Autologous fat transfer in the successful treatment of upper limb linear morphea

Sirs,

Linear morphea is a variant of localised scleroderma that clinically appears with lines of cutaneous sclerosis, with possible involvement of underlying muscles and/or bones. They can be severely disfiguring when they interest the face, or become debilitating when, for instance, limbs are involved. Currently, several therapeutic options are available; among the surgical treatments, there are non-autologous procedures and autologous procedures. The former essentially include the use of injectable fillers, which, however, are accompanied by the risk of foreign body reaction; moreover, it is not easy at all to restore a natural contour and texture in the treated areas. Autologous procedures include the use of free flaps, dermis and fat transplants. The latter, especially, is proving successful considering its characteristics: no risk of rejection, the ready availability of material for repeated injections, minimal donor site morbidity. The grafted adipose tissue does not only have a more filling effect on the receiving site, but rather it promotes the dynamic tissue regeneration (1). Its use for cutaneous regeneration in radiation therapy outcomes and wound healing is well known (2, 3). The trophic properties of adipose tissue are related to its Stromal Vascular Fraction (SVF) (4), which is made of various cellular subpopulations with as many different properties (5, 6). As it is hypothesised that adipocytes and SVF may create an optimal environment that protect the perivascular niche and support the regenerative effect of cells and growth factors within host tissues, it becomes crucial to identify adipose tissue harvesting systems that implicate the least possible mechanical damage to the adult and mesenchymal adipose cells. The aim is to obtain concentrates rich in vital cells and growth factors within host tissues, allowing a milder harvesting of the adipose tissue with repeated sessions of lipofilling. She underwent 3 sessions of lipofilling, with an initial reduction in dosage. After 4 years, the patient was referred to the Service of Plastic Surgery (March 2016), where she was proposed a correction of the scleroatrophic lesions with repeated sessions of lipofilling. She underwent 3 sessions of lipostructure at 6 months intervals. All sessions were performed under general anaesthesia, using Water-Assisted Liposuction (BodyJet™, Human med AG-Germany). The donor areas were infiltrated with tumescent solution (adrenaline 1mg in 1000mL of saline solution). The final volume of pure fat aspirated was, respectively, 120mL, 120mL and 150mL. The fat graft was then injected into sclerodermic lines. There were no peroperative complications. As immediate effect of the procedure, the patient reported a marked improvement of the local clinical status, in terms of attenuation of pain. In the following weeks, a progressive improvement of tissue consistency was reported, in terms of “softening” of the skin and betterm of flexibility. As further proof of the lipotransfer beneficial effects, thermographic imaging documented a reduction in skin temperature in the treated areas. This is consistent with reduced inflammation or hyperaemia accompanying clinical improvement in the localised skin sclerosis (Fig. 1).

S. MURA1, MD
A. FIN2, MD
P.C. PARODI, MD
C.P. DENTON, MD
K.J. HOWELL3, MD
E. RAMPINO CORDARO4, MD

1Department of Plastic and Reconstructive Surgery, University of Udine, Italy;
2UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, London;
3Microvascular Diagnostics, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK.

Fig. 1. Reduced thermographic activity in linear morphea following successful lipotransfer.

Initial thermographic imaging confirms elevated skin temperature (arrows) at sites of linear morphea on left forearm (A) and left shoulder (B). After 3 successful treatments with lipotransfer there is clear improvement with reduced skin temperature at each site (arrows) reflecting clinical benefit (C, D).

References

4. ZUK PA: Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells 2013: 35.