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ABSTRACT
Rheumatoid arthritis (RA), an auto-
immune disease, is characterised by 
a persistent synovitis in the joints and 
systemic inflammation. Non-steroidal 
anti-inflammatory drugs (NSAIDs), cor-
ticosteroids and disease-modifying anti-
rheumatic drugs (DMARDs) are widely 
used to treat RA patients. However, a 
portion of patients still have inadequate 
response to traditional medications. 
Recently, cell-based therapies have be-
come the focus, attracting more atten-
tion due to their potential for remission 
induction. Several immune-regulatory 
cell types, such as haematopoietic stem 
cells, mesenchymal stem cells and regu-
latory T cells have been defined as novel 
targets. In this paper, we have sum-
marised and reviewed current clinical 
trials using cell-based therapeutic ap-
proaches for the treatment of RA.

Introduction
Rheumatoid arthritis (RA), an autoim-
mune disease, is characterised by a per-
sistent synovitis in the joints and sys-
temic inflammation. The aetiology of 
RA is not completely understood. Dys-
function in multiple lymphocytes and 
excessive releasing of inflammatory 
cytokines are considered to be involved 
in the pathogenesis of RA. Currently, 
RA therapies are mainly dependent on 
non-steroidal anti-inflammatory drugs 
(NSAIDs), corticosteroids and dis-
ease-modifying anti-rheumatic drugs 
(DMARDs), which are responsible for 
significant improvements of the symp-
toms. However, the long-term usage of 
these drugs can lead to severe adverse 
effects, including infection, myelo-
suppression, liver and renal function 
damage. Moreover, a number of pa-
tients still have inadequate response 
to traditional medications. Therefore, 
the search for highly efficient and low-
toxic therapeutic approaches is critical 
for the cure of RA. Recently, several 

studies focusing on stem cell trans-
plantation and targeting inflammatory 
cells have shown promising results. In 
this review, we have summarised the 
current cell-based therapies that are ap-
plied for both experimental and clinical 
treatment of refractory RA.

Haematopoietic stem cells (HSCs)
Characteristic of HSCs
Haematopoietic stem cells (HSCs) are 
adult stem cells which possess multi-
lineage differentiation and self-renewal 
potentials, and give rise to all cell types 
within the blood lineage. HSCs lack 
specific morphological features. They 
were identified by virtue of high ex-
pression of CD34 and CD90 along with 
lacking of lineage markers (Lin-)(1). 
HSCs can be isolated from bone mar-
row, peripheral blood and umbilical 
cord blood. They have several unique 
abilities such as: a) they can self-re-
newal. HSCs undergo symmetric cell 
divisions to self-renewal in embryonic 
phase and perform asymmetric cell 
division to self-renewal from the late 
embryonic phase (2); b) they can dif-
ferentiate into blood cell lineages and 
non-haematopoietic cells under appro-
priate conditions (3); c) they have pro-
liferation potentials. Most HSCs stay in 
the G0 phase and do not enter the cell 
cycle. Only a small portion of HSCs 
are responsible for proliferation at any 
specific phases (4); d) they possess im-
mune-regulatory properties. HSCs can 
promote regulatory T cells generation, 
inhibit auto-reactive T-cells function 
and reshape the immune system (5-7).

Dysfunction of HSCs in RA
Since the majority of auto-reactive im-
mune cells are the progeny of HSCs, it 
is suspected that functional defects of 
HSCs might exist in RA. As expected, 
RA patients exhibit a low number of 
bone marrow (BM) CD34+ cells with 
a defective clonogenic potential (8). 
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Circulating haematopoietic  stem/pro-
genitor cells (HSPCs) are also dimin-
ished and displayed a growth factor 
non-responsiveness independent of age 
and disease activity (9). Approximately 
10–15% of HSPCs exhibit a disability 
in proliferation, and a delay in the lin-
eage-committed cell differentiation (9, 
10). The expression of toll-like receptor 
(TLR) 3 and IL-1β on HSPCs are high 
and is associated with inflammatory 
status in RA patients (11). In addition, 
RA HSPCs telomere length is shorter 
than that in age-matched health controls 
(HCs), indicating that RA HSPCs are 
susceptible to senescence (9, 10). In vit-
ro, BM CD34+ cells from RA patients 
support spontaneous  transformation of 
peripheral blood B cells from HCs, sug-
gesting that HSCs  might contribute to 
the development of RA via sustaining 
abnormal B cells response (12). Hence, 
several experts have proposed that RA 
is actually “a stem cell disease”.

