Are antibodies against La (SSB) no longer useful for the diagnosis of Sjögren's syndrome?

Sirs,

The 2016 American College of Rheumatology (ACR)-European League Against Rheumatism (EULAR) classification criteria for primary Sjögren's syndrome (SS) do not take into account the presence of anti-La (SSB) antibodies (1). The decision to exclude anti-La (SSB) was based on group discussions, data showing that anti-La (SSB) antibodies seldom exist without anti-Ro (SSA) (2), and on a study showing no significant association with SS features of anti-Ro(SSA)-/anti-La(SSB)+ patients, relative to anti-Ro(SSA)-/anti-La(SSB)- participants of the SICCA cohort (3). The present study (Swissethics; study no. 2018-00088) retrospectively assessed the value of anti-La (SSB) determination for the diagnosis of SS between 2010 and 2016.

2011 anti-Ro (SSA) and 1970 anti-La (SSB) antibody determinations were performed for 807 patients. Thirty-six (4.5%) patients resulted anti-Ro (SSA)-/anti-La(SSB)+. For these patients, mean anti-La (SSB) value was 50U (95%CI:37U-63U). Positivity was confirmed by dot blot testing in 83% of cases. None had a previous diagnosis of SS. During follow-up throughout June 2018, two patients were diagnosed with primary SS, two with SS secondary to systemic lupus erythematosus. One of them fulfilled the 2002 American-European Consensus Group classification criteria for primary SS (4), but none fulfilled the 2012 ACR (5) or ACR-EULAR criteria (1). Eleven developed other connective tissue diseases (CDT) (Table I). Among seventeen retested, two (11.8%) showed negative anti-La (SSB). None developed anti-Ro (SSA).

In order to assess the impact of positive anti-La(SSB), the prevalence of SS among anti-Ro(SSA)/anti-La(SSB)⁺ patients was compared to a anti-Ro(SSA)/anti-La(SSB) control group, matched 1:4 according to gender and age. The analysis was aborted after finding four patients with newly diagnosed SS among 105 patients in the control group, according to pre-established criteria for rejecting the null-hypothesis (two-tailed Fisher's test; 5% significance level). The prevalence of SS was 11% (95%CI:0.85%–21.38%) in anti-Ro(SSA)/anti-La(SSB)⁺ patients and 4% (95%CI:0.15%–7.47%) in anti-Ro(SSA)/anti-La(SSB)⁺ patients.

In order to investigate the role of anti-La(SSB) as a marker of an underlying auto-immune disease, ANA positivity by indirect immunofluorescence on human epithelial (Hep2) cell line was compared among different serological subgroups. A significant difference was found between anti-La(SSB) and anti-La(SSB)+ patients, irrespective of anti-Ro(SSA) antibody status (positivity

Table I. Characteristics of the 36 patients with positive anti-La(SSB) and negative anti-Ro(SSA) at the time of testing and their final diagnosis. Numbers of patients for which data were available are given in brackets.

Gender (n=36) [%]		
male	8	[22.2]
female	28	[77.8]
Mean age (n=36) [range]	48	[16-85
Symptoms leading to anti-La(SSB) analysis (
sicca	9 10	[30.0]
arthralgia neuropathy		[33.3]
cutaneous disorder or photosensitivity	9	[30.0]
CNS manifestation	6	[20.0]
fetal loss	1	[3.3]
other	17	[56.7]
Sicca present at the moment of analysis (n=2		
oral	5	[19.2]
ocular oral and ocular	3	[11.6] [34.6]
genital	0	[0]
no	9	[34.6]
Schirmer test or BUT abnormal (n=26) [%]		
ND	18	[69.2]
yes	4	[15.4]
no	4	[15.4]
Sialometry abnormal (n=26) [%]		
ND	17	[65.4]
yes	1 8	[3.9]
no		[30.8]
Associated conditions (previous) (n=31) [%		[(5]
RA SLE	2	[6.5]
ITP		[6.5] [3.2]
chronic HBV infection	1	[3.2]
chronic HCV infection	3	[9.7]
IgA RF positivity (n=18) [%]	2	[11.1]
IgM RF positivity (n=21) [%]	7	[33.3]
Hypergammaglobulinaemia (n=23) [%]	4	[17.4]
Anti-U1RNP positivity (n=34) [%]		[8.8]
Anti-Sc170 positivity (n=34) [%] Anti-Jo1 positivity (n=34) [%]	2	[5.9] [2.9]
Low C3 (n=19) [%]	2	[10.6]
Low C4 (n=19) [%]	1	[5.3]
Cryoglobulins positivity (n=11) [%]	0	[0]
Anti-b2GP1 positivity (n=16) [%]	0	[0]
Lupus anticoagulans positivity (n=16) [%]	0	[0]
Anti-cardiolipins positivity (n=13) [%]	1	[7.7]
ANA titre by IIF ≥ 1:160 (n=36) [%] Speckled pattern	21 11	[58.3] [30.6]
Homogeneous pattern		[16.7]
Homogeneous/Speckled pattern	3	[8.3]
Centromere pattern	1	[2.8]
Anti-DNA positivity (n=19) [%]	0	[0]
Anti-nucleosomes positivity (n=28) [%]	4	[14.3]
Final physician's diagnosis after follow-up (r	n=31) [%]
Primary Sjögren Syndrome		[6.5]
Secondary Sjögren Syndrome (SLE)		[6.5]
RA SLE	5	[16.1] [6.5]
Ankylosing spondylitis		[3.2]
UCTD	3	
Cutaneous lupus	1	[3.2]
Fibromyalgia	1	[3.2]
Small fibre neuropathy	1	[3.2]
Stroke		[6.5]
Telogen effluvium Bronchiectasia	1 1	[3.2]
Osteoarthritis	1	[3.2] [3.2]
Hypertensive kidney disease		[3.2]
Migraine		[3.2]
Toxic polyneuropathy		[3.2]
Physiological livedo	1	[3.2]
Vertigo		[3.2]
Obesity Atopic dermatitis	1 2	[3.2]
Atopic dermatitis		[6.5]
ND: not done: BUT: break up time: RA:	rhe	umato

