resulting from
extracellular stimuli originating from
extracellular ATP depends not only on
expression of purinergic ecto-enzymes
controlling concentrations of the differ-
ent receptor ligands, but also on the co-
expression and density of the individual
purinergic receptors showing different
affinities to their ligands (7). In system-
ic inflammation, e.g. as found in AAV
and other rheumatologic disorders or
sepsis (49), cytokines modify both the
expressional level of purinergic recep-
tors and ectonucleotidases providing
purinergic ligands. Hence, complexity
of the extracellular purinergic microen-
vironment even increases and is prone
to pathologic alteration.

Adenosine inhibits pivotal processes
of immunity

Adenosinergic signalling is believed to
represent a potent negative feedback
mechanism protecting tissue from fur-
ther inflammatory damage highlighted
by its anti-inflammatory characteristics
as demonstrated by inhibition of activat-
ed immune cells (47) and upregulation
of A,, receptor on murine T cells upon
T cell receptor activation (66, 67). Con-
sistently, the A,, receptor currently is
suspected to be predominantly respon-
sible for anti-inflammatory transduction
on immune cells (68, 69). However, in-
volvement of AAV pathomechanism is
not only restricted to lymphocytes, but
also encompasses compartments of in-
nate immunity which all dramatically
respond to purinergic signalling as de-
picted in the following sections.
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Adenosine guarding the
blood-vascular-tissue barrier
Different scientific approaches allowed
to conclude adenosine is involved in the
very first onset of inflammation due to
its immunosuppressive effect not only
on infiltrating immune cells character-
ising the peak of inflammatory condi-
tions (as elaborated on below) (70), but
also on the endothelium which is able
to trigger local as well as systemic in-
flammatory response. Specifically, cul-
tured human umbilical vein endothelial
cells demonstrated a reduced vascular
cell adhesion molecule-1 induction
and endothelial release of pro-inflam-
matory IL-6 and IL-8 upon stimula-
tion when treated with adenosine (71).
Moreover, adenosine limited diapede-
sis by mainly acting on the A,,and A,
receptors (72), correspondingly, pro-
moting the tightness of the endothelial
barrier (73) and decreasing neutrophil
adhesion to endothelial cells as well as
neutrophil damage to the endothelium
in vitro (74). An airpouch mice model
underscored this concept of adenosine
invigorating vascular integrity, since it
reduced the accumulation of inflam-
matory cells at the inflamed tissue site
(72). Therefore, endothelial cells are
able to produce adenosine themselves
(75) in order to protect them from in-
flammatory damage as adenosine was
found to inhibit the oxidative burst
in human neutrophils (74-76). Thus,
adenosine additionally interferes dur-
ing the initial phase of inflammation
representing a negative feedback mech-
anism also on innate immunity directly
at the vascular interface. Explicitly, our
group was able to demonstrate produc-
tion of reactive oxygen species (ROS)
was reduced by extrinsic adenosinergic
stimulation of activated neutrophils not
only from healthy controls, but also
from AAV patients highlighting local
ectonucleotidase expression determin-
ing adenosine generating capacity to be
pivotal for adenosinergic hindrance of
inadequate inflammatory response in
AAV rather than neutrophil adenosine
receptor responsiveness (76). Further-
more, ROS produced by neutrophils are
known to be indispensable for NETo-
sis (77). Hence, adenosine might also
prevent NETosis, which has been just

recently presumed to drive the patho-
genesis of AAV (78). In addition, aden-
osine potentially decreases formation
of granulomatous tissue, a core aspect
of granulomatosis with polyangiitis
(GPA) and eosinophilic GPA (EGPA)
pathology, given that A,, antagonists
added to cultured human monocytes
during stimulation increased formation
of giant cell like macrophages (79).