Haematopoietic stem cell 
transplantation (HSCT) for RA
Due to their immunological properties, 
haematopoietic stem cell transplanta-
tion (HSCT) has emerged as a poten-
tial treatment for autoimmune disease. 
Early animal experimental data dem-
onstrated that autologous HSCT could 
equally abrogate established arthritis 
progression and protect against re-chal-
lenge (13-16). During the period from 
1997 to 2002, it has been reported that 
several pilot clinical studies use autolo-
gous HSCT for refractory RA patients 
who failed conventional treatment (a 
mean of 5 DMARDs in total, including 
a combination treatment). A total of 73 
severe RA patients underwent autolo-
gous HSCT and were registered in data-
bases of the European Group for Blood 
and Marrow Transplantation (EBMT) 
and the Autologous Blood and Marrow 
Transplant Registry (ABMTR). This 
retrospective analysis has found signifi-
cant responses from most of the patients, 
with over 50% achieving American 
College of Rheumatology and 50% im-
provement (ACR50) within 12 months. 
A significant reduction in the Health 
Assessment Questionnaire (HAQ) was 
observed within 18 months. Moreover, 
the analysis pointed out that rheuma-

toid factor (RF)-negative patients had 
a good response to HSCT compared to 
RF-positive patients. However, the ma-
jority of patients suffered from disease 
flare after 6 months (17). These results 
indicated that autologous HSCT might 
be relatively well tolerated and achieve 
considerably positive responses in the 
short term. In 2002, another study was 
performed by comparing the benefits 
of autologous transplantation of CD34-
selected cells versus un-manipulated 
HSCT in prolonging responses for se-
vere RA patients. The initial results 
showed similar effects and recurrence 
in patients using CD34-selected cells 
or un-manipulated transplantation 
(18). As intrinsic defect of RA HSCs 
is gradually revealed, which explains 
why a high frequency of recurrence is 
followed the autologous HSCT. Thus, 
allogeneic HSCT is initiated for severe 
RA. One case report showed that using 
non-myeloablative allogeneic HSCT to 
treat an RA patient with a poor progno-
sis could maintain disease remission for 
more than 12 months without any addi-
tional immunomodulatory medications. 
No severe infection or graft-versus-host 
disease (GVHD)was observed (19). The 
preliminary results indicated that allo-
geneic HSCT was safe, but further in-
vestigation still appeared to be needed.
In summary, clinical evidence indicates 
that HSCT is relatively well-tolerated 
and maintains remission in the short- 
term for severe RA patients. However, 
patients need to receive a cytotoxic reg-
imen before HSCT and this has poten-
tial immunologic complications.  The 
benefit/risk ratio is relatively low. Thus, 
HSCT has limited therapeutic capac-
ity in rare treatment-resistant patients. 
More importantly, other stem cells have 
been found to have an immune-reg-
ulatory role without conditioning the 
regimen before transplantation. This 
intense approach might be replaced in 
the future by highly-efficient and low 
side-effected cell therapies.

