Associations between interleukin-10 gene polymorphisms and systemic lupus erythematosus risk: a meta-analysis with trial sequential analysis

Y. Yuan¹, X. Wang², L. Ren³, Y. Kong⁴, J. Bai⁵, Y. Yan⁶

¹Department of Dermatology, The Renmin Hospital of Tongchuan City, Shaanxi, China; ²Department of Clinical Laboratory, The 2nd Affiliated Hospital of Guizhou Medical College, Guizhou, China; ³Department of Ultrasound, ⁴Department of Radiology, The Renmin Hospital of Tongchuan City, Shaanxi, China; ⁵Department of Rheumatology, The Nuclear Industry 215 Hospital of Shanxi, Xian Yang, Shaanxi, China; ⁶Shaanxi Origin Agri-technology Co. Ltd, Tongchuan, Shaanxi, China.

Abstract Objective

Interleukin-10 (IL-10) polymorphisms have been reported to be associated with systemic lupus erythematosus (SLE), however, the results are controversial. Therefore, we conducted a meta-analysis with trial sequential analysis to evaluate a more accurate estimation of the associations.

Methods

Eligible studies were retrieved by searching PubMed, Embase, Google Scholar, VIP, Wan Fang and China National Knowledge Infrastructure databases. Hardy-Weinberg equilibrium (HWE) was evaluated. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Heterogeneity was evaluated by Q statistic and I² statistic. Sensitivity analysis and subgroup analysis (stratified by HWE, region, event sample size, source of controls, genotyping method) were conducted and the potential for publication bias was assessed. Trial sequential analysis was introduced to assess the information size and the positive results.

Results

Twenty case-control studies were included. Overall results from IL10-1082A/G polymorphism showed increased risk of systemic lupus erythematosus, but no significant associations were observed in both IL10-819C/T and IL10-592C/A polymorphism. Increased risk of SLE was also observed in IL10A/G polymorphism in Asian population, hospital-based and PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism) subgroups. In addition, decreased risk of SLE was widely detected in IL10-819C/T and IL10-592C/A polymorphisms in subgroup analysis.

Conclusion

Our study suggests that the IL10-1082A/G polymorphism is a risk factor in systemic lupus erythematosus. A decreased risk of SLE in the IL10-819C/T and IL10-592C/A polymorphisms in subgroups was also observed, but further rigorously studies are needed to confirm these results.

Key words

IL-10 gene polymorphism, systemic lupus erythematosus, meta-analysis, trial sequential analysis

Yanli Yuan, MD* Xianhe Wang, BD* Lijuan Ren, BD Yanliang Kong, MD Jie Bai, MD Yan Yan, PhD *These authors made an equal contribution to this work.

Please address correspondence to: Dr Y. Yan, Shaanxi Origin Agri-technology Co. Ltd, 727031 Tongchuan, Shaanxi, China. E-mail: sunnylikeme@163.com and J. Bai, 52 Fuyang West Road, Xianyang City, Shaanxi, China E-mail: baijiedoctor2016@163.com Received on February 4, 2018; accepted in revised form on May 29, 2018.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2019. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by the production of autoantibodies leading to intense inflammation and multiple organ destruction (1, 2). The aetiology of SLE is not fully clear. Gene susceptibility plays an important role in the pathogenesis of SLE (3, 4). Cytokines are crucial immunomodulatory molecules that mediate immune response and inflammation (5). Some cytokine gene polymorphisms, like tumour necrosis factor- α (TNF- α) (3), interferon- γ $(IFN-\gamma)$ (6), interleukin-1 (IL-1) (7), interleukin-4 (IL-4) (8), interleukin-10 (IL-10) (9), are reported to be involved in the cytokine gene transcription and translation, which might imply a potential relationship between cytokine gene polymorphism with susceptibility, severity and clinical features of SLE.

Gene polymorphisms can affect the gene expression and IL10 promoter is highly polymorphic. Three common single nucleotide polymorphisms (SNPs) in the IL-10 promoter were widely studied: a G to A substitution at position -1081, a C to T at -819 and a C to A at -592. Many case-control studies and meta-analyses were conducted to seek the associations between these three IL-10 polymorphisms and SLE risk, however, the results are controversial. This inconsistency may be due to the small sample size and the low statistical power of individual case-control studies. In the previous meta-analysis, adjusted alpha was not assessed for multiple tests, besides, random error and information size should also be evaluated in meta-analysis (10). Therefore, we carried out this updated metaanalysis with trial sequential analysis to pool current evidence together for a more accurate evaluation of the associations between IL-10 polymorphisms and SLE risk.

Methods

This meta-analysis was written on the basis of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) checklist (11).

Identification of the related studies We conducted systematic search in PubMed, Embase, Google Scholar, VIP, Wan fang and China National Knowledge Infrastructure databases to identify potential studies about the relationships between the interleukin-10 gene polymorphisms and systemic lupus erythematosus risk. The last literature search update was performed on December 20th, 2017. The terms "systemic lupus erythematosus," "SLE," "interleukin-10," "IL-10," "variant," "polymorphism," and "polymorphisms" were used. No language limitations were applied. Reference list was also screened.

Inclusion and exclusion criteria

Studies met the following inclusion criteria were included: (1) evaluation of the associations between the interleukin-10 gene polymorphisms and systemic lupus erythematosus; (2) case-control study or cohort design; (3) detailed genotype data could be acquired to calculate odds ratios (ORs), 95% confidence intervals (CIs) and p-value for Hardy-Weinberg equilibrium; exclusion criteria: (1) duplication of previous publications; (2) comment, review and editorial; (3) study without detailed genotype data. Two investigators independently conducted the comprehensive literature search to obtain the potential included studies by screening the title, abstract and fulltext. Any disagreement was solved by group discussion.

Data extraction

The following data were independently extracted by the first two investigators using a standardised form from the eligible studies: first author's last name, year of publication, study country, study region, genotyping methods, sample size, source of controls, Hardy-Weinberg equilibrium, number of cases and controls, and genotype frequency in cases and controls for interleukin-10 gene. Consensus was reached by discussion.

Quality assessment

Two reviewers independently assessed the quality of the included studies, according to a set of criteria (shown in Table S3) modified based on the Newcastle-Ottawa quality assessment scale.

Competing interests: none declared.

(*)	
SLE	
5	
pui	
0 0	
SD	
ġ	
LIC LIC	
Ĕ	
- Jo	•
ă	
10	
E	
n I	
ee	
Ř	
- Je	
S	
5	
ati	
. <u>5</u>	
so	
as	
he	
Et t	
õ	
ab	
es	
-ipi	
stu	
ğ	
-pe	
Ę	
.ĕ	
J	
s	
-E	
ris.	
te	
ac	
hai	
Ü	
le I.	
Table	
Tab	

