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Abstract

Objective

A growing body of evidence highlights the persistent activation of the innate immune system and type I interferon (IFN) 
signature in the pathogenesis of rheumatoid arthritis (RA) and its association with disease activity. Since the recent study 
revealed heterogeneity in the IFN signature in RA, we investigated for the first time the heterogeneity in innate signature 

in RA. 

Methods

The innate gene expression signature (10 TLRs, 7 IL1/IL1R family members, and CXCL8/IL8) was assessed in peripheral 
blood mononuclear cells from RA patients (n=67), both with active (DAS28≥3.2, n=32) and inactive disease (DAS28<3.2, 

n=35), and in healthy control subjects (n=55). 

Results

Of the 13 deregulated innate genes (TLR2, TLR3, TLR4, TLR5, TLR8, TLR10, IL1B, IL1RN, IL18, IL18R1, IL1RAP, and 
SIGIRR/IL1R8) associated with RA, TLR10 and IL1RAP are being reported for the first time. Multivariate analysis based 
on utilising patient similarity networks revealed the existence of four patient’s subsets (clusters) based on different TLR8 

and IL1RN expression profiles, two in active and two in inactive RA. Moreover, neural network analysis identified two main 
gene sets describing active RA within an activity-related innate signature (TLR1, TLR2, TLR3, TLR7, TLR8, CXCL8/IL8, 
IL1RN, IL18R1). When comparing active and inactive RA, upregulated TLR2, TLR4, TLR6, and TLR8 and downregulated 

TLR10 (P<0.04) expression was associated with the disease activity. 

Conclusion

Our study on the comprehensive innate gene profiling together with multivariate analysis revealed a certain heterogeneity 
in innate signature within RA patients. Whether the heterogeneity of RA elucidated from diversity in innate signatures may 

impact the disease course and treatment response deserves future investigations.
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Introduction

Rheumatoid arthritis (RA) is a chronic 
systemic inflammatory disease charac-
terised by synovial inflammation and 
the progressive destruction of joint 
cartilage and bones (1). The pathogen-
esis of RA is complex with a growing 
body of evidence of a major impact of 
innate immunity and type I interferons 
(IFNs), respectively (2-4). 
The major players in innate immunity 
are Toll-like receptors (TLRs) and 
members of the interleukin (IL)-1/
IL-1R family, both of which share the 
same intracellular signalling Toll-IL-
1-receptor (TIR) homology domain. 
Thus, a strong pro-inflammatory sig-
nal leading to NF-κB activation is in-
distinguishable in both the TLR and 
IL-1 ligands (5). The TLRs may be 
activated by i) Proteus infection of the 
urinary tract and oral and gut dysbio-
sis, ii) Epstein-Barr virus and parvo-
virus B19, and iii) endogenous TLR 
ligands such as the heat shock protein 
gp96 and tenascin in RA (reviewed in 
(6, 7)). Similarly, several members of 
the IL-1 family were found to be over-
expressed in the synovial membrane in 
RA, making a substantial contribution 
to the alteration of cartilage and bone 
homeostasis (8). Importantly, RA was 
the first disease in which IL-1 inhibi-
tion was successfully applied, leading 
to reduced inflammation and articular 
damage (9).
Recently, a heterogeneity within genes 
regulated by IFN type I (IFN signature) 
has been reported in RA (10). Although 
there is a lack of knowledge of the 
exact mechanisms leading to aberrant 
IFN activation in autoimmunity, the ac-
tivation of the IFN signature has been 
linked to TLRs and other innate genes 
(11, 12). The IFN signature is believed 
to prompt the tolerance breakdown and 
the subsequent autoimmune perpetu-
ation (13). From the clinical point of 
view, an enhanced IFN signature has 
been associated with clinical outcome, 
treatment response and disease activ-
ity in RA (10, 14-16), although some 
controversy still exists concerning its 
clinical relevance (10).
Based on the existing linkage between 
IFN and innate signatures, we were 
wondering whether innate signature 

shows the heterogeneity in RA. We, 
therefore, analysed the complex expres-
sion pattern of innate genes including 
TLR1-10, seven members of the IL1/
IL1R family and interleukin 8 (CXCL8/
IL8) in peripheral blood mononuclear 
cells (PBMCs) of patients with RA. Us-
ing the multivariate data mining analy-
sis, we evaluated the diversity of the 
innate signatures in RA and its relation-
ship to the disease activity.