Mesenchymal stem cells (MSCs)
Properties of MSCs
Mesenchymal stem cells (MSCs) are 
adult multipotent stromal cells which 
are capable of self-renewal and differ-
entiating into different cell lineages in-

cluding osteoblasts, chondrocytes and 
adipocytes. They are originally isolated 
from bone marrow but now they can de-
rive from adipose tissue, umbilical cord, 
amniotic membrane, placenta and syn-
ovium. MSCs express CD73, CD105 
and CD90, but lack the haematopoietic 
and endothelial markers CD34, CD45, 
CD11b, CD31, CD14, human leuko-
cyte antigens (HLA)-DR. Moreover, 
MSCs express low levels of major his-
tocompatibility complex (MHC) class 
I and lack MHC class II, CD40, CD80 
or CD86 co-stimulatory molecules. All 
these features mean that MSCs are less 
immunogenic (20). Another critical fea-
ture of MSCs is the potent immunosup-
pressive capacity. MSCs inhibit T cell 
proliferation and activation in response 
to mitogenic or antigenic stimulation 
dose-dependently through cell cycle ar-
rest in the G0/G1 phase (21, 22). In ad-
dition to T cells, MSCs exert inhibitory 
effects on many other kinds of cells. 
They are capable of suppressing B cell 
proliferation and antibody production, 
reducing cytotoxic activity and cy-
tokine production of natural killer (NK) 
cells, along with inhibiting antigen-
presenting cells (APC) maturation and 
costimulatory molecules expression 
(23-27). Besides their immunosuppres-
sive action, MSCs could also induce T 
cells to exhibit a regulatory phenotype 
(CD4+CD25+transcription factorfork-
head box protein 3 (foxp3)+ and IL-
10-producing T cells) or recruit regula-
tory T cells (28, 29). Moreover, MSCs 
could facilitate the polarisation of mac-
rophages towards an M2-like phenotype 
(27, 30) and change cytokine secretion 
profile of dendritic cells (DC) to be tol-
erant phenotype (31). All these MSCs-
mediated immune-regulatory effects on 
both innate and adaptive immunity are 
through cell-to-cell contact or secret-
ing soluble factors, such as hepatocyte 
growth factor (HGF), prostaglandin-E2 
(PGE2), transforming growth factor 
(TGF)-β, indoleamine 2,3-dioxygenase 
(IDO), IL-10 and human leukocyte an-
tigen (HLA)-G (32-35).

The immune-regulatory role 
of MSCs in RA murine model
As for the ability of differentiation 
into various cell types, it was initially 
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considered that MSCs transplantation 
(MSCT) might repair articular carti-
lage with their regenerative proper-
ties. However, transfusion of MSCs 
into cartilaginous lesions did not lead 
to satisfactory regenerated tissue but 
fibrocartilage formation (36). Lucif-
erase-labelled MSCs that infused into 
collagen-induced arthritis (CIA) mice 
intravenously were detected in muscle, 
lung, spleen, and brain, but not in the 
joint of MSCs-treated and these infused 
MSCs disappeared 11 days after treat-
ment, suggesting that the regulation of 
MSCs in RA was not through differ-
entiation into new tissue but in other 
ways. As mentioned above, MSCs have 
been shown to exert immunomodula-
tory properties on various immune cells 
in vitro. Consistently, in RA, MSCs 
could also induce T cells hypo-respon-
siveness and promote CD4+foxp3+ 
regulatory T cells expansion (37-39). 
Fibroblast-like synoviocytes (FLSs) 
and osteoclast activation have been 
considered to be involved in the patho-
genesis of RA. MSCs were also capa-
ble of suppressing FLSs proliferation, 
invasion and secretion of inflammatory 
factors (37, 38). Furthermore, a strong 
inhibitory potential of MSCs on recep-
tor activator of nuclear factor-κB ligand 
(RANKL)-induced osteoclast differen-
tiation was observed (40, 41). Although 
in vitro studies confirmed the suppres-
sive function of MSCs on immune 
cells, it was still in debate for the thera-
peutic effects on CIA mice. The first 
study showed that the allogeneic MSCs 
did not confer any benefit and even 
worsened the disease (42), but follow-
up reports demonstrated that allogeneic 
MSCs could reduce the incidence and 
severity of CIA (38, 43-48). The reason 
for the difference in efficacy might be 
related to the infusion time, dose (10^5 
vs. 10^6), and route (intravenous injec-
tion vs. intraperitoneal injection vs. in-
traarticular injection vs. intralymphatic 
injection) of administration of MSCs. 
Besides, only injection of MSCs on 
Day 18 and 24 improved the arthritic 
symptoms, suggesting that MSCs dem-
onstrate therapeutic effect during a 
narrow therapeutic window. The thera-
peutic mechanism of MSCs in CIA in-
cludes: a) to reduce the serum concen-

