Aromatic hydrocarbon receptor provides a link between smoking and rheumatoid arthritis in peripheral blood mononuclear cells

L. Cheng, L. Qian, Z.-Z. Xu, Y. Tan, C.-Y. Luo

Department of Rheumatology and Immunology, The Second Hospital of Anhui Medical University, Anhui, China.

Abstract

Objective
Epidemiology shows that smoking plays a central role in rheumatoid arthritis (RA). The aim of this study was to evaluate the potential relationship between smoking, aromatic hydrocarbon receptor (AHR) and RA susceptibility.

Methods
We performed a hospital-based, case-control study of patients with RA and healthy controls. Expressions of AHR, cytochrome P4501A1 (CYP1A1), aromatic hydrocarbon receptor repressor (AHRR) genes were assessed in peripheral blood mononuclear cells (PBMCs) and cultured cells using real-time PCR. The response of PBMCs to the AHR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and cigarette smoke extract (CSE) were cultured in vitro.

Results
AHR and its downstream gene expressions were demonstrated in smoking rheumatoid PBMCs and non-smoking patients with significantly higher expression in smoking patients. The observation was consistent with the sensitivity of RA PBMCs to TCDD and CSE stimulation demonstrated in vitro.

Conclusion
Our study shows that smoking may be involved in the pathogenesis of RA by the AHR pathway.

Key words
smoking, rheumatoid arthritis, aromatic hydrocarbon receptor
Introduction
Rheumatoid arthritis (RA) is a complex chronic autoimmune disease mainly with polyarthritis that affects approximately 1% of the population and the causes of which mainly due to environmental and genetic factors. Evidence showed that different environmental factors, such as cigarette smoking act as trigger stimuli for the development of RA, leading to synovial hyperplasia and bone destruction, and patients with RA who continue to smoking will have a worse disabilities and higher disease activity (2). Tobacco smoking is considered as a primary aetiologic factor in RA. Cigarette smoke-derived chemical substances such as 2,3,7,8-tetrachlorodibeno-p-dioxin (TCDD), benzo[a]pyrene (BaP), and 3-methylcholanthrene (3-MC) are agonists with a high affinity (3).

Aromatic hydrocarbon receptor (AHR) is a ligand-dependent transcription factor which combines xenobiotic response elements (XRE) in the existence of its ligands to regulate gene expression and affect the development and differentiation of cells, and the deficiency of AHR or its hyperfunction will both result in autoimmune disorders (4, 5). Cytochrome P4501A1 (CYP1A1) is a most studied responsive gene that belongs to a member of cytochrome P450 (CYP) family of enzymes, and the AHR repressor (AHRR) is a characteristic factor responsive to AHR activation. There is evidence that AHRR and CYP1A1 gene expressions are significantly high expressed when AHR is activated by its ligands such as TCDD (3, 6, 7, 8). In this study, we analyse the effect of tobacco smoking on expressions of AHR, AHRR and CYP1A1 in RA peripheral blood mononuclear cells (PBMCs) to give a preliminary presumption that the reasons of smoking in the development and progression of RA and further to provide several clinical therapy.

Materials and methods
Study subjects
Thirty-one smoking patients and thirty-one non-smoking patients were diagnosed with RA from Anhui Provincial Hospital, Anhui Medical University between May 2014 and June 2016 according to the American Rheumatism Association 1987 revised criteria for the classification. During the time, the blood samples of fifteen healthy smoking donors and fifteen non-smoking controls were obtained from healthy examination centre of the hospital. The included criteria for RA group: (a) definite diagnosis; (b) never having leflunomide therapy for all patients; (c) actively smoking when the blood sample was taken – including those who were daily; (d) C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) in the normal range, Disease Activity Score 28 (DAS28) less than 3.2 and having no joint swelling and RA pain. Individuals with other diseases were excluded from the study. Patient smoking status at the time of peripheral blood collection was established. Informed consent was obtained from all subjects.

Preparation of CSE and TCDD
Cigarette smoke extract (CSE) was prepared based on the method of Vassallo et al. (9). Smoke was pulled into a 10-ml plastic syringe with a three-way stopcock through a tube containing 10ml RPMI 1640 pre-warmed (eight pulls per cigarette). A common Chinese brand of cigarette was used in this study. TCDD was purchased from Maipu biological company of Shanghai. The experimental (CSE-treated and TCDD-stimulated) groups in vitro were used for each dosage 1mg/ml, 10 mg/ml and 0.1μmol/ml, 1μmol/ml.