Adaptive immunity under control

of adenosine

Adenosinergic signalling is probably
best investigated in the context of adap-
tive immunity. Several studies con-
cluded CD39 and CD73 expression of
lymphocytes (e.g. CD8* cells (80-82),
regulatory T cells (80) and B cells (83))
were responsible for the generation of
adenosine, thus its mediatory effects
(84, 85) such as reducing the functional-
ity of antigen-presenting cells like den-
dritic cells (58, 86). In murine dendritic
cells, the activation of the A,, receptor
resulted in tolerogenic dendritic cells
with decreased secretion of IL-6 and
IL-12 (87). Consistent with this find-
ing, mature dendritic cells from human
donors shifted to an anti-inflammatory
phenotype under A,, activation upon
stimulation showing enhanced IL-10,
diminished IL-12 (88) and reduced
TNF-a production (86). Thus, environ-
mental adenosine was observed to limit
Thl differentiation of T cells in co-cul-
ture with mature dendritic cells (86). In
addition, direct stimulation of the A,,
receptor expressed on T cells inhibited
both Th1 and Th2 T cell differentiation
and proliferation by reducing produc-
tion of IL-4,IL-5,IL-10 and IFNYy under
the appropriate stimulating conditions in
order to skew towards a Th1 or Th2 phe-
notype (66, 67, 89). Both these Th sub-
populations seem to be involved in the
pathology of AAV as analysis of granu-
lomas and peripheral T cells from GPA
and MPA patients indicated predomi-
nance of a Th1 cytokine profile (90, 91)
accompanied with elevated counts of
the Thl phenotype in peripheral blood
of GPA patients (92). Nonetheless, GPA
patients also disclosed a Th2 phenotype
(as defined by expression of surface
marker ST2L) among the effector mem-
ory T cell population (92).
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Transcription of IL-2 (93) and TNFa
production in human T cells were
both inhibited via the A,, receptor in
HIV positive patients (93). Adenosine
and its analogs additionally impeded
CD25 upregulation due to stimulation
of murine T cell receptors (94). Thus,
adenosine prohibited expansion of T
cell clones upon activation by reduc-
ing levels of IL-2 as well as its receptor
CD25 (95). By contrast, AAV patients
showed a lymphocytic phenotype in-
dicative of persistent T cell activation
evident by high frequency of CD25 ex-
pression as well as decreased naive T
cells which also was associated with a
more severe course of AAV (96).

A, , receptor activation was also shown
to reduce Th17 differentiation of na-
ive T cells (97). Instead, in vivo A,,
receptor stimulation in a C3HA mice
model demonstrated differentiation of
T lymphocytes predominantly towards
a regulatory T cell phenotype (97). In-
terestingly, Th17 cells were suggested
to be pathogenic in AAV (98) as GPA
patients disclosed higher frequencies
of Th17 cells than healthy controls in
the peripheral circulation (98, 99) as
well as PR3-specific Th17 cells in PR3-
ANCA positive patients implicating
the pivotal involvement of Th17 cells
also in formation of ANCA (100). Ac-
cordingly, levels of IL-17 (produced
by Th17 cells) and IL-23 (stimulating
the differentiation and activity of Th17
cells) were found elevated in AAV pa-
tients with active disease as well as in
remission (98) supporting the idea of
Th17 cells maintaining AAV. This is
also supported by an animal model of
MPO-ANCA glomerulonephritis using
C57BL/6 mice knocked out for the IL-
17A gene (C57BL/6 IL-17A7), since it
revealed the knockout mice had been
protected from renal injury (101).

Prolonged A,, receptor stimulation of
murine CD4* cells led to expansion
of regulatory T cells and an increase
of their immunosuppressive capacity
while it impaired CD8" cell stimulation
and activation (102). A,, activation of
murine CD4* and CD8* T cells resulted
in upregulation of both immunosuppres-
sive surface proteins CTLA-4 and pro-
grammed death-1 (PD-1) (103). Under-
lying these findings, selective activation
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of murine regulatory T cells accompa-
nied by active A, , receptor transduction
caused expansion of these regulatory T
cells and enhanced their immunosup-
pressive activity, too (104). Murine reg-
ulatory T cells were elicited to express
CD39 and CD73, thus produce adeno-
sine in order to suppress effector T
cells in mice (85). Subsequently, it was
shown adenosine also was an immuno-
suppressive mediator produced by regu-
latory T cells isolated from healthy hu-
mans (105). Intriguingly, AAV patients
(GPA specifically) were demonstrated
with both altered relations of T helper
and regulatory T cells in the peripheral
blood (106) as well as functional defi-
ciencies of regulatory T cells. How-
ever, evidence providing an underlying
mechanism explicating this intrinsic
regulatory T cell defect remained lack-
ing (107, 108). Nonetheless, our group
lately discovered impaired lymphocytic
adenosine generating capacity in AAV
patients due to downregulation of CD39
and CD73 combined with upregulation
of CD26, most imposing in CD4 lym-
phocytic subsets (109). Enthrallingly,
this pattern of ectonucleotidase expres-
sion in our AAV cohort is in line with
previous studies reporting altered Th17
and regulatory T cell populations in
AAYV, as both subsets were unveiled to
be responsive to adenosinergic signal-
ling. Moreover, our study implied dis-
rupted ectonucleotidase expression con-
tributed not only to the pathogenesis,
but also to the clinical picture of AAV as
it was independent from disease activ-
ity, but linked to decreased renal func-
tion and systemic inflammation.
Further details underscoring adenosine
as an immunosuppressive agent itself
were given by investigations on T cell
anergy. In patients with follicular lym-
phoma, adenosine was produced in
the extracellular space by subsequent
activity of CD39 and CD73 from ATP
and was reported to suppress cytokine
production of T cells infiltrating the
malignant tissue (110). Similarly, A,,
receptor activation during stimulation
of a A.E7 CD4* T cell line resulted in
hyporesponsiveness of these cells re-
sembling features of T cell anergy as
assessed by stimulation assays using
their designated antigen (97).