tration of inflammatory cytokines and 
chemokines; b) to decrease antigen-
specific Th1/Th17expansion and shift 
Th1/Th2 type responses in lymph nodes 
and joints; c) to induce antigen-specific 
CD4+CD25+foxp3+ T cells or Tr1 (IL-
10+CD4+) cells generation. Importantly, 
it is worth mentioning that modify-
ing MSCs such as engineered to over-
express TGF-β or IL-10 or cytotoxic 
T lymphocyte antigen (CTLA)-4 or 
transfected with recombinant minicir-
cles encoding TNF-α blocker could 
upregulate the effect of naïve MSCs on 
CIA (49-51). This suggests that enhanc-
ing the immunomodulatory activity of 
MSCs via gene modification might be 
a gateway for new therapeutic clinical 
approaches.

Clinical application of MSCT 
for RA patients
Initially, a brief report showed that RA 
patients that received autologous BM-
MSCs through vein or intraarticular 
improved clinically and cast off steroid 
(52). However, RA BM-MSCs exhib-
ited reduced proliferative potential in 
association with premature telomere 
length loss and altered gene expression 
in focal adhesion and cell cycle path-
ways (53), making allogenic MSCs as 
a possible way to achieving clinical 
benefits. Allogeneic MSCs transplan-
tation into four anti-TNF failing active 
RA patients showed that three out of 
four patients experienced a reduction in 
erythrocyte sedimentation rate, disease 
activity score (DAS) 28, and pain visu-
al analogue scale (VAS) score at the 1st 
and 6th month after transplantation. Two 
patients had a European league against 
rheumatism (EULAR) moderate re-
sponse at the 6th month but experienced 
a relapse at the 7th and 23th month, re-
spectively, and two patients had no EU-
LAR response (54). The possible rea-
son why some patients had no response 
might be that the inflammatory milieu 
in the RA synovium adversely affected 
MSC function.
The first cohort study enrolled 173 
RA patients who had inadequate re-
sponses to traditional medication to as-
sess the safety and efficacy of umbili-
cal cord (UC)-MSCs plus DMARDs. 
The result demonstrated that both 

HAQ and DAS28 in the UC-MSCs 
plus DMARD group showed a steady 
reduction after 6 months of treatment. 
The inflammatory cytokine TNF and 
IL-6 accompanied with RF were sig-
nificantly decreased, and peripheral 
blood CD4+CD25+foxp3+ regulatory T 
cells were increased after 3 months in 
the UC-MSC group. These results in-
dicated that clinical efficacy of MSCs 
might benefit by their construction of 
immune balance (55). In a phase Ib/IIa 
clinical trial, intravenous infusions of 
allogeneic adipose-derived MSCs (AD-
MSCs) into 46 active refractory RA pa-
tients were in general well tolerated and 
clinically beneficial. However, it did 
not last more than 3 months, suggesting 
that cell therapy in RA would require 
repeated administration (56).
Taken together, allogeneic MSCT is a 
relatively safe and efficacy treatment in 
refractory RA. With their high ability 
of immune-regulation and low immu-
nogenicity, MSCs will be more suitable 
in the clinic for refractory RA patients.