				Saml	Sample Size		SLE			Control		Controls	Genotyping	Quality	
Study	Year	Country	Region	SLE	Control	AA	GA	GG	AA	GA	GG	Source	Method	Score	HWE*
IL10-1082A/G polymorphism	phism														
Manolova	2018	Bugaria	Europe	154	224	55	72	27	74	124	26	PB	ARMS-PCR	7	0.016 **
Talaat	2016	Egypt	Africa	100	119	40	42	18	30	78	11	HB	PCR-SSP	8	0.000 **
Rezaei	2015	Iran	Asian	59	140	20	37	0	53	75	12	PB	PCR-SSP	6	0.042^{**}
Palafox-Sanchez	2015	Mexico	America	125	260	62	50	13	133	103	24	PB	PCR-SSP	6	0.532
da Silva	2014	Brazil	America	90	100	8	81	1	20	72	8	HB	ARMS-PCR	L	0.000 **
Rianthavorn1	2013	Thailand	Asian	71	160	56	14	1	139	21	0	HB	PCR-RFLP	8	0.374
Rianthavorn2	2013	Thailand	Asian	57	160	43	13	1	139	21	0	HB	PCR-RFLP	L	0.374
Lin	2010	China	Asian	172	215	158	14	0	194	21	0	PB	PCR-Taqman	6	0.452
Rosado	2008	Spain	Europe	116	151	38	55	23	65	72	14	HB	PCR-RFLP	8	0.348
Guarnizo-Zuccardi	2007	Colombia	America	120	102	56	50	14	51	42	6	HB	PCR-SSP	8	0.933
Suarez	2005	Spain	Europe	192	343	69	86	37	134	158	51	HB	PCR-Taqman	8	0.692
Hrycek	2005	Poland	Europe	24	36	9	14	4	11	18	7	HB	PCR-SSP	7	0.940
Khoa	2005	Japan	Asian	64	57	15	31	18	21	30	9	PB	ARMS-PCR	6	0.323
Guzowski	2005	USA	America	36	25	25	4	7	6	12	4	PB	PCR-DHPLC	6	0.999
Chong	2004	China	Asian	554	708	501	51	7	652	56	0	PB	PCR-Taqman	6	0.273
Fei	2004	Sweden	Europe	52	26	15	24	13	8	10	8	PB	ARMS-PCR	6	0.239
Dijstelbloem	2002	Netherland	Europe	180	163	44	94	42	41	72	50	PB	ARMS-PCR	8	0.146
Rood	1999	Netherland	Europe	92	162	21	47	24	34	78	50	PB	PCR-SSP	8	0.726
Crawley	1999	UK	Europe	120	274	28	65	27	80	124	70	PB	PCR-SSP	8	0.121
Lazarus	1997	UK	Europe	76	119	14	36	26	35	47	37	HB	PCR-SSP	7	0.022**
IL10-819TC/T polymorphism	phism					CC	CT	ΤΤ	CC	CT	ΤΤ				
Talaat	2016	Egypt	Africa	100	119	22	70	8	60	53	9	HB	PCR-SSP	8	0.184
Rezaei	2015	Iran	Asian	58	140	23	31	4	71	57	12	PB	PCR-SSP	6	0.907
Palafox-Sanchez	2015	Mexico	America	125	260	46	61	18	96	124	40	PB	PCR-SSP	6	766.0
Rianthavorn1	2013	Thailand	Asian	71	160	11	31	29	10	70	80	HB	PCR-RFLP	8	0.299
Rianthavorn2	2013	Thailand	Asian	57	160	8	26	23	10	70	80	HB	PCR-RFLP	L	0.299
Guzowski	2005	USA	America	51	25	18	24	6	15	10	-	PB	PCR-DHPLC	6	0.671
Chong	2004	China	Asian	554	708	64	241	249	47	322	339	PB	PCR-Taqman	6	0.011 **
IL10-592C/A polymorphism	hism					CC	AC	AA	CC	AC	AA				
Rezaei	2015	Iran	Asian	58	140	19	35	4	71	57	12	PB	PCR-SSP	6	0.907
Palafox-Sanchez	2015	Mexico	America	125	260	49	09	16	100	125	35	PB	PCR-SSP	6	0.679
Rianthavorn1	2013	Thailand	Asian	71	161	11	31	29	10	70	81	HB	PCR-RFLP	8	0.313
Rianthavorn2	2013	Thailand	Asian	57	161	8	26	23	10	70	81	HB	PCR-RFLP	L	0.313
Zhu	2005	China	Asian	265	100	21	119	125	12	47	41	PB	PCR-RFLP	6	0.792
Guzowski	2005	USA	America	51	25	21	21	6	13	11	0	PB	PCR-DHPLC	6	0.876
Chong	2004	China	Asian	554	708	64	241	249	47	322	339	PB	PCR-Taqman	6	0.011

Genetic model	Numbers of Studies	Statistical method	OR[95%CI]	P _{meta-analysis} *	BON	FDR	I2 (%)	$P_{heterogeneity}{}^{\#}$
IL10-1082A/G polym	orphism							
G VS A	20	Odds ratio (M-H, Fixed, 95% CI)	1.11 [1.01, 1.21]	0.030	0.150	0.067	25	0.150
GG+GA VS AA	20	Odds ratio (M-H, Fixed, 95% CI)	1.14 [1.01, 1.30]	0.040	0.200	0.067	39	0.040
GG VS GA+AA	20	Odds ratio (M-H, Random, 95% CI)	1.10 [0.81, 1.49]	0.550	1.000	0.550	58	0.000
GA VS AA	20	Odds ratio (M-H, Fixed, 95% CI)	1.11 [0.97, 1.26]	0.140	0.700	0.175	48	0.009
GG VS AA	20	Odds ratio (M-H, Fixed, 95% CI)	1.26 [1.04, 1.54]	0.020	0.100	0.067	19	0.230
IL10-819C/T polymor	rphism							
T VS C	7	Odds ratio (M-H, Random, 95% CI)	1.05 [0.78, 1.42]	0.730	1.000	0.930	78	0.000
TT+TC VS CC	7	Odds ratio (M-H, Random, 95% CI)	1.03 [0.56, 1.90]	0.930	1.000	0.930	85	0.000
TT VS TC+CC	7	Odds ratio (M-H, Random, 95% CI)	0.82 [0.48, 1.40]	0.460	1.000	0.930	78	0.000
TC VS CC	7	Odds ratio (M-H, Random, 95% CI)	1.05 [0.58, 1.91]	0.870	1.000	0.930	83	0.000
TT VSCC	7	Odds ratio (M-H, Random, 95% CI)	0.85 [0.46, 1.56]	0.590	1.000	0.930	68	0.004
IL10-592C/A polymo	rphism							
A VS C	7	Odds ratio (M-H, Random, 95% CI)	0.95 [0.77, 1.18]	0.660	1.000	0.820	59	0.020
AA+AC VS CC	7	Odds ratio (M-H, Random, 95% CI)	0.88 [0.55, 1.41]	0.590	1.000	0.820	73	0.001
AA VS AC+CC	7	Odds ratio (M-H, Random, 95% CI)	1.09 [0.51, 2.33]	0.820	1.000	0.820	93	0.000
AC VS CC	7	Odds ratio (M-H, Random, 95% CI)	0.89 [0.56, 1.42]	0.620	1.000	0.820	69	0.004
AA VS CC	7	Odds ratio (M-H, Random, 95% CI)	0.78 [0.47, 1.29]	0.330	1.000	0.820	60	0.020

Table II. Results of meta-analysis of associations between IL10 polymorphisms and SLE risk.

SLE: systemic lupus eythematosus; OR: odds ratio; CI: Confidence Interval.

*p-value for meta-analysis; *p-value for between-study heterogeneity based on Q test. Significant results are marked in bold.

	SLE		Contr			Odds Ratio		Odds Ratio
Study or Subgroup	Events		Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Lazarus	88	152	121	238	4.3%	1.33 [0.88, 2.00]	1997	
Crawley	119	240	264	548	8.8%	1.06 [0.78, 1.43]	1999	
Rood	95	184	178	324	6.7%	0.88 [0.61, 1.26]	1999	
Dijstelbloem	178	360	172	326	9.9%	0.88 [0.65, 1.18]	2002	• • • • • • • • • • • • • • • • • • •
Chong	55	1108	56	1416	5.1%	1.27 [0.87, 1.86]	2004	
Fei	50	104	26	52	1.9%	0.93 [0.48, 1.80]	2004	· · · · · ·
Hrycek	22	48	32	72	1.5%	1.06 [0.51, 2.20]	2005	<u> ا</u>
Suarez	160	384	260	686	11.8%	1.17 [0.91, 1.51]	2005	
Guzowski	18	71	20	50	1.9%	0.51 [0.23, 1.11]	2005	←
Khoa	67	128	42	114	2.3%	1.88 [1.13, 3.15]	2005	
Guarnizo-Zuccardi	78	240	60	204	4.7%	1.16 [0.77, 1.73]	2007	
Rosado	101	232	100	302	5.3%	1.56 [1.09, 2.22]	2008	
Lin	14	344	21	430	1.9%	0.83 [0.41, 1.65]	2010	•
Rianthavorn1	16	142	21	320	1.2%	1.81 [0.91, 3.58]	2013	
Rianthavorn2	15	114	21	320	1.0%	2.16 [1.07, 4.35]	2013	
da Silva	83	180	88	200	4.9%	1.09 [0.73, 1.63]	2014	•
Rezaei	41	118	99	280	4.1%	0.97 [0.62, 1.53]	2015	<u>+</u>
Palafox-Sanchez	76	250	151	520	7.4%	1.07 [0.77, 1.48]	2015	
Talaat	78	200	100	238	6.0%	0.88 [0.60, 1.29]	2016	←
Manolova	126	308	176	448	9.2%	1.07 [0.80, 1.44]	2018	
Total (95% CI)		4907		7088	100.0%	1.11 [1.01, 1.21]		
Total events	1480		2008					
Heterogeneity: Chi ² =	25.22, df	= 19 (P	^e = 0.15);	I ² = 259	%			0.85 0.9 1 1.1 1.2
Test for overall effect:	Z= 2.22	(P = 0.0))3)					
								Protective Risky
					10-108	32A/G polymorph	ism	

IL10-1082A/G polymorphism

Fig. 1. Forest plot of SLE risk associated with the G allele compared with the A allele in IL10-1082/G polymorphism. OR: odds ratio; CI: confidence interval.