Antibody formation involves
adenosinergic signalling

Animal studies unveiled purines were
fundamentally involved in forma-
tion of immunoglobulins, too. Murine
B cells were found to express CD39
and CD73, thus were able to generate
adenosine from ATP released into the
extracellular space upon B cell stimu-
lation in culture (83). Thus, adenosine
was found to influence class switch of
antibody subtype produced by the in-
vestigated B cells. Namely, CD73* B
cells tended to produce rather IgG and
IgA immunoglobulins compared to
CD73" subpopulations (83). Further-
more, in a human cohort of patients
with combined immunodeficiency syn-
drome, a lack of CD73 expression on B
cells combined with decreased produc-
tion of IgG and IgA immunoglobulins
was measured (83). In AAV, antibody
class switch is reported to be pivotal as
ANCA can also be detected in healthy
individuals without clinical evidence
of AAV (often referred to as natural au-
to-antibodies). Surprisingly, these clin-
ically irrelevant ANCA showed lower
avidity and preferentially belonged to
the IgG, subclass (111) whereas PR3-
ANCA of active patients were most
abundant in the IgG, fraction (112).

Cytokine secretion responds

to adenosinergic signalling

The influence of adenosine on lympho-
cytic cytokine production has already
been described above. Nevertheless,
cytokine release of other immune com-
partments was reported to be respon-
sive to adenosine as well. In detail,
adenosine reduced leukotriene B4 syn-
thesis in neutrophils (113), TNF-a se-
cretion (114), transcription and release
of chemokines CXCL2, CCL3, CCL4
and CCL20 (114) implying adenosine
is able to reduce recruitment of im-
mune cells to sites of inflammatory le-
sion, hence limiting not only the onset,
but also the maintenance of inflamma-
tion. Similar results were obtained in
BALB/c mice with adenosine receptor
agonists decreasing peripheral TNF-o
levels and enhancing secretion of anti-
inflammatory IL-10 after intraperito-
neal LPS application (115). Not only
adenosinergic inhibition of TNF-a and
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IL-12 release in murine macrophages
(116), but also enhancement of IL-
10 synthesis in these cells and in a
RAW264.7 macrophage cell line was
elicited (116-118). Direct, functional
effects of adenosinergic signalling
were shown in in vitro experiments as
well: unselective A, receptor agonists
and adenosine impaired phagocytic ac-
tivity of human monocytes cultured for
more than 48 hours (119).

ATP as promotor of inflammation

In general, ATP can be perceived as the
antipode of adenosine, and A,, activa-
tion respectively, being an extracellular
pro-inflammatory mediator (84) with
well described effects on lymphocytes
and cytokine secretion. Specifically, its
P2X., receptor was found to transduce
induction of pro-inflammatory cy-
tokines, chemokines and leukotrienes
(120, 121). Moreover, extracellular ATP
activating the P2X, receptor induced
Iytic cell death in murine T cells with
regulatory T cell subsets being more
susceptible to this treatment than other
lymphocyte subtypes as a key finding
(122). Consistently, mice knocked out
for the P2X, gene disclosed higher reg-
ulatory T cell frequencies in lymphatic
tissue as well as peripheral blood than
wild-type mice (122). Investigating
P2X, knockout mice in a model of in-
flammatory bowel disease, the control
group was observed with higher neu-
trophil infiltration and mast cell activa-
tion in the bowel (120). Involving its
other receptors P2X, and P2X,, ATP
was also reported to act as a co-stim-
ulatory molecule on T cells (123, 124)
with T cells showing active ATP release
at the immune synapse themselves in
order to amplify T cell activation in an
autocrine manner (124). In contrast to
the A,, receptor, this specific receptor
activation also coded for enhancement
of IL-2 transcription during T cell ac-
tivation (124). Furthermore, ATP was
described not only to enhance T cell
activation, but also driving T cell dif-
ferentiation fate. Exposure to ATP, thus
P2X,, receptor activation resulted in IL-
17 synthesis in human T cells and sub-
sequent induction of a Th17 resembling
phenotype (125) while regulatory T cell
function was suppressed, but could be
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overcome by P2X, receptor blockade
(125). Accordingly, ATP was shown to
induce Th17 differentiation of murine
T cells in vitro (126) and in vivo using
a germ-free mice model for peritoneal
and rectal treatment with non-degrada-
ble ATP derivatives (126). In systemic
lupus erythematosus, the literature re-
cently supported the hypothesis that
ATP activating the P2X, receptor seems
likely to contribute dually to the pro-
motion of this inflammatory disease by
leading to pyroptotic cell death on the
one hand, and directly stimulating the
inflammasome on the other (127).