Regulatory T cells (Tregs)
Properties of Tregs
Regulatory T cells (Tregs) are cell 
population specialised to maintain im-
munological self-tolerance and homeo-
stasis. The original markers of Tregs 
are CD25 and foxp3. Afterwards, such 
marker as CD127, CTLA-4, glucocor-
ticoid-induced TNF receptor family re-
lated gene (GITR), lymphocyte activa-
tion gene (LAG)-3, CD39 are used for 
identifying Tregs (57). Tregs modulate 
immune responses mainly by four basic 
mechanisms: 
a) to inhibit APC maturation and func-
tion. Tregs could downregulate the ex-
pression of the costimulatory molecules 
CD80 and CD86 that is necessary for 
antigen presentation (58). They could 
also limit APC to initiate an adaptive 
immune response through interaction 
between CTLA-4 and CD80/CD86 (59). 
b) to induce apoptosis of target cells. 
By the release of granzymes which en-
ter effector T cells, Tregs could induce 
effector T cells apoptosis (60-62). 
c) to disrupt metabolic pathways. Tregs 
express ecto-enzymes CD39 and CD73 
which enable to catalyse the degrada-
tion of adenosine triphosphate into 
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adenosine (63, 64). Binding of adeno-
sine to its receptor could not only in-
hibit effector T cells function but also 
enhance Tregs generation. 
d) to secret anti-inflammatory cyto-
kines. Anti-inflammatory cytokines 
TGF-β, IL-10 and IL-35 released from 
Tregs are key mediators of Treg func-
tion (65-68).

Dysfunction of Tregs in RA
RA is a chronic autoimmune disorder, 
in which T cells, B cells, DC and osteo-
clasts are over-activated. Tregs exhibit 
suppressive ability on these cells, sug-
gesting that they are critical in hamper-
ing the development of RA (69-71). 
However, there is little evidence to 
show that the number of Tregs is abnor-
mal in RA patients. The ability of RA 
Tregs to suppress effector T cells pro-
liferation is not impaired either. Never-
theless, they are not able to suppress the 
proliferation of B cells and production 
of IFN-γ and TNF-α by effector T cells 
(72-77). This dysfunction in Tregs is 
considered to be associated with a lack 
of CTLA-4 accumulation (78).

Tregs-based therapy for RA
In general, increasing the Treg number 
or enhancing the suppressive function 
of Tregs may prove to be beneficial in 
the suppression of autoimmune dis-
eases, including arthritis. Animal ex-
periment have shown that injection of 
polyclonal Tregs into CIA mice slowed 
down the disease progression (79). De-
pletion of Tregs prior to immunisation 
or disease presentation led to increased 
incidence and severity (80, 81). An-
other animal study found that collagen 
type II-specific Treg infusion signifi-
cantly ameliorated arthritis by shifting 
the Th17/Tregs balance (82). These 
results suggest that Treg injection 
benefits RA. Although the therapeutic 
potential of Tregs is well established 
in animal models, Treg-based therapy 
has not been directly applied to RA 
patients because of several technical 
challenges. Firstly, no definite surface 
markers could identify a homogenous 
Treg population. In fact, activated T 
cells transiently express CD25, foxp3 
and CTLA-4. Transfusing Tregs might 
be potentially contaminated by ef-