Statistics analysis

Hardy-Weinberg equilibrium (HWE) was evaluated for each study by Chisquare test in control groups, and p<0.05 was considered as a significant departure from HWE. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the strength of the association between interleukin-10 gene polymorphisms and systemic lupus erythematosus risk. ORs and 95%CIs were performed for the allelic model (-1082A/G: G vs. A; -819C/T: T VS C; -592C/A: A VS C), recessive model (-1082A/G: GG vs. GA+AA; -819C/T:

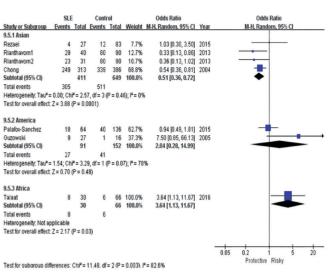
	SLE		Contr	ol		Odds Ratio		Odds Ratio
Study or Subgroup					Weight	M-H, Random, 95% Cl	Year	
2.2.1 In accordance			Lyong	Total	Togic	in the transformed of the	Tour	
Palafox-Sanchez	39	59	87	140	6.0%	1.19 [0.63, 2.25]	2015	
Rianthavorn1	15	71	21	160	4.7%	1.77 [0.85, 3.68]		
Rianthavorn2	14	57	21	160	4.4%	2.16 [1.01, 4.60]		
Lin	14	172	21	215	5.0%	0.82 [0.40, 1.66]		·
Rosado	78	116	86	151	8.9%	1.55 [0.94, 2.57]		
Guarnizo-Zuccardi	64	120	51	102	8.2%	1.14 [0.67, 1.94]		
Suarez	123	192	209	343	14.2%	1.14 [0.79, 1.65]		
Guzowski	11	36	16	25	2.3%	0.25 [0.08, 0.73]	2005	←
Khoa	49	64	36	57	4.1%	1.91 [0.86, 4.20]	2005	
Hrycek	18	24	25	36	2.0%	1.32 [0.41, 4.23]	2005	· · · · · · · · · · · · · · · · · · ·
Fei	37	52	18	26	2.5%	1.10 [0.39, 3.06]	2004	← →
Chong	53	554	56	708	12.9%	1.23 [0.83, 1.83]	2004	
Dijstelbloem	136	180	122	163	9.3%	1.04 [0.64, 1.70]	2002	
Rood	71	92	128	162	6.4%	0.90 [0.48, 1.66]	1999	·
Crawley	92	120	194	274	9.1%	1.35 [0.82, 2.23]	1999	
Subtotal (95% CI)		1909		2722	100.0%	1.20 [1.02, 1.42]		
Total events	814		1091					
Heterogeneity: Tau ² =	0.02; Chi	² = 16.9	59, df = 1	4 (P = 0	0.28); I ^z =	16%		
Test for overall effect:	Z = 2.14 ((P = 0.0	13)					
2.2.2 Departure from								
Manolova	99	154	150	224	23.7%	0.89 [0.58, 1.37]		
Talaat	60	100	89	119	20.4%	0.51 [0.28, 0.90]		
Rezaei	63	125	127	260	23.8%	1.06 [0.69, 1.63]		
da Silva	82	90	80	100	14.4%	2.56 [1.07, 6.15]		
Lazarus	62	76	84	119	17.7%	1.85 [0.92, 3.72]	1997	
Subtotal (95% CI)		545		822	100.0%	1.10 [0.69, 1.74]		
Total events	366		530	1222	101 EN 8110 20			
Heterogeneity: Tau ² =				(P = 0.	01); I ^z = 7	'0%		
Test for overall effect:	Z = 0.39 (P = 0.7	0)					
								0.7 0.85 1 1.2 1.5
Test for subaroup diff	erences: (Chi² = I	0.14. df=	1 (P =	0.71). I ² =	: 0%		Protective Risky

IL10-1082A/G polymorphism

Fig. 2. Subgroup analysis (HWE) of SLE risk associated with IL10-1082A/G polymorphism. HWE: Hardy-Weinberg Equilibration; OR: odds ratio; CI: confidence interval.

TT VS TC+CC; -592C/A: AA VS AC+CC), dominant model (-1082A/G: GG+GA vs. AA; -819C/T: TT+TC VS CC; -592C/A: AA+AC VS CC), heterozygote model (-1082A/G: GA vs. AA; -819C/T: TC VS CC; -592C/A: AC VS CC), and homozygote model (-1082A/G: GG vs. AA; -819C/T: TT VS CC; -592C/A: AA VS CC), respectively. Heterogeneity was evaluated by Q statistic (significance level of p < 0.1) and I² statistic (greater than 50% as evidence of significant inconsistency). In heterogeneity evaluation, when the I² <50%, the fixed-effects model would be used; if the I²=50% to 90%, a randomeffects model was used; if the $I^2 > 90\%$, the studies would not be pooled (12). Sensitivity analysis was performed to detect the heterogeneity by omitting one study in each turn. Subgroup analysis

were stratified by HWE (In accordance with or departure from HWE), region (Asian, Europe, America and Africa), event sample size (<100 as small and \geq 100 as large), source of controls (Population-based or Hospital-based) and genotyping method (PCR-SSP (Polymerase Chain Reaction primer sequence specific), PCR-TaqMan (Polymerase Chain Reaction-TaqMan), PCR-RFLP (Polymerase Chain Reaction Restriction Fragment Length Polymorphism), ARMS-PCR (Refractory Mutation System Polymerase Chain Reaction) and PCR-DHPLC (Polymerase Chain Reaction Denaturing high-performance liquid chromatography)). The potential for publication bias was assessed with Begg's funnel plot and Egg's test. All the tests in this meta-analysis were conducted with the RevMan 5.3 and the STATA 11.0 software packages. The Bonferroni method which control for the false discovery rate was adopted to adjust for multiple comparisons (13). The power of meta-analysis for SNP to detect some effect size was estimated according to the method recommended by Hedges and Piggott, given a significant value of 0.05 (14).


Trial sequential analysis

In order to reduce the risk of type I errors, we performed the trial sequential analysis (TSA) by using the trial sequential analysis software (Copenhagen Trial Unit, Copenhagen, Denmark). TSA is a method in combining an information size calculation from cumulated sample sizes for a meta-analysis with the threshold of statistical significance (http://www.ctu.dk/tsa). The required