Cell isolation and cell culture
10-ml peripheral blood from RA patients and healthy controls was collected in heparin-anticoagulant tubes, and 6 ml of the nonsmoking patients and healthy controls were cultured. Ficoll-Hypaque technology was applied to isolate PBMCs of all blood samples. All cells were cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal calf serum,100U/ml of penicillin G, 100 mg/ml of streptomycin and were stimulated with CSE and TCDD mimicked the effect of smoke for 72 hours at 37°C in air containing 5% CO₂. And 72 hours later, cells were collected to prepare for the RT-PCR.
RNA extraction and preparation of cDNA
Total RNA was severely extracted using a Trizol reagent (Invitrogen California, USA) according to the guide of manufacture. The specific primers were designed and synthesised by Takara Biotechnology (Tokyo, Japan). The primers used were as follows: for AHR, forward 5'-ATACCGAAGACCGGCTGAAT-3’ and reverse 5’-CCAGCAGACACC-TTAGACGAC-3’; for AHRR, forward 5’-AGGTGGTTGGCCAGG-3’ and reverse 5’-GTCAGATGGTTG-GCTGTTC-3’; for CYP1A1, forward 5’-CTCTGTGAG-GGTGCT-GACTG-3’ and reverse 5’-ATTC-CTGGGGCTGTCTCTCC-3’; for β-actin, forward 5’-TGGCACCGACAATGAA-3’ and reverse 5’-CTAAGTCATAGTCCGCCTAGA-3’. The PrimeScript RT reagent Kit (Takara Biotechnology, Japan) was used to perform the synthesis of cDNA according to the manufacturer’s instructions.

Reverse transcription-polymerase chain reaction (RT-PCR)
Assays were performed using ABI 7500 Fast Real-Time PCR System (Applied Biosystems, California, USA), and the PCR was completed in a 20-μl reaction system containing 1.6 μl primers (0.8 μl Forward primer and Reverse primer, respectively), 2 μl cDNA, 0.4 μl ROX Reference dye II, 6 μl dH2O, and 10 μl SYBR Premix Ex TaqTM II. 2-ΔΔct was used to compute the expression value of AHR, AHRR and CYP1A1.

Laboratory measurements
For all the RA patients, ESR, CRP and anti-cyclic citrullinated peptide (anti-CCP) antibodies were measured.

Statistical analysis
Statistical analysis was carried out by the Statistical Package for Social Sciences 10.0 software e (SPSSInc.; 2000). The differences Of AHR, AHRR and CYP1A1 mRNA expression levels between subjects or groups were analysed by Mann-Whitney U-test. Spearman correlation analysis was used in our study. A p-value less than 0.05 was considered to be statistically significant.

Results
Characteristics of the study population
As shown in Table I, age and gender are matched between cases and controls. The frequency of groups was appropriate on age and sex (p=0.622 and 0.264, respectively).

The expression levels of AHR, AHRR and CYP1A1 mRNA in PBMCs from experimental groups and controls
AHR expression was present in PBMCs. Expression of AHR responsive gene, CYP1A1 and AHRR were used to establish the activation status in PBMCs.

The expression levels of AHR, AHRR and CYP1A1 mRNA in PBMCs from experimental groups and controls
AHR expression was present in PBMCs. Expression of AHR responsive gene, CYP1A1 and AHRR were used to establish the activation status in PBMCs. AHR, AHRR and CYP1A1 mRNA expression levels in PBMCs were assessed by RT-PCR. As shown in Fig. 1, AHR, AHRR and CYP1A1 expression levels were significantly increased in smoking patients with RA than that in non-smoking patients [0.88 (0.48,1.41) vs. 0.38 (0.20,0.73), p=0.000; 2.87 (1.27,11.0) vs. 1.40 (0.80,3.18), p=0.034; 0.179 (0.057,0.34) vs. 0.078 (0.027,0.14), p=0.027]. However, no significant differences were found between smoking healthy subjects and non-smoking healthy humans [0.24 (0.15,1.92) vs. 1.01 (0.67, 1.91), p=0.202; 0.83 (0.22,1.55) vs. 0.71 (0.33,1.04), p=0.899; 0.10 (0.01,0.42) vs. 0.21 (0.09,0.28) p=0.487] (Fig. 2).

The mRNA expressions of AHR, AHRR and CYP1A1 mRNA in PBMCs from subjects in vitro with differential TCDD and CSE sensitivity
Levels of AHR, AHRR, CYP1A1 were higher from PBMCs of RA with 1 μg/ml (C1), 10 μg/ml (C2) CSE and 1 μmol/ml (T2) TCDD stimulation when compared to controls. However, no significant difference about the expressions of AHR, CYP1A1, AHRR were found from RA with 0.1 μmol/ml (T1) TCDD-treated when compared with controls. Moreover, we failed to detect such significant differences between smoking healthy person and non-smoking group in vitro. The details are shown in Figs. 3-4.
Relationships between AHR, AHRR, CYP1A1 mRNA expressions and clinical parameters in the smoking patients with RA

We conducted Spearman’s correlation to assess the association between AHR, AHRR, CYP1A1 mRNA expressions and smoking status in patients. Unfortunately, no significant correlation was found between them ($r=0.028, p=0.891; r=0.058, p=0.871; r=-0.151, p=0.462$) (Fig. 5).