fector T cells. Secondly, the expres-
sion of foxp3 is instable. A minor 
population of foxp3+ cells lose foxp3 
expression over time, which might 
become pathogenic (83). In vitro, sta-
ble foxp3 expression could be induced 
in the presence of TGF-β. However, 
TGF-β-induced  fox3+  T  cells  are an-
ergic and produce high levels of ef-
fector cytokines (84). Thirdly, Tregs 
are difficult to expand. In contrast to 
mice, from which a large number of 
Tregs can be isolated from spleen and 
lymph node, human peripheral blood 
or umbilical cord blood derived Tregs 
are inherently resistant to expansion. 
They are susceptible to spontaneous 
cell death or cytokine-deprivation in-
duced death (85). For these problems, 
strategies have been created by trans-
fecting ectopic foxp3 or anti-apoptotic 
gene into T cells. These transfected 
cells significantly hampered the devel-
opment of arthritis (86-88). However, 
whether this technology could apply to 
the clinic still needs confirmation.
Although it is difficult to expand Tregs 
in vitro, attempts to recover Treg pro-
liferation ability and function in vivo 
are ongoing. IL‑2 is essential for Treg 
maintenance and survival (89). In in vit-
ro experiments, Tregs can be expanded 
by antigenic stimulation in the presence 
of a high concentration of IL-2 (89). 
In an in vivo system, injection of IL-2 
monoclonal antibody into mice resulted 
in a 10-fold expansion  of Tregs (68). 
Moreover, low-dose IL‑2 treatment 
on graft-versus-host disease (GVHD), 
hepatitis C virus and cryoglobulinae-
mic vasculitis patients showed Treg 
expansion without activating effector 
T cells (90-92). Thus, IL-2 might show 
promise in becoming a regulatory fac-
tor for Tregs in vivo. The other devel-
oping drug was rapamycin, which was 
confirmed to have a positive effect on 
Treg viability and expansion in GVHD 
mouse models (93). In kidney trans-
planted patients receiving a rapamycin-
based immunosuppression regimen, an 
increased proportion of Tregs was also 
observed (94). Nevertheless, because of 
the limited reports, whether this drug-
mediated Treg upregulation could be 
used for RA treatment requires further 
clinical trials.

B cell-targeted therapy
The role of B cells in the 
pathogenesis of RA
The major role of B cells in RA is the ex-
cessive production of antibodies against 
such self-antigens as RF and anticitrul-
linated protein antibodies (ACPA), 
which are well-established indicators of 
disease progression (95, 96). Except for 
producing pathologic auto-antibodies, 
B cells can act as efficient APCs. Upon 
activation by cognate antigens, B cells 
process and present antigens to T cells 
to initiate an immune response (97). In 
addition, B cells are an important source 
of inflammatory cytokines. They can 
produce a wide spectrum of cytokines. 
An assessing cytokine profile from the 
synovial fluid of RA patients showed 
that B cells expressed transcripts for IL-
12p35, IL-12p40, IL-23p19, IL-7, IL-
15, TNF-α, LT-β, B cell activating factor 
(BAFF), a proliferation-inducing ligand 
(APRIL) and RANKL (98). Notably, 
synovial B cells expressed RANKL, a 
key cytokine that promoted osteoclasts 
towards osteoclastogenesis, suggesting 
a positive role of B cells in bone erosion 
in RA. A further study showed that plas-
ma cells and B cells were adjacent to ac-
tivated osteoclasts in RA patients and a 
significant numeric correlation between 
plasma cells and osteoclasts was iden-
tified (99). Moreover, a cross-sectional 
cohort of RA patients revealed that the 
CD5+ B cell population was associated 
with bone resorption (100). These re-
sults support the pathogenic role of B 
cells in bone destruction.

Anti-CD20 therapy: Rituximab
Rituximab is a chimeric mouse-human 
monoclonal antibody directed at the 
CD20 molecule expressed on the sur-
face of human B cells. It is the first 
drug to target B cells in RA. Since the 
CD20 antigen is not expressed by pro-B 
cells or fully differentiated plasma cells 
(101), rituximab does not prevent the 
regeneration of CD20-positive B cells 
from precursor cells or directly interfere 
with the production of immunoglobulin.
The first open-label studies on rituxi-
mab in 2001 described a beneficial ef-
fect on refractory cases of RA (102). 
Afterwards, the first randomised dou-
ble-blind placebo-controlled trial (RCT) 
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observed that superior ACR20/50/70 
responder rates were maintained in the 
rituximab plus methotrexate (MTX) 
group after 48 weeks compared with 
MTX or rituximab monotherapy or 
rituximab plus intravenous cyclophos-
phamide (CYC) (103). Similar results 
were also observed in the following 
phase IIb dose-ranging trial (DANC-
ER). The DANCER study evaluated 
the efficacy of MTX plus rituximab for 
465 RA patients who had no response to 
DMARDs. At week 24, a significantly 
higher proportion of patients achieved 
ACR20/50/70 and EULAR moderate/
good responses in the rituximab plus 
MTX groups (104). The Phase III RCT 
REFLEX study showed that more pa-
tients achieved the ACR20/50/70 and 
EULAR moderate/good responses in 
the rituximab with concomitant MTX 
group (105). Furthermore, progression 
of radiological damage was significant-
ly lower in the rituximab with concomi-
tant MTX group after 2 years (106). For 
RA patients with inadequate response to 
MTX, good response was also observed 
in the MTX plus rituximab group in the 
multicentre phase III RCT study (SE-
RENE) (107). Subsequently, open-label 
trial (SUNRISE) and multicentre study 
(RESET) showed the same positive re-
sults that patients who had failed anti-
TNF achieved significant efficacy after 
receiving rituximab retreatment (108, 
109). Recent data from CERERRA (The 
European Collaborative Registries for 
the Evaluation of Rituximab in Rheu-
matoid Arthritis) collaboration demon-
strated that initial treatment with RTX at 
500 mg × 2 or 1000 mg × 2 showed com-
parable clinical outcomes at 6 months, 
and repeated treatment with rituximab, 
especially fixed-interval retreatment, 
led to further clinical improvement than 
on-flare retreatment (110, 111).