		Allelic	Allelic genetic model	model		Domina	Dominant genetic model	c model		Recessive	genetic model	nodel		Heterozygote	tote genet	genetic model		Homozygote	genetic model	odel
Subgroup	N	OR[95%CI]	P*	12	#d	OR[95%CI]	P*	12	H#	OR[95%CI]	P*	12	P#	OR[95%CI]	P*	12	P#	OR[95%CI] I	P*	12
IL10-1082A/G polymorphism	20		G VS A			00	GG+GA VS	AA		SA 99	VS GA+AA	A		9	GA VS AA			GG VS.	VS AA	
In accordance with HWE Departure from HWE	15 5	1.14 [0.99, 1.31] 1.06 [0.89, 1.25]	$0.080 \\ 0.510$	38.0 0.0	0.070 0.700	1.20 [1.02, 1.42] 1.10 [0.69, 1.74]	0.030 0.700	16.0 70.0	0.280 0.010	$\begin{array}{c} 1.17 \left[0.82, 1.67 \right] & 0 \\ 0.85 \left[0.41, 1.73 \right] & 0 \end{array}$	0.390	58.0 C	0.004 0.020	1.19 [0.99, 1.41] 1.05 [0.60, 1.84]	0.060 0.860	15.0 77.0	$0.280 \\ 0.001$	$\begin{array}{c} 1.30 \left[0.96, 1.75 \right] & 0.\\ 1.27 \left[0.84, 1.92 \right] & 0. \end{array}$	0.090 2 0.260 (29.0 0.150 0.0 0.260
Kegion Asian	L	$1.30\ [1.00, 1.69]$	0.050	34.0	0.170	1.27 [1.02, 1.59]	0.040	0.0	0.430			60.0	0.030	1.21 [0.97, 1.53]	0.100	0.0	0.660			44.0 0.110
Europe	∞ -	1.10 [0.96, 1.25]	0.170	19.0	0.280		0.100	0.0	0.570	[0.70, 1.26]			0.060	0.94,1	0.170		0.500			
America Africa	4	1.03 [0.82, 1.30] 0.88 [0.60, 1.29]	0.520	NA NA	NA NA	0.51 [0.28, 0.90]	0.020	NA NA	NA NA	0.21 [0.25, 2.25] 0 2.00 [0.89, 4.46] 0	0.090	NA U.CO	0.040 NA	0.40 [0.22, 0.74] 0.40 [0.22, 0.74]	0.003	NA NA	2007 NA	1.0/ [0.05, 1./9] 0. 1.23 [0.51, 2.98] 0.	0.650	NA NA
Sample size Small(<100)	10	1.16 [0.93, 1.46]	0.190	44.0	0.060	1.33 [0.94, 1.87]	0.100	50.0	0.040	[0.57, 1.96]		0	0.005	1.31 [0.90, 1.90]	0.160		0.020	_	0.540 3	
Large(≥100) Source of controls	10	1.09 [0.98, 1.22]	0.110	0.0	0.460	1.07 [0.90, 1.28]	0.430	22.0	0.240	_	0.610			1.03 [0.83, 1.27]	0.810		060.0	1.65]		3.0 0.410
Population based Hospital based	12 8	1.05 [0.92, 1.19] 1.23 [1.03, 1.46]	0.500 0.020	19.0 22.0	0.260 0.250	1.09 [0.90, 1.32] 1.30 [0.93, 1.82]	$0.390 \\ 0.120$	24.0 56.0	0.210 0.030	1.02 [0.68, 1.52] 0 1.29 [0.80, 2.07] 0	0.920	66.0 (39.0 (0.001 0.120	1.09 [0.87, 1.37] 1.22 [0.84, 1.78]	$0.460 \\ 0.300$	37.0 63.0	0.090 0.008	1.13 [0.84, 1.52] 0. 1.56 [1.11, 2.20] 0.	0.420 2 0.010 1	21.0 0.240 1.0 0.420
Genotyping method PCR-SSP	×	1.04 [0.90, 1.19]	0.610	0.0	0.850	1.07 [0.83.1.38]	0.590	32.0	0.170	0.80 [0.52, 1.23] 0	0.310	59.0 (.020	1.08 [0.78, 1.49]	0.640	52.0			0.440 (0.0 0.800
PCR-TaqMan PCR-RFLP ARMS-PCR PCR-DHPLC	ος ας ας ας ας ας ας ας ας ας ας ας ας ας	1.16 [0.95, 1.42] 1.69 [1.27, 2.25] 1.09 [0.86, 1.37] 0.51 [0.23, 1.11]	0.150 0.000 0.480 0.090	0.0 39.0 NA	0.570 0.700 0.160 NA		0.340 0.003 0.260 0.010	0.0 37.0 NA	0.780 0.780 0.180 NA				0.270 0.950 0.020 NA	1.07 [0.83, 1.39] 1.54 [1.05, 2.24] 1.25 [0.82, 1.90] 0.12 [0.03, 0.47]	0.600 0.030 0.290 0.002		0.670 0.660 0.130 NA	1.47 [0.89, 2.44] 0. 3.15 [1.51, 6.57] 0. 1.19 [0.64, 2.23] 0. 0.63 [0.15, 2.67] 0.		
IL10-819C/T polymorphism	Г		T VS C			ΕL	TT+TC VS CC	CC		SV TT	VS TC+CC	r)		Ĥ	TC VS CC			TT	TT VS CC	
HWE In accordance with HWE Departure from HWE	9 1	1.12 [0.76, 1.65] 0.83 [0.70, 0.99]	$0.560 \\ 0.030$	79.0 NA	0.000 NA	1.17 [0.60, 2.27] 0.54 [0.37, 0.81]	0.650 0.003	82.0 NA	0.000 NA	0.69 [0.41, 1.16] 0 1.33 [1.08, 1.65] 0	0.160	56.0 C NA	0.050 NA	$\begin{array}{c} 1.20 \\ 0.55 \\ 0.36, 0.83 \end{array}$	0.570 0.004	78.0 NA	0.000 NA	0.99 [0.44, 2.22] 0. 0.54 [0.36, 0.81] 0.	0.990 7 0.003 1	70.0 0.006 NA NA
Kegion Asian America Africa	40-	0.82 [0.71, 0.95] 1.56 [0.88, 2.76] 2.01 [1.35, 2.99]	0.007 0.130 0.000	5.0 44.0 NA	0.370 0.180 NA	0.63 [0.33, 1.20] 1.36 [0.62, 3.01] 3.61 [1.99, 6.53]	0.160 0.440 0.000	72.0 58.0 NA	0.010 0.120 NA	0.68 [0.35, 1.32] 0 2.03 [0.10, 42.26] 0 1.45 [0.48, 4.34] 0	0.250 0.650 0.510	82.0 87.0 NA	0.000 0.005 NA	0.63 [0.41, 0.98] 1.73 [1.01, 2.98] 3.60 [1.97, 6.60]	0.040 0.050 0.000	47.0 0.0 NA	0.130 0.860 NA	0.51 [0.36, 0.72] 0 , 2.04 [0.28, 14.99] 0. 3.64 [1.13, 11.67] 0.	0.000 0.480 7 0.030 1	0.0 0.460 70.0 0.070 NA NA
Sample size Small(<100) Large(≥100)	4 ω	0.92 [0.61, 1.38] 1.25 [0.71, 2.20]	$0.670 \\ 0.440$	69.0 88.0	0.020 0.000	0.88 [0.36, 2.13] 1.23 [0.45, 3.32]	0.770	77.0 93.0	0.005	$\begin{array}{c} 0.68 \\ 0.31, 1.48 \\ 0.99 \\ 0.50, 1.95 \\ \end{array} \begin{array}{c} 0 \end{array}$	0.330	66.0 C	0.030 0.020	0.80 [0.43, 1.49] 1.47 [0.46, 4.72]	$0.490 \\ 0.520$	54.0 93.0	000.0	0.72 [0.25, 2.08] 0. 1.05 [0.43, 2.56] 0.	0.550 6 0.910 8	65.0 0.030 80.0 0.007
Source of controls Population based Hospital based	4 κ	1.07 [0.79, 1.45] 0.96 [0.46, 2.03]	0.660 0.920	65.0 89.0	0.040 0.000	1.08 [0.60, 1.94] 0.84 [0.16, 4.35]	$0.790 \\ 0.840$	77.0 92.0	0.004 0.000	0.96 [0.40, 2.28] 0 0.65 [0.39, 1.06] 0	0.930	81.0 C	0.001 0.230	1.06 [0.60, 1.87] 0.91 [0.19, 4.38]	$0.840 \\ 0.910$	74.0 90.0	0.010	0.90 [0.46, 1.75] 0. 0.73 [0.17, 3.16] 0.	0.750 5 0.680 8	59.0 0.060 83.0 0.003
Genotyping method PCR-SSP PCR-RFLP PCR-DHPLC	ю 0 –	1.33 [0.86, 2.07] 0.66 [0.49, 0.90] 2.27 [1.07, 4.85]	0.200 0.009 0.030	74.0 0.0 NA	0.020 0.950 NA		0.150 0.005 0.090	83.0 0.0 NA	0.003 0.870 NA	[0.31, 1.27] [0.36, 0.84] [1.33, 89.78]		41.0 0.0 NA	0.180 0.580 NA	1.81 [0.86, 3.81] 0.43 [0.21, 0.87] 1.87 [0.68, 5.16]	0.120 0.020 0.230	81.0 0.0 NA	0.006 0.840 NA			51.0 0.130 0.0 0.900 NA NA
PCR-Taqman IL10-592C/A polymorphism	1 2	0.83 [0.70, 0.99]	0.030 A VS C	NA	NA	0.54 [0.37, 0.81] AA	1] 0.003 AA+AC VS	0	AN	1.33 [1.08, 1.65] 0 AAV?	0.009 N VSAC+CC	a N	NA	0.55 [0.36, 0.83] A	0.004 AC VS CC		NA	0.54 [0.36, 0.81] 0. AA	0.030 I AA VS CC	A NA
HWE In accordance with HWE Departure from HWE	9	0.99 [0.76, 1.31] 0.83 [0.70, 0.99]	0.970 0.030	60.0 NA	0.030 NA	$\begin{array}{c} 0.98 \ [0.58, 1.65] \\ 0.54 \ [0.37, 0.81] \end{array}$	0.940 0.003	67.0 NA	0.010 NA	1.06 [0.34, 3.29] 0 1.33 [1.08, 1.65] 0	0.920	4.0 VA	0.000 NA	1.00 [0.61, 1.65] 0.55 [0.36, 0.83]	0.990 0.004	60.0 NA	0.030 NA	$\begin{array}{c} 0.87 \left[0.46, 1.63 \right] & 0.\\ 0.54 \left[0.36, 0.81 \right] & 0. \end{array}$	0.650 5 0.003 1	59.0 0.030 NA NA
Region Asian America	N 0	0.92 [0.70, 1.21] 1.03 [0.78, 1.38]	$0.540 \\ 0.830$	68.0 0.0	0.010 0.320	0.79 [0.40, 1.59] 1.02 [0.69, 1.52]	$0.510 \\ 0.920$	80.0 0.0	0.000 0.570	1.02 [0.42, 2.50] 0 1.51 [0.15, 15.08] 0	0.960 0.730	94.0 (86.0 (0.000 0.007	0.83 [0.42, 1.66] 1.00 [0.66, 1.52]	009.0 006.0	78.0 0.0	0.001 0.850	0.66 [0.36, 1.22] 0. 1.22 [0.48, 3.07] 0.	0.190 6 0.670 2	64.0 0.030 29.0 0.240
Sample size Small(<100) Large(≥100)	4 ω	0.94 [0.60, 1.47] 0.97 [0.77, 1.23]	$0.790\\0.810$	69.0 57.0	0.020 0.100	$\begin{array}{c} 0.83 \left[0.33, 2.07 \right] \\ 0.88 \left[0.50, 1.56 \right] \end{array}$	0.690	78.0 74.0	0.003	0.69 [0.33, 1.47] 0 1.62 [0.51, 5.18] 0	0.340 0.410	0.96 0.0	0.030	0.87 [0.36, 2.11] 0.86 [0.50, 1.46]	$0.750 \\ 0.580$	74.0 67.0	0.008	0.68 [0.27, 1.69] 0. 0.90 [0.45, 1.76] 0.	0.400 5 0.750 7	58.0 0.070 72.0 0.030
Source of controls Population based Hospital based	v 0	1.08 [0.85, 1.36] 0.66 [0.48, 0.89]	0.550 0.007	58.0 0.0	0.050 0.950	1.12 [0.67, 1.89] 0.38 [0.20, 0.74]	0.670 0.005	75.0 0.0	0.003 0.870	1.49 [0.57, 3.87] 0 0.54 [0.36, 0.83] 0	0.420 0.005	93.0 0.0	0.000 0.580	1.10 [0.65, 1.86] 0.43 [0.21, 0.87]	0.740 0.020	73.0 0.0	0.005 0.840	1.03 [0.58, 1.85] 0. 0.34 [0.17, 0.68] 0.	0.910 6 0.003 0	60.0 0.040 0.0 0.900
Genotyping method PCR-SSP PCR-RFLP	0 N	$\begin{array}{c} 1.14 \\ 0.78, 1.68 \\ 0.83 \\ 0.53, 1.31 \end{array}$	$0.500 \\ 0.430$	50.0 74.0	0.160 0.020	1.38 [0.65, 2.95] 0.64 [0.23, 1.73]		74.0 74.0	0.050 0.020	0.48 [0.27, 0.85] 0 1.20 [0.22, 6.63] 0	0.010 0.840		0.580	$\begin{array}{c} 1.45 \\ 0.63 \\ 0.29 \\ 1.59 \end{array}$	0.380 0.370	77.0 61.0	~ ~	1.00 [0.55, 1.82] 0. 0.61 [0.19, 1.91] 0.		0.0 0.690 78.0 0.010
PCR-Taqman	1	0.83 [0.70, 0.99]	0.030	NA	NA	0.54 [0.37, 0.81]	0.003	NA	NA		600.0	NA	NA	0.55 [0.36, 0.83]	0.004	NA	NA		0.003	NA NA