Discussion

RA is the most common type of chronic autoimmune arthritis. However, the pathogenesis of RA primarily was unknown, and the causes of which mainly due to the interactions of environmental and genetic factors. Environmental factors such as TCDD, BAP and 3-MC are high potent agonists that may combine with AHR to activate the signalling pathways and further regulate T cells, macrophages, dendritic cells (DCs), B cells as well as pro- and anti-inflammatory cytokines; eventually lead to autoimmune diseases including RA (10).

Two main pathways are involved with the activation of AHR (11, 12, 13). One classic way is that AHR is existed in the cytoplasm with its chaperonins and maintains inactive. When the compounds in tabacco TCDD included combine with AHR, the chaperone proteins are released and the [AHR-agonist] migrate to nucleus binding to the transcription factor AHR nuclear translocator protein (Arnt). And at last, [AHR-agonist-Arnt] binds to the specific DNA sequences called xenobiotic-response elements (XRE) to regulate the expression of its downstream gene such as CYP1A1, UGT1A1, AHRR (11). On the other hand, AHR interacts with other signalling ways to mediate immune responses. Meanwhile, AHR could activate transcription factor NF-κB through making an inducible expression of regulatory T cells or suppressing the development of TH17 cells to regulate autoimmune diseases (12, 13). AHR probably activate its downstream gene to further produce or inhibit an inflammation in the pathogenesis of disease with different agonists. Data presented here will provide novel hypothesis into the relationship between AHR and RA.

Currently, a large number of studies have studied the pathogenesis of RA. Epidemic data points to smoking is a strong environmental risk factor in the development of RA and leads to worse disease outcomes (14, 15). Further more, paper reported therapeutic effects might be influenced by smoking status (16). Previous study (17) showed anti-inflammatory drug leflunomide is an agonist of AHR, therefore all the donors were never having leflunomide to avoid affecting outcomes. Tamaki et al. (18) demonstrated that AHR agonists, such as 3-MC, BaP, and TCDD, up-regulate the levels of AHR, AHRR and CYP1A1 in a human-like synoviocyte cells. Brauze et al. (19) reported AHR, AHRR and CYP1A1 mRNA were highly expressed in hepal when mice treated with TCDD compared to the control group. Kazantseva (3) showed AHR and CYP1A1 mRNA were increased in synovium of smoking RA patients compared with controls. Adachi et al. (8) also showed AHR activated gene CYP1A1 mRNA was increased in synoviocyte of RA in vitro with cigarette smoke condensate. Given these findings, that indicate cigarette smoking containing AHR ligands positively correlates with RA. To date, this is the first study to analyse the associations among smoking, AHR expression and RA in PBMCs. Understanding the mechanism about smoking and AHR in RA might allow us to treat RA.

The results presented in this paper AHR,
AHRR, CYP1A1 mRNA were highly expressed in PBMCs of smoking patients than controls. At the same time, the mRNAs were also significantly increased of RA patients in vitro with dosage of 1mg/ml, 10mg/ml CSE and 1μmol/ml TCDD treated, what were consistent with a list of researches (3, 20). But Such findings at vivo and vitro of PBMCs may indicate that the activation of AHR by smoking and thereby contribute to the severity of RA. However, the expressions were not obviously increased with 0.1μmol/ml TCDD, which may include insufficient stimulated time, the dosage of TCDD and so on. Also, we failed to detect any correlation between AHR, AHRR, CYP1A1 expressions and smoking status in PBMCs of RA patients. The reasons for this outcome are probably multifactorial. One possible explanation is some polymorphisms in AHR, AHRR and CYP1A1 genotype may influence the expression of them under our consideration. Others may include the fat, infection, using drugs and so on. The hypothesis needs further follow-up cohort studies.

In conclusion, our data suggests that cigarette smoke-induced changes in PBMCs responses have the potential to be relevant to RA. That is the risk of RA from smoking likely relates to a mechanism of AHR activation. It may broaden our horizons in the aetiology of RA and provide new insights into characterisation of RA. However, larger studies and more studies may be needed to elucidate these results in the future study. Furthermore, the mechanisms of these effects may need functional studies to clarify this issue.

References