Anti-CD20 therapy: 
Ofatumumab and Ocrelizumab
Ofatumumab and ocrelizumab are 
monoclonal antibodies, humanised to 
reduce immunogenicity, which target 
extracellular domains of the CD20 an-
tigen. Ofatumumab has been shown to 
cause selective and prolonged B cell 
depletion that is mediated via multiple 
pathways, and to induce potent com-

plement-dependent cytotoxicity and 
effective antibody-dependent cell-me-
diated cytotoxicity (112, 113). Phase 
II/III clinical study results showed 
that ofatumumab/ocrelizumab treat-
ment achieved ACR response and a 
good/moderate EULAR response and 
DAS28 improvement combined with 
inhibiting joint damage progression in 
RA patients with inadequate response 
to MTX, but not in the case of previ-
ous anti-TNF failure (114-119). How-
ever, positive therapeutic effect was 
balanced with a high incidence of se-
rious infection (117-119). Therefore, 
ofatumumab/ocrelizumab has not been 
licensed for clinical use in RA. To 
further determine the safety of ofatu-
mumab, a recent study observed the 
safety of patients who participated in 
phase II and III trials receiving open-
label retreatment. The result showed 
that serious infections were uncommon 
and did not increase over time (120). 
Therefore, whether ofatumumab/ocre-
lizumab is safe for use still needs more 
results from RCT studies.

Anti-B lymphocyte stimulator 
(BLyS) therapy: Belimumab
The B lymphocyte stimulator (BLyS) is 
a survival factor that binds to specific 
receptors on B cells. BLyS inhibits ap-
optosis of B cells and promotes their 
proliferation and antibody production. 
BLyS regulates the survival and matu-
ration of B cells through binding with 
BAFF receptor expressed on the surface 
of B cells (121). Belimumab is a mono-
clonal humanised antibody targeting 
soluble BLyS and prevents BLyS from 
engaging its receptors on B cells. A 
Phase II multicentre RCT study evalu-
ated the therapeutic effect of different 
doses of belimumab combined with 
DMARDs and NSAIDs and/or pred-
nisone for longstanding moderate-to-
severe RA patients. The results showed 
that ACR20 response was achieved only 
by 34.7%, 25.4% and 28.2% in the 1, 4, 
10 mg/kg group, respectively. However, 
belimumab failed to improve ACR50/70 
responses (122). Another study using 
belimumab to treat RA involved 283 
patients with disease activity despite 
DMARD therapy. The ACR20 response 
rate was only 29% 24 weeks after com-

bined DMARDs/belimumab therapy 
(123). Therefore, more clinical studies 
are needed to confirm the efficacy of be-
limumab treatment for RA patients.