Prospects of adenosinergic
signalling in the context of AAV
Although primary data on adenosin-
ergic signalling in AAV specifically
still has to be judged scarce in general
(and mainly is focused on regulatory
T cells), reports on purinergic effects
on key players of the immune system,
which are known to be involved in AAV
pathogenesis, is strongly suggestive of
dysfunctional adenosinergic signalling
in AAV. This is further underscored by
a CD73 knockout (CD73”") mice model
that presented with typical findings of
AAV pathology including glomerular
and peritubular capillaritis, deposi-
tion of IgG and complement as well as
proteinuria besides features of autoim-
munity (128). Purinergic signalling and
adenosine producing capacity through
ecto-enzyme activity has already been
linked to other autoimmune diseases,
for example Sjogren’s syndrome (121,
129) and systemic lupus erythemato-
sus with decreased lymphocytic CD39
(130) and CD73 levels (131). This
suggests alterations of the adenosin-
ergic system are possibly a common
feature of autoimmunity in general.
However, this review identified sev-
eral complex relationships between
AAV pathogenesis and adenosinergic
signalling. Our group hypothesises the
intercellular microenvironment in AAV
patients demonstrates an adenosine
deficit caused by defective extracellular
adenosine metabolism which is likely
to enable expansion of autoreactive
dendritic cells and in consequence, T
and B lymphocytes as well. Addition-
ally, AAV patients seem to fail in ter-

minating autoreactive lymphocytes in
the state of anergy which is reported to
depend at least partially on extracellu-
lar adenosine. By contrast, we suggest
the disrupted adenosinergic negative
feedback mechanism promotes con-
tinuous, therefore persistent, activation
of T lymphocytes and pathologic CD4-,
Th1,Th2, Th17 or regulatory T cell dif-
ferentiation. Besides, the adenosiner-
gic negative feedback appears to be of
particular interest in AAV as the blood-
vascular-tissue-barrier cannot be main-
tained in the phase of disease onset and
during the chronically maintained vas-
culitic process (for example showing
granuloma in GPA and EGPA). On the
contrary, absence of adenosine might
prolong vasculitis due to unresisted
cytokine release. Nonetheless, these
hypotheses not only require further in-
vestigation, but also impose on other
questions: Ecto-enzyme expression
enabling adenosinergic signalling may
also contribute to better understanding
of organ selectivity in AAV syndromes
which frequently affect e.g. renal and
pulmonary vessels. Our own data im-
plied AAV patients potentially benefit
from treatment targeting their disrupted
adenosinergic system as lymphocytic
CD73 expression was associated with
renal function and systemic inflam-
mation (109). Fortunately, a myriad of
substances engaging in adenosinergic
signalling became a matter of interest
for drug developers more recently. Spe-
cific adenosine receptor agonists and
antagonists have been and are currently
studied in registered clinical trials, al-
beit these do not study the agents in the
context of AAV. However, one study in-
vestigating the anti-inflammatory effect
of P2Y,, antagonist ticagrelor in meth-
otrexate refractory patients with rheu-
matoid arthritis on disease activity has
been launched lately (NCT02874092).
Our study group is convinced further
investigation of adenosinergic signal-
ling in AAV is imperative on the means
to launch clinical studies developing
future therapies of the disease. Finally,
if purinergic signalling is pathogenic
in AAYV, it still remains to elucidate its
aetiology with prospects to evolve ad-
equate measures to prevent pathogenic
alteration.
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