Materials and methods

Study subjects
The study cohort consisted of 67 Czech 
patients who met the 2010 ACR/EU-
LAR classification criteria for RA (17) 
and were recruited at a single tertiary 
rheumatology centre. All the patients 
were treated according to the national 
Czech guidelines and standard pro-
tocols (18); for the medication used, 
duration of the disease, and the demo-
graphic and clinical features see Table 
I. Subgroups were formed on the basis 
of the disease activity as assessed by 
means of the Disease Activity Score in 
28 joints (DAS28), with a DAS28 of 
≥3.2 being taken as active RA (inactive 
RA, n=35; active RA, n=32). The base-
line demographic and clinical data, as 
well as a type of medications, its du-
ration and cumulative steroid dosage, 
did not differ between subgroups of 
active and inactive patients (p>0.05). 
The age- and gender-matched healthy 
control subjects comprised 55 medical 
staff members or their relatives (mean 
age 54 yrs, range 41–90 yrs, female/
male 45/10) in whom autoimmune and 
inflammatory diseases, recent vaccina-
tion, infection, and usage of immuno-
suppressive drugs were excluded by 
means of questionnaires.
The patients and control subjects pro-
vided written informed consent in ac-
cordance with the Helsinki Declaration 
about the use of peripheral blood for the 
purpose of this study, which was ap-
proved by the ethics committee of the 
University Hospital and Palacký Uni-
versity Olomouc.

Real-time reverse transcription-
polymerase chain reaction (qRT-PCR)
The PBMC were isolated from blood 
collected in EDTA tubes by Ficoll den-
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sity gradient centrifugation (Sigma-
Aldrich, Germany), then lysed in Tri 
reagent (Sigma-Aldrich, Germany) 
and frozen at -80°C. Total RNA was 
extracted using a Direct-zol RNA kit 
(Zymo Research, USA) according to 
the manufacturer’s recommendations. 
Reverse transcription was performed 
using a Transcriptor First Strand cDNA 
Synthesis Kit (Roche, Switzerland) as 
reported previously (19). 
qPCR was performed using a high-
throughput SmartChip Real-Time-qP-
CR system (WaferGen, USA) allowing 
5,184 reactions per chip. The reactions 
were carried out in 100 nl reaction vol-
ume containing LightCycler 480 SYBR 
Green I Master mix (Roche, Switzer-
land) with 1.6 μM (each) of gene-spe-
cific exon-spanning primers and 0.27 ng 
of cDNA in quadruplicates. The primer 
sequences are listed in Table S1 (Inte-
grated DNA Technologies, USA). Each 
run included a no-template control, 
in which RNA was replaced by water, 
and human universal reference RNA 
(Stratagene, USA) which was used in 
quadruplicates as a calibrator at a 0.27 
ng/reaction mix. The thermal cycler pa-
rameters were as follows: one cycle of 
95°C for 5 min followed by 40 cycles 
of 34 s at 95°C and 1 min 4 s at 60°C. 
Melting curve analysis was performed 
from 97°C to 60°C (0.4°C/step) imme-
diately after amplification. The relative 
mRNA expression was calculated using 
Phosphoglycerate kinase 1 as the refer-
ence gene (20).
In order to assess the innate immu-
nity gene expression signature in RA, 
we investigated the expression of TLR 
(TLR1-10), the IL1/IL1R family (21 
members), and CXCL8/IL8 in PBMC. 
On the basis of the pilot evaluation 
of qPCR assays on a cohort of 20 RA 
patients, 14 assays of IL1/IL1R fam-
ily members (IL1A, IL36RN, IL36A, 
IL36B, IL36G, IL37, IL38, IL33, IL1R2, 
IL18RAP, IL1RL1, IL1RL2, IL1RAPL1, 
IL1RAPL2) were below the detection 
limit of the system and were, therefore, 
excluded from further analysis. The 
study continued with gene expression 
profiling of 18 innate immunity genes: 
TLR1-10 and seven members of the 
IL1/IL1R family, together with CXCL8/
IL8.