Anti-APRIL therapy: Atacicept
APRIL is a homologue of BLyS with 
biologic functions comparable to BLyS 
(124). Atacicept is a human recombi-
nant fusion protein that can prevent 
both BLyS and APRIL from binding 
to their receptors on B cell. A phase 
Ib, multicentre, RCT assessed the ef-
fect of escalating subcutaneous doses 
on RF-positive RA patients. The result 
indicated that although a reduction of 
RF and anti-CCP antibody was ob-
served, the effect was not significant 
(125). The following phase II study 
(AUGUSTI) was carried out to evalu-
ate the therapeutic effect in patients 
with inadequate response to anti-TNF 
treatment. The result has also shown a 
reduction in RF level but not enough to 
cause a significant improvement in RA 
patients (126). Similarly, only a mod-
est effect of atacicept was reported on 
RA patients with no response to MTX 
(127). Moreover, combination of ataci-
cept with rituximab was not associated 
with a significant clinical benefit (128). 
Due to the poor results, ataciceptis has 
so far not been allowed on the market.

T cell-targeted therapy
CTLA-4 Ig: Abatacept
Abatacept, a fully human fusion protein 
consisting of the extra-cellular domain 
of CTLA-4 with the Fc portion of im-
munoglobulin-G1, has been listed for 
the treatment for RA. Abatacept selec-
tively modulates the CD28:CD80/86 
costimulation signal that is necessary 
for T cell activation. Hence, abatacept 
has the capacity to suppress T cell acti-
vation and proliferation.
An initial RA murine experiment found 
inhibition of memory response and de-
crease in effect or memory populations 
after abatacept therapy (129). Asubse-
quent animal study revealed that abata-
cept restricted antigen-specific T cell 
proliferation, activation and prevented 
antigen-specific T cell from acquiring T 
follicular helper (Tfh) cell phenotype, 
resulting in reduced specific antibody 
responses in vivo (130). In RA patients, 
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abatacept suppressed the myeloid den-
dritic cell-driven activation of both pe-
ripheral blood and synovial fluid CD4+ 

T cells in vitro (131). After treatment for 
3 and 6 months, abatacept downregulat-
ed T cell effector subsets including Th1, 
Th2 and Th17 (132). Moreover, after 48 
weeks of treatment, abatacept induced 
reduction from baseline in the propor-
tion of circulating CD8+CD28– T cells, 
with this reduction directly correlated 
with clinical response (133). Recently, 
a marked decrease in the proportion 
of Tfh cells was found after abatacept 
therapy, suggesting more novel T cell 
subsets could be inhibited by abatacept 
(134, 135).
Clinically, Phase III study results 
showed that abatacept treatment ob-
viously improved ACR20/50/70 re-
sponder rate together with DAS28 and 
inhibited radiographic progression in 
refractory RA patients with an inade-
quate response to MTX over 6 months, 
1 year, 3 years and 5 years (AIM and 
ACQUIRE) (136-140). For RA patients 
resistant to TNF-α inhibitors, switching 
directly to abatacept plus DMARDs ex-
hibited clinical and functional benefits 
in disease activity and physical function 
over 6 months, 2 years and 5 years (AT-
TAIN) (141-143).

Conclusions
The development of RA is accompanied 
by a breakdown of immune tolerance. 
Auto-reactive T and B cells are acti-
vated, ultimately leading to persistent 
synovitis and bone destruction. Clini-
cally, there is a proportion of refractory 
active RA patients, who are resistant 
to traditional medications. Cell-based 
therapies, however, due to their abil-
ity to target auto-reactive T and B cells, 
restoring immunological tolerance and 
re-establishing immune balance, may 
be an alternative therapeutic option for 
treatment of RA. Although current clini-
cal data have shown promising effects of 
cell-based therapies, much more work 
is still needed to clarify several critical 
aspects such as the dosage, therapeutic 
window, combination therapy, long-term 
effects and side effects, etc. When more 
data from extensive studies is available, 
cell-based therapies may be reliably 
used in the treatment of RA in the future.
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