Study or Subgroup	SLE		Contr			Odds Ratio		Odds Ratio
	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
3.1.1 Asian								
Fei	50	104	26	52	11.2%	0.93 [0.48, 1.80]	2004	
Chong	55	1108	56	1416	22.3%	1.27 [0.87, 1.86]	2004	
Khoa	67	128	42	114	16.0%	1.88 [1.13, 3.15]	2005	—— →
Lin	14	344	21	430	10.6%	0.83 [0.41, 1.65]	2010	
Rianthavorn1	16	142	21	320	10.8%	1.81 [0.91, 3.58]	2013	
Rianthavorn2	15	114	21	320	10.4%	2.16 [1.07, 4.35]	2013	
Rezaei	41	118	99	280	18.7%	0.97 [0.62, 1.53]	2015	
Subtotal (95% CI)		2058		2932	100.0%	1.30 [1.00, 1.69]		
Total events	258		286					
Heterogeneity: Tau ² :	= 0.04; Ch	i ² = 9.1	3, df = 6 (P = 0.1	7); 2 = 34	%		
Test for overall effect								
3.1.2 Europe								
Lazarus	88	152	121	238	9.1%	1.33 [0.88, 2.00]	1997	+
Crawley	119	240	264	548	14.9%	1.06 [0.78, 1.43]	1999	
Rood	95	184	178	324	11.2%	0.88 [0.61, 1.26]	1999	
Dijstelbloem	178	360	172	326	15.2%	0.88 [0.65, 1.18]	2002	
Hrycek	22	48	32	72	3.1%	1.06 [0.51, 2.20]	2005	
Suarez	160	384	260	686	19.3%	1.17 [0.91, 1.51]	2005	
Rosado	101	232	100	302	11.7%	1.56 [1.09, 2.22]	2008	
Manolova	126	308	176	448	15.5%	1.07 [0.80, 1.44]	2018	
Subtotal (95% CI)		1908		2944	100.0%	1.10 [0.96, 1.25]		◆
Total events	889		1303					
Heterogeneity: Tau ² :	= 0.01; Ch	i² = 8.6	2, df = 7 (P = 0.2	8); I ² = 19	%		
Test for overall effect	Z=1.38	(P = 0.1	17)					
3.1.3 America								
	18	71	20	50	8.4%	0.51 [0.23, 1.11]	2005	← • − − −
Guzowski	18 78	71 240	20 60	50 204	8.4% 27.1%	0.51 [0.23, 1.11] 1.16 [0.77, 1.73]		
3.1.3 America Guzowski Guamizo-Zuccardi da Silva							2007	
Guzowski Guarnizo-Zuccardi da Silva	78	240	60	204	27.1%	1.16 [0.77, 1.73]	2007 2014	
Guzowski Guamizo-Zuccardi da Silva Palafox-Sanchez	78 83	240 180	60 88	204 200 520	27.1% 27.1%	1.16 [0.77, 1.73] 1.09 [0.73, 1.63]	2007 2014	
Guzowski Guamizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% CI)	78 83	240 180 250	60 88	204 200 520	27.1% 27.1% 37.5%	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48]	2007 2014	
Guzowski Guarnizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% Cl) Total events	78 83 76 255	240 180 250 741	60 88 151 319	204 200 520 974	27.1% 27.1% 37.5% 100.0%	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30]	2007 2014	•
Guzowski Guarnizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% CI) Total events Heterogeneity: Tau ² :	78 83 76 255 = 0.01; Ch	240 180 250 741	60 88 151 319 6, df = 3 (204 200 520 974	27.1% 27.1% 37.5% 100.0%	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30]	2007 2014	
Guarnizo-Zuccardi	78 83 76 255 = 0.01; Ch : Z = 0.25	240 180 250 741 I ² = 3.5 (P = 0.8	60 88 151 319 6, df = 3 (204 200 520 974	27.1% 27.1% 37.5% 100.0%	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30]	2007 2014	
Guzowski Guamizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% CI) Total events Heterogeneity: Tau ² : Test for overall effect 3.1.4 Africa Talaat	78 83 76 255 = 0.01; Ch	240 180 250 741 I ² = 3.5 (P = 0.8 200	60 88 151 319 6, df = 3 (204 200 520 974 (P = 0.3 238	27.1% 27.1% 37.5% 100.0% 1); I ² = 16	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30]	2007 2014 2015	
Guzowski Guamizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% CI) Total events Heterogeneity: Tau ² : Test for overall effect 3.1.4 Africa Talaat	78 83 76 255 = 0.01; Ch : Z = 0.25	240 180 250 741 I ² = 3.5 (P = 0.8	60 88 151 319 6, df = 3 (30)	204 200 520 974 (P = 0.3 238	27.1% 27.1% 37.5% 100.0% 1); I ² = 16	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30]	2007 2014 2015	
Guzowski Guarnizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% CI) Total events Heterogeneity: Tau ² : Test for overall effect 3.1.4 Africa Talaat Subtotal (95% CI)	78 83 76 255 = 0.01; Ch : Z = 0.25	240 180 250 741 I ² = 3.5 (P = 0.8 200	60 88 151 319 6, df = 3 (30)	204 200 520 974 (P = 0.3 238	27.1% 27.1% 37.5% 100.0% 1); I ² = 16	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30] %	2007 2014 2015	
Guzowski Guamizo-Zuccardi da Silva Paldox-Sanchez Subtotal (95% Cl) Total events Heterogeneily. Tau ² : Test for overall effect 3.1.4 Africa Talaat Subtotal (95% Cl) Total events	78 83 76 255 = 0.01; Ch : Z = 0.25 78 78	240 180 250 741 I ² = 3.5 (P = 0.8 200	60 88 151 319 6, df = 3 (30) 100	204 200 520 974 (P = 0.3 238	27.1% 27.1% 37.5% 100.0% 1); I ² = 16	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30] %	2007 2014 2015	
Guzowski Guarnizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% Cl) Total events Heterogeneity: Tau ² : Test for overall effect	78 83 76 255 = 0.01; Ch : Z = 0.25 78 78 pplicable	240 180 250 741 i ² = 3.5 (P = 0.8 200 200	60 88 151 319 6, df = 3 (30) 100	204 200 520 974 (P = 0.3 238	27.1% 27.1% 37.5% 100.0% 1); I ² = 16	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30] %	2007 2014 2015	*
Guzowski Guanizo-Zuccardi da Silva Palafox-Sanchez Subtotal (95% CI) Total events Heterogeneik; Tau ² - Test for overall effect 3.1.4 Africa Talaat Subtotal (95% CI) Total events Notal events Notal events Notal events	78 83 76 255 = 0.01; Ch : Z = 0.25 78 78 pplicable	240 180 250 741 i ² = 3.5 (P = 0.8 200 200	60 88 151 319 6, df = 3 (30) 100	204 200 520 974 (P = 0.3 238	27.1% 27.1% 37.5% 100.0% 1); I ² = 16	1.16 [0.77, 1.73] 1.09 [0.73, 1.63] 1.07 [0.77, 1.48] 1.03 [0.82, 1.30] %	2007 2014 2015	

A. IL-10-1082A/G polymorphism

B. IL-10-819C/T polymorphism

Fig. 3. Subgroup analysis (region) of SLE risk associated with IL10-1082A/G and IL10-819C/T. polymorphism. OR: odds ratio; CI: confidence interval.

information size was calculated to an overall type-I error of 5%, a power of 80% and a relative risk reduction (RRR) assumption of 20%, and a continuity correction of 0.5 was also applied in zero-event trials.