Statistical analysis 
and data mining methods
Statistical analysis (Mann-Whitney U-
test, Kruskal-Wallis test, Benjamini-
Hochberg correction, Shapiro-Wilk test) 
of relative gene expression values were 
calculated using GraphPad Prism 5.01 
(GraphPad Software, USA) and the R 
statistical software package, a free soft-
ware environment for statistical comput-
ing and graphics (http://www.r-project. 
org/). Spearman correlation between 
gene expression and continuous DAS28 
values were performed using Genex 
(MultiD Analyses AB, Sweden). A p-
value <0.05 was considered significant. 
Firstly, the LRNet algorithm (21) was 
used to construct a patient similarity 
network (PSN) to show the similarities 
of the gene expression profiles among 
individual patients. The nearest neigh-
bours within the network have the high-
est similarity in terms of gene expres-
sion levels and colours distinguish the 
particular subgroups of patients with 
similar profiles. To obtain a set of the 
most characteristic genes, we con-
structed these networks based on dif-
ferent combinations of a small number 
of genes. The selection of the best gene 

combination for active and inactive RA 
patients was evaluated by measured 
values of weighted modularity (the net-
work partitioning ability) and silhouette 
(evaluation of the internal quality of 
clusters) (22, 23). For more details, see 
On-line supplementary file.
Secondly, a neural network-based al-
gorithm (ANN), together with 10-fold 
cross-validation (Neuralnet package 
(https://cran.r-project.org/package_
neuralnet), from the R software) was 
applied to a learning set of 57 RA pa-
tients with known disease activity sta-
tus. For the pre-selection of the most 
informative genes for ANN, the Ran-
dom Forest machine learning classifier 
was applied. The selection of the best 
combination of ANN markers and ANN 
structure was performed on the basis of 
the root mean square error (RMSE) and 
classification error. The classification 
error for the top marker sets and final 
ANN was calculated on a validation 
cohort of 10 patients in whom the ac-
tivity status was hidden from the bio-
informaticians (MR, MK). A flowchart 
of the process is documented in Sup-
plementary Fig. S1. For more details, 
see On-line supplementary file. Next, 

Table I.  Demographic and clinical characteristics of RA patients. 

Demographic and clinical features RA Inactive RA Active RA 
 (n=67)  (n=35)  (n=32)

Female/Male 56/11 31/4 25/7
Age (years) mean (min-max) 55  (27-80) 52  (27-73) 57  (44-61)
Age at the onset of the disease 
(years) mean (min-max) 39  (5-65) 40  (5-65) 38  (15-57)
Duration of the disease  16  (1-58) 13  (1-33) 19  (1-58)
     (years) mean (min-max) 

Disease activity: 
DAS28 mean (min-max)  3.44  (0.60-6.70) 2.41  (0.60-3.14) 4.56  (3.20-6.70)
ESR (mm/hr) mean (min-max) 19  (2-116) 12  (2-40) 27  (3-116)
CRP (mg/l) mean (min-max) 8.0  (0.6-65.0) 3.0  (0.6-9.2) 13.4  (0.6-65.0)
ACPA positive, % (n) 76  (51) 77  (27) 75  (24)
RF positive, % (n) 66  (44) 69  (24) 63  (20)