ND: not done; BUT: break up time; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; ITP: idiopathic thrombocytopenic purpura; HBV: hepatitis B virus; HCV: hepatitis C virus; UCTD: undifferentiated connective tissue disease; RF: rheumatoid factor; b2GP1: \(\beta 2-glycoprotein-I; \) ANA: Anti-nuclear antibody; IIF: indirect immunofluorescence.

in 59% and 89% respectively, p<0.0001), and between anti-Ro(SSA)[†]/anti-La(SSB)^{*} and anti-Ro(SSA)[†]/anti-La(SSB)^{*} patients (67% and 96% respectively, p<0.0001). No difference was found comparing anti-Ro (SSA)⁻/anti-La (SSB)^{*} and anti-Ro(SSA)⁻/anti-La(SSB)^{*} patients (55% and 58% respectively, p=.86). The impact of the different expression of anti-Ro (SSA) and anti-La (SSB) in Hep2 cells has not been further investigated.

In summary, probably due to the low number of anti-Ro(SSA)-/anti-La(SSB)+ patients, our study did not show a significant difference in the prevalence of SS compared to anti-Ro(SSA)⁻/anti-La(SSB)⁻ patients. Only anti-Ro(SSA)-/anti-La(SSB)+ patients have been diagnosed for SS during followup. Whether this is worth performing approximately 2000 anti-La(SSB) analysis, is debatable and supports previous studies indicating the low value of anti-La(SSB) testing. However, it has to be reminded that the study showing no SS phenotypic differences of anti-Ro(SSA)-/anti-La(SSB)+ patients compared to anti-Ro(SSA)-/anti-La(SSB)patients, was performed studying patients of the SICCA cohort with symptoms or signs indicative of possible to well-established SS (3). Identifying SS phenotypic differences in this cohort might be more difficult than in a broader population as investigated in our study, in which anti-La(SSB) analysis has been performed to investigate various causes of dryness or for suspected CDT. As indicated by the various CTD that developed during follow-up in anti-Ro(SSA)-/ anti-La(SSB)+ patients, our study shows that anti-La(SSB) positivity might indicate a higher risk of an underlying auto-immune disease and might be helpful in the real-life situation where SS diagnosis is based on the physician's appreciation and not on classification criteria. Further, our study shows that only a minority of anti-Ro(SSA)-/anti-La(SSB)+ patients loose anti-La(SSB) positivity and that development of anti-Ro(SSA) during follow-up is rare.

D. SPOERL^{1,2}, MD P. ROUX-LOMBARD^{1,2}, MD PhD

¹Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospital and School of Medicine, Geneva; ²Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland.

Please address correspondence to: David Spoerl, MD, Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospital and Faculty of Medicine, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland.

E-mail: david.spoerl@hcuge.ch

Competing interests: none declared.

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2019.

References

- SHIBOSKI CH, SHIBOSKI SC, SEROR R et al.: 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren's Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol 2017; 69: 35-45.
- 2. FRANCESCHINI F, CAVAZZANA I, ANDREOLI L, TINCANI A: The 2016 classification criteria for pri-
- mary Sjögren's syndrome: what's new? *BMC Med* 2017; 15: 69.
- BAER AN, MCADAMS DEMARCO M, SHIBOSKI SC et al.: The SSB-positive/SSA-negative antibody profile is not associated with key phenotypic features of Sjögren's syndrome. Ann Rheum Dis 2015; 74: 1557-61.
- VITALI C, BOMBARDIERI S, JONSSON R et al.: Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed
- by the American-European Consensus Group. *Ann Rheum Dis* 2002; 61: 554-8.
- SHIBOSKI SC, SHIBOSKI CH, CRISWELL L et al.: American College of Rheumatology classification criteria for Sjögren's syndrome: a data-driven, expert consensus approach in the Sjögren's International Collaborative Clinical Alliance cohort. Arthritis Care Res (Hoboken) 2012; 64: 475-87.