Results

The characteristics of the included studies

A total of 326 articles were obtained by searching foreign databases (Pub-Med, Embase and Google scholar) and Chinese databases (CNKI, VIP and Wan Fang) respectively. After removing duplicates and screening the title and abstract, 32 articles were selected. After screening full-text articles, eighteen articles were included in qualitative synthesis. Finally, a total of twenty published articles (15-34), involving twenty studies for the IL10-1082A/G polymorphism, seven studies for the IL10-819C/T polymorphism and seven studies for the IL10-592C/A polymorphism in this meta-analysis (Seen in the Table S1 PRISMA Flow Diagram). The characteristics of all the included articles are summarised in Table I.

Meta-analysis results and heterogeneity analysis

Table II shows the main results of this meta-analysis and the heterogeneity of the interleukin-10 gene polymorphisms and systemic lupus erythematosus risk. The -1082A/G polymorphism was associated with increased risk of systemic lupus erythematosus in the allelic model (G VS A: OR=1.21, 95%CI=1.01–1.25) (Fig. 1), dominant model (GG+GA VS AA: OR=1.07, 95%CI=1.01–1.13), and homozygote model (GG VS AA: OR=1.27, 95%CI=1.01–1.60). However, association was not detected in the IL10-819C/T and IL10-592C/A polymorphisms.

Subgroup analysis was introduced to uncover some potential details concerning associations between IL10 polymorphisms and systemic lupus erythematosus risk. Table III summarises the results of the subgroup analysis. For the subgroup analysis stratified by HWE,

significant associations were only detected in IL10-1082A/G polymorphism in dominant genetic model (GG+GA VS AA: OR=1.20, 95%CI=1.02-1.42), but for IL10-819C/T and -592C/A polymorphisms, no associations were observed. As stratified by region, significant associations were found in Asian subgroup both IL-1082A/G and IL10-819C/T polymorphisms (IL10-1082A/G polymorphism: G VS A: OR=1.30, 95%CI=1.00-1.69; GG+GA VS AA: OR=1.27, 95%CI=1.02-1.59, IL10-819C/T polymorphism: T VS C: OR=0.82, 95%CI=0.71-0.95; TC VS CC: OR=0.63, 95%CI=0.41-0.98; TT VS CC: OR=0.51, 95%CI=0.36-0.72). No associations were detected in the three polymorphisms in subgroup analysis stratified by sample size. Interesting significant associations were detected in hospital-based subgroup of both IL10-1082A/G and IL10-592C/A polymorphisms (IL10-1082A/G polymorphism: G VS A: OR=1.23, 95%CI=1.03-1.46; GG VS AA: OR=1.56, 95%CI=1.11-2.20, IL10-592C/A polymorphism:

Protective Risky

	SLE		Cont	ol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
4.5.1 Small(<100)								
Rezaei	2	22	12	65	8.4%	0.44 [0.09, 2.15]	2015	· · · · · · · · · · · · · · · · · · ·
da Silva	1	9	8	28	4.8%	0.31 [0.03, 2.92]	2014	•
Rianthavorn1	1	57	0	139	2.5%	7.41 [0.30, 184.55]	2013	· · · · ·
Rianthavorn2	1	44	0	139	2.5%	9.62 [0.38, 240.46]	2013	
Guzowski	7	32	4	13	9.6%	0.63 [0.15, 2.67]	2005	• • •
Hrycek	4	10	7	18	8.4%	1.05 [0.22, 5.09]	2005	· · · · · · · · · · · · · · · · · · ·
Khoa	18	33	6	27	13.1%	4.20 [1.35, 13.09]	2005	
Fei	13	28	8	16	11.9%	0.87 [0.25, 2.96]	2004	• •
Rood	24	45	50	84	20.1%	0.78 [0.37, 1.61]	1999	
Lazarus	26	40	37	72	18.7%	1.76 [0.79, 3.90]	1997	
Subtotal (95% CI)		320		601	100.0%	1.18 [0.69, 2.01]		
Total events	97		132					
Heterogeneity: Tau ² =	0.23; Ch	i ^z = 13.	72, df = 9	(P = 0.	13); I ^z = 3	4%		
Test for overall effect:	Z=0.62	(P = 0.5)	54)					
4.5.2 Large(≥100)								
Manolova	27	82	26	100	13.7%	1.40 [0.74, 2.65]	2018	
Talaat	18	58	11	41	7.3%	1.23 [0.51, 2.98]	2016	
Palafox-Sanchez	13	75	24	157	10.4%	1.16 [0.55, 2.43]	2015	
Lin	0	158	0	194		Not estimable	2010	
Rosado	23	61	14	79	9.5%	2.81 [1.29, 6.10]	2008	
Guarnizo-Zuccardi	14	70	9	60	6.8%	1.42 [0.56, 3.55]	2007	
Suarez	37	106	51	185	20.9%	1.41 [0.84, 2.35]	2005	
Chong	2	503	0	652	0.6%	6.51 [0.31, 135.81]	2004	
Dijstelbloem	42	86	50	91	16.0%	0.78 [0.43, 1.41]	2002	
Crawley	27	55	70	150	14.7%	1.10 [0.59, 2.05]	1999	
Subtotal (95% CI)		1254		1709	100.0%	1.29 [1.01, 1.65]		-
Total events	203		255					
Heterogeneity: Tau ² =	0.00; Ch	² = 8.2	6, df = 8 (P = 0.4	1); I ² = 39	6		
Test for overall effect:				an sangiti da				
								0.5 0.7 i 1.5 2

Test for subaroup differences: $Chi^2 = 0.09$. df = 1 (P = 0.77). I² = 0%

IL-10-1082A/G polymorphism

Fig. 4. Subgroup analysis (event sample size) of SLE risk associated risk associated with IL10-1082A/G. polymorphism. OR: odds ratio; CI: confidence interval.

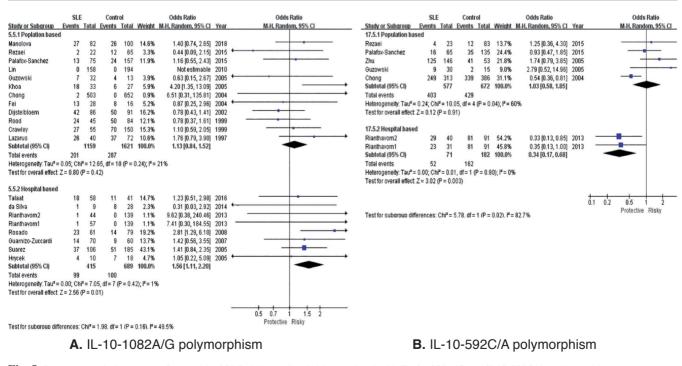


Fig. 5. Subgroup analysis (source of controls) of SLE risk associated risk associated with IL10-1082A/G and IL10-592C/A. polymorphism. OR: odds ratio; CI: confidence interval.

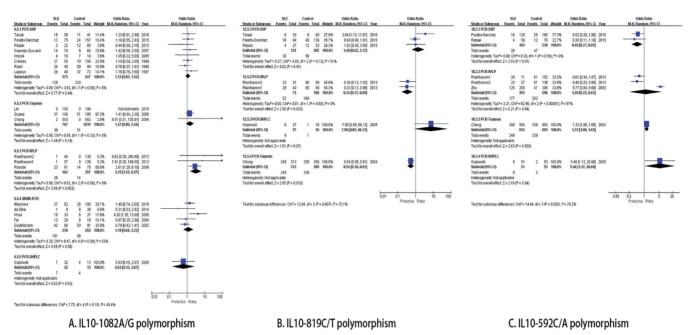
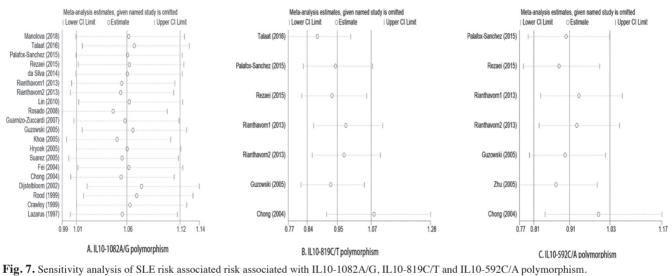



Fig. 6. Subgroup analysis (genotyping method) of SLE risk associated risk associated with IL10-1082A/G, IL10-819C/T and IL10-592C/A polymorphism. OR: odds ratio; CI: confidence interval.

Fig. 7. Sensitivity analysis of SLE risk associated risk associated with IL10-1082A/G, IL10-819C/T and IL10-592C/A polymorphism OR: odds ratio; CI: confidence interval.

A VS C: OR=0.66, 95%CI=0.48-0.89; AA+AC VS CC: OR=0.38, 95%CI=0.20-0.74; AA VS AC+CC: OR=0.54, 95%CI=0.36-0.83; AC VS CC: OR=0.43, 95%CI=0.21-0.87; AA VS CC: OR=0.34, 95%CI=0.17-0.68). As for the subgroup analysis stratified by genotyping method, wide significant associations were observed in the PCR-RFLP subgroup in IL10-1082A/G and -819C/T polymorphisms (IL1082A/G: G VS A: OR=1.69, 95%CI=1.27-1.2.25; GG+GA VS AA: OR=1.73, 95%CI=1.20-1.2.49; GG VS GA+AA: OR=2.12, 95%CI=1.07-4.21; GA VS

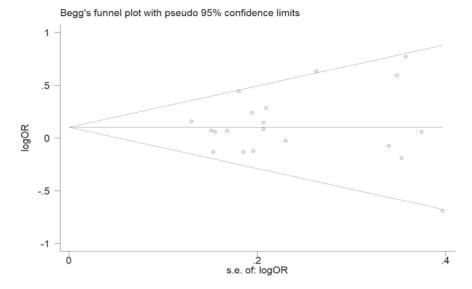
AA: OR=1.54, 95%CI=1.05–2.24; GG VS AA: OR=3.15, 95%CI=1.51–6.57, IL10-819C/T: T VS C: OR=0.66, 95%CI=0.49–0.90; TT+TC VS CC: OR=0.38, 95%CI=0.20–0.75; TT VS TC+CC: OR=0.55, 95%CI=0.36–0.84; TC VS CC: OR=0.43, 95%CI=0.21– 0.87; TT VS CC: OR=0.34, 95%CI=0.17–0.69).

Sensitivity analysis

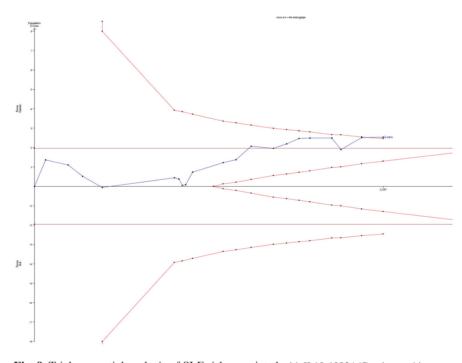
In order to detect the influence of each study on the overall meta-analysis, sensitivity analysis was performed by sequentially omitting one individual study. No substantial change of data on all five-genetic models were observed, therefore, our results of our meta-analysis were relatively stable and credible.

Publication bias

No publication bias was detected in the five genetic models among studies regarding the associations between the IL10-1082A/G polymorphism and systemic lupus erythematosus risk. For IL10-819C/T and IL10-592C/A polymorphisms, publication bias was not observed because the number of studies of each subgroup was less than 10 (35).


Trial sequential analysis

Our results show the number of patients included in the meta-analysis for IL10-1082A/G polymorphism not only exceeded the Z line but also passed the TSA line, which indicated the numbers in case-control studies reach the minimum sample size.


Discussion

The IL10 gene is located on chromosome 1 at position 1q31-1q32, which is a major SLE susceptibility locus (36). The increased production of IL-10 in SLE patients was reported and the upproduction of IL-10 might influence the biosynthesis of autoantibodies in SLE subjects (37). Moreover, down-regulation of IL-10 expression by an anti-IL10 monoclonal antibody resulted in amelioration of clinical manifestation in SLE patients (38), which implied a pivotal role of IL-10 in the pathogenesis of SLE. Three common IL10 gene polymorphisms which are IL10-1082A/G, -819C/T and -592C/A polymorphisms have been widely studied in the past years. Four meta-analyses have already been published regarding the correlation between IL10 polymorphisms and SLE risk (39-43). Most included studies in the previous meta-analysis were before 2013, and several new studies after 2013 draw inconsistent results (27, 28). In addition, adjusted p-value and type I error were not evaluated in the previous studies. Therefore, we performed an updated meta-analysis with trial sequential analysis to analyse these associations.

In our meta-analysis, significant increased risk of SLE was observed in IL10-1082G/A polymorphism from the overall analysis, but no associations were observed in the IL10-819C/T and IL10-592C/A polymorphisms. The trial sequential analysis confirms the positive results of the IL10-1082G/A polymorphism, which indicates case-control studies or meta-analysis regarding the associations between this polymorphism and SLE risk are no more necessary. Subgroup analysis stratified by HWE, Region, sample size, source of controls and genotyping method were conducted and interesting associations were revealed. For the IL10-1082A/G

Fig. 8. Publication bias of SLE risk associated with IL10-1082A/G polymorphism. OR: odds ratio; CI: confidence interval.

Fig. 9. Trial sequential analysis of SLE risk associated with IL10-1082A/G polymorphism. OR: odds ratio; CI: confidence interval.

polymorphism, increased risk of SLE was extensively detected in Asian population, hospital-based and PCR-RFLP subgroups. However, decreased risks of SLE were observed in the IL10-819C/T and IL10-592/A polymorphisms. In the Asian population, the T allele, TC genotype and TT genotype of IL10-819C/T polymorphism show 18%, 37% and 49% decreased risk of SLE. In the hospital-based subgroup of IL10-592C/A polymorphism, decreased risk of SLE was observed in all genetic models. As for the subgroup analysis stratified by genotyping method, decreased risk was widely detected in the PCR-RFLP subgroup of IL10-819C/T polymorphism and a 52% decreased SLE risk of AA genotype compared to AC and CC genotype was observed in IL10-592C/A polymorphism. The decreased risk of SLE in IL10-819C/T and IL10-

592C/A polymorphisms was observed in our study, studies included in some subgroups were relatively small and the decreased risk need to be interpreted with cautions. Our subgroup analysis indicated HWE, geography information, different source of controls and genotyping methods had an important influence on the source of heterogeneity and recovering the potential associations, moreover, the risk factor role of IL-10 polymorphisms would have a great clinical importance in SLE genetic prevention and therapy.

For the SLE patients, associations between IL-10 gene polymorphisms and clinical manifestations have attracted great attention. In the study reported by Lazarus et al. in 1997 (24), the IL10-1082G allele was increased in population with Ro antiantibodies and renal involvement. In the following years, many researchers reported the IL10-1082G/A polymorphism was associated with clinical manifestations in SLE. In the study reported by Rood et al. (30), the SLE subjects with neuropsychiatric manifestations were found to be associated with the IL-10 promoter haplotype ATA but less frequent in GCC haplotype. However, in different population, conflicting results were observed. In a Brazilian population, no relationship between clinical features and IL10-1082G/A was detected (17). The discrepancy may be due to different population characteristics (sample size, individual disease feature heterogeneity, environmental factors). Although differences were found, the IL10-1082G/A polymorphism may be associated with clinical manifestations, which also needs further study.

Furthermore, haplotype also played an important role in the susceptibility to disease. The GCC haplotype of the IL-10 gene associated with an increased risk of SLE in Spanish population was reported by Rosado *et al.* (31), moreover, the GCC haplotype was found to be related with high IL10 producers in the USA population (21). However, lack of association between the haplotype GCC/ATA polymorphism and SLE risk was reported by the meta-analysis of Wang *et al.* (41), which suggests that the associations between the IL-10

polymorphism haplotypes and SLE risk needs further research.

There were several limitations in this meta-analysis. Firstly, although we did not set a language limitation, only English and Chinese articles were recruited based on our search strategy. Similar researches in other languages may also exist, which could have an influence on our results. Secondly, individual patient heterogeneity and confounding factors might have distorted the analysis. Thirdly, the sample size of some included studies was relatively small in some subgroups, thus the results should be interpreted with caution. Fourth, the only one study from Africa included was consistent with our results, but used departure from Hardy-Weinberg equilibrium, so it was not pooled into our meta-analysis, which would require further researches in the African population in the future. In addition, the issue of environment factors on genes is worthy of consideration.

In conclusion, our study suggests that the IL10-1082A/G polymorphism is associated with an increased risk of systemic lupus erythematosus. Significant decreased risk of SLE in the IL10-819C/T and IL10-592C/A polymorphisms in some subgroups was also observed, but further rigorously studies are needed to confirm our results.

References

- NATH SK, KILPATRICK J, HARLEY JB: Genetics of human systemic lupus erythematosus: the emerging picture. *Curr Opin Immunol* 2004; 16: 794-800.
- 2. KOTZIN BL: Systemic lupus erythematosus. *Cell* 1996; 85: 303-6.
- UMARE VD, PRADHAN VD, RAJADHYAKSHA AG, PATWARDHAN MM, GHOSH K, NADKAR-NI AH: Impact of TNF-alpha and LTalpha gene polymorphisms on genetic susceptibility in Indian SLE patients. *Hum Immunol* 2017; 78: 201-8.
- 4. CHENG Y, LI M, ZHAO J *et al.*; CSTAR CO-AU-THORS: Chinese SLE Treatment and Research Group (CSTAR) registry:VIII: Influence of socioeconomic and geographical variables on disease phenotype and activity in Chinese patients with SLE. *Int J Rheum Dis* 2018; 21: 716-24
- 5. SONG Y, KIM HD, LEE MK et al.: Maysin and its flavonoid derivative from centipedegrass attenuates amyloid plaques by inducting humoral immune response with Th2 skewed cytokine response in the Tg (APPswe, PS-1dE9) Alzheimer's mouse model. *PloS One* 2017; 12: e0169509.

- LEE YH, BAE SC: Association between interferon-gamma +874 T/A polymorphism and susceptibility to autoimmune diseases: a meta-analysis. *Lupus* 2016; 25: 710-8.
- CAI L, ZHANG JW, XUE XX et al.: Metaanalysis of associations of IL1 receptor antagonist and estrogen receptor gene polymorphisms with systemic lupus erythematosus susceptibility. *PloS One* 2014; 9: e109712.
- YU HH, LIU PH, LIN YC *et al.*: Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. *Lupus* 2010; 19: 1219-28.
- ABDALLAH E, WAKED E, ABDELWAHAB MA: Evaluating the association of interleukin-10 gene promoter -592 A/C polymorphism with lupus nephritis susceptibility. *Kidney Res Clin Pract* 2016; 35: 29-34. PMC4811976.
- BROK J, THORLUND K, GLUUD C, WETTER-SLEV J: Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. *J Clin Epidemiol* 2008; 61: 763-9.
- 11. MOHER D, LIBERATI A, TETZLAFF J, ALT-MAN DG, GROUP P: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Int J Surg* 2010; 8: 336-41.
- LEWIS CM, LEVINSON DF: Testing for genetic heterogeneity in the genome search metaanalysis method. *Genet Epidemiol* 2006; 30: 348-55.
- XIN XY, DING JQ, CHEN SD: Apolipoprotein E promoter polymorphisms and risk of Alzheimer's disease: evidence from meta-analysis. J Alzheimer's Dis 2010; 19: 1283-94.
- HEDGES LV, PIGOTT TD: The power of statistical tests for moderators in meta-analysis. *Psychol Methods* 2004; 9: 426-45.
- CHONG WP, IP WK, WONG WH, LAU CS, CHAN TM, LAU YL: Association of interleukin-10 promoter polymorphisms with systemic lupus erythematosus. *Genes Immun* 2004; 5: 484-92.
- 16. CRAWLEY E, WOO P, ISENBERG DA: Single nucleotide polymorphic haplotypes of the interleukin-10 5' flanking region are not associated with renal disease or serology in Caucasian patients with systemic lupus erythematosus. Arthritis Rheum 1999; 42: 2017-8.
- 17. DA SILVA HD, DA SILVA AP, DA SILVA HA, ASANO NM, MAIA MDE M, DE SOUZA PR: Interferon gamma and Interleukin 10 polymorphisms in Brazilian patients with systemic lupus erythematosus. *Mol Biol Rep* 2014; 41: 2493-500.
- DIJSTELBLOEM HM, HEPKEMA BG, KALLEN-BERG CG et al.: The R-H polymorphism of FCgamma receptor IIa as a risk factor for systemic lupus erythematosus is independent of single-nucleotide polymorphisms in the interleukin-10 gene promoter. Arthritis Rheum 2002; 46: 1125-6.
- FEI GZ, SVENUNGSSON E, FROSTEGARD J, PADYUKOV L: The A-1087IL-10 allele is associated with cardiovascular disease in SLE. *Atherosclerosis* 2004; 177: 409-14.
- 20. GUARNIZO-ZUCCARDI P, LOPEZ Y, GIRAL-DO M *et al.*: Cytokine gene polymorphisms in Colombian patients with systemic lupus erythematosus. *Tissue Antigens* 2007; 70: 376-82.

- GUZOWSKI D, CHANDRASEKARAN A, GAW-EL C et al.: Analysis of single nucleotide polymorphisms in the promoter region of interleukin-10 by denaturing high-performance liquid chromatography. J Biomol Tech 2005; 16: 154-66.
- 22. HRYCEK A, SIEKIERA U, CIESLIK P, SZKROB-KA W: HLA-DRB1 and -DQB1 alleles and gene polymorphisms of selected cytokines in systemic lupus erythematosus. *Rheumatol Int* 2005; 26: 1-6.
- 23. KHOA PD, SUGIYAMA T, YOKOCHI T: Polymorphism of interleukin-10 promoter and tumor necrosis factor receptor II in Vietnamese patients with systemic lupus erythematosus. *Clin Rheumatol* 2005; 24: 11-3.
- 24. LAZARUS M, HAJEER AH, TURNER D et al.: Genetic variation in the interleukin 10 gene promoter and systemic lupus erythematosus. J Rheumatol 1997; 24: 2314-7.
- 25. LIN YJ, WAN L, HUANG CM *et al.*: IL-10 and TNF-alpha promoter polymorphisms in susceptibility to systemic lupus erythematosus in Taiwan. *Clin Exp Rheumatol* 2010; 28: 318-24.
- 26. MANOLOVA I, MITEVA L, IVANOVA M, KUN-DURZHIEV T, STOILOV R, STANILOVA S: The synergistic effect of TNFA and IL10 promoter polymorphisms on genetic predisposition to systemic lupus erythematosus. *Genet Test Mol Biomarkers* 2018: 22: 135-40.
- 27. PALAFOX-SANCHEZ CA, OREGON-ROMERO E, SALAZAR-CAMARENA DC et al.: Association of interleukin-10 promoter haplotypes with disease susceptibility and IL-10 levels in Mexican patients with systemic lupus erythematosus. Clin Exp Med 2015; 15: 439-46.
- 28. REZAEI A, ZIAEE V, SHARABIAN FT *et al.*: Lack of association between interleukin-10,

transforming growth factor-beta gene polymorphisms and juvenile-onset systemic lupus erythematosus. *Clin Rheumatol* 2015; 34: 1059-64.

- 29. RIANTHAVORN P, CHOKEDEEMEEBOON C, DEEKAJORNDECH T, SUPHAPEETIPORN K: Interleukin-10 promoter polymorphisms and expression in Thai children with juvenile systemic lupus erythematosus. *Lupus* 2013; 22: 721-6.
- 30. ROOD MJ, KEIJSERS V, VAN DER LINDEN MW et al.: Neuropsychiatric systemic lupus erythematosus is associated with imbalance in interleukin 10 promoter haplotypes. Ann Rheum Dis 1999; 58: 85-9.
- 31. ROSADO S, RUA-FIGUEROA I, VARGAS JA et al.: Interleukin-10 promoter polymorphisms in patients with systemic lupus erythematosus from the Canary Islands. Int J Immunogenet 2008; 35: 235-42.
- 32. SUAREZ A, LOPEZ P, MOZO L, GUTIERREZ C: Differential effect of IL10 and TNF{alpha} genotypes on determining susceptibility to discoid and systemic lupus erythematosus. *Ann Rheum Dis* 2005; 64: 1605-10.
- 33. TALAAT RM, ALREFAEY SA, BASSYOUNI IH, ASHOUR ME, RAOUF AA: Genetic polymorphisms of interleukin 6 and interleukin 10 in Egyptian patients with systemic lupus eythematosus. *Lupus* 2016; 25: 255-64.
- 34. ZHU LJ, LIU ZH, ZENG CH, CHEN ZH, YU C, LI LS: Association of interleukin-10 gene -592 A/C polymorphism with the clinical and pathological diversity of lupus nephritis. *Clin Exp Rheumatol* 2005; 23: 854-60.
- SONG F, EASTWOOD AJ, GILBODY S, DULEY L, SUTTON AJ: Publication and related biases. *Health Technol Assess* 2000; 4: 1-115.
- 36. JOHANNESON B, LIMA G, VON SALOME J,

ALARCON-SEGOVIA D, ALARCON-RIQUEL-ME ME, COLLABORATIVE GROUP ON THE GE-NETICS OF SLE THE BIOMED II COLLABORA-TION ON THE GENETICS OF SLE AND SJÖGRENS SYNDROME: A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 2002; 71: 1060-71.

- LOPEZ P, GUTIERREZ C, SUAREZ A: IL-10 and TNFalpha genotypes in SLE. J Biomed Biotechnol 2010; 2010: 838390.
- 38. RAVIRAJAN CT, WANG Y, MATIS LA *et al.*: Effect of neutralizing antibodies to IL-10 and C5 on the renal damage caused by a pathogenic human anti-dsDNA antibody. *Rheumatology* (Oxford) 2004; 43: 442-7.
- 39. LIU P, SONG J, SU H et al.: IL-10 gene polymorphisms and susceptibility to systemic lupus erythematosus: a meta-analysis. *PloS One* 2013; 8: e69547.
- NATH SK, HARLEY JB, LEE YH: Polymorphisms of complement receptor 1 and interleukin-10 genes and systemic lupus erythematosus: a meta-analysis. *Hum Genet* 2005; 118: 225-34.
- 41. WANG B, FAN YG, YE DQ: Lack of association between the haplotype GCC/ATA polymorphism in the IL-10 promoter and SLE risk: evidence from a meta-analysis. *Z Rheumatol* 2013; 72: 705-8.
- 42. WANG B, ZHU JM, FAN YG et al.: Association of the -1082G/A polymorphism in the interleukin-10 gene with systemic lupus erythematosus: a meta-analysis. *Gene* 2013; 519: 209-16.
- 43. ZHOU M, DING L, PENG H et al.: Association of the interleukin-10 gene polymorphism (-1082A/G) with systemic lupus erythematosus: a meta-analysis. *Lupus* 2013; 22: 128-35.