Medications, % (n)   
Steroids 70  (47) 51  (18) 91  (29)
NSAIDs 64  (43)  51  (18) 78  (25)
Methotrexate 85  (57) 86  (30) 84  (27)
Other DMARDs* 19  (13) 8  (2) 34  (11)
Biologics# 46  (31) 49  (17) 44  (14)

ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; ACPA: anticitrullinated protein anti-
bodies; RF: rheumatoid factor; NSAIDs: non-steroidal anti-inflammatory drugs; DMARDs: disease-
modifying anti-rheumatic drugs.
*Other DMARDs taken were hydroxychloroquine (n=3), leflunomide (n=7), sulfasalazine (n=2), and 
combination of leflunomide and sulfasalazine (n=1).
#Biologics taken were TNF-α inhibitors (n=18), tocilizumab (n=6), abatacept (n=4) and rituximab 
(n=3).
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a gene expression similarity network 
was constructed by means of the LR-
Net algorithm using nearest neighbour- 
and representativeness analysis (21) in 
subgroups of active and inactive RA 
patients. The network vertices repre-
sent the individual genes and the size 
of each vertex corresponds to the local 
importance of the expression of a par-
ticular gene on the basis of the num-
ber of its nearest neighbours (= other 
genes). The links (edges) between ver-
tices and their strength represent the 
similarities between pairs of vertices. 
For more details, see On-line supple-
mentary file. 

Results

Innate immune gene expression 
signature of RA
In order to gain a deeper insight into 
the innate immune system associated 
with RA, we investigated the innate im-
munity expression signature in the RA 
patients and healthy controls. Since our 
data did not meet the assumption of nor-

mality as assessed by the Shapiro-Wilk 
test, the non-parametric Mann-Whitney 
U-test was used for the comparison of 
data distribution between two groups. 
Of the thirteen deregulated genes in 
RA were six TLRs: upregulated TLR2, 
TLR3, TLR5, TLR8, and TLR10, and 
downregulated TLR4 comparing to 
controls (pcorr<0.05; Table IIA; Fig. 1). 
Of IL-1/IL-1R family, six members 
were upregulated IL1B, IL1RN, IL18, 
IL18R1, IL1RAP, and SIGIRR/IL1R8, as 
well as upregulated chemokine CXCL8/
IL8 (Pcorr<0.05; Table IIA; Fig. 1) in 
RA. The expression of IL1R1, TLR1, 
TLR6, TLR7, and TLR9 were not differ-
ent between RA and controls (pcorr>0.05; 
Suppl. Table S2A). 
To exclude the differences in gene pro-
files between patients treated with dif-
ferent drugs, we compared subgroups 
formed on the basis of the medications 
used. No difference was observed be-
tween the profiles in the subgroups of 
patients based on various medications 
(p>0.05).

Innate immune gene expression 
signature associated with active 
and inactive RA 
Next, we wondered which genes or 
their combinations characterise patients 
with active and inactive RA. When ac-
tive and inactive RA were compared, 
upregulated expression of TLR2, TLR4, 
TLR6, and TLR8 and downregulation 
of TLR10 was observed in patients 
with active disease (p<0.05; Table IIB, 
Suppl. Table S2B, Fig. 2). Moreover, 
the DAS28 score correlated negatively 
with the expression of TLR10 (r=-0.367, 
p=0.002, Fig. S2A) and positively 
with the expression of TLR8 (r=0.236, 
p=0.05, Fig. S2B). Although the mRNA 
expression of TLR4 was downregulated 
in the RA patients as a whole when 
compared to the healthy controls, su-
banalysis in subgroups according to the 
disease activity revealed upregulation 
of TLR4 in active RA (Fig. 3). Regard-
ing TLR10, the mRNA expression of 
TLR10 was upregulated in the RA pa-
tients as a whole when compared to the 
healthy controls, while subanalysis re-
vealed TLR10 mRNA downregulation 
in those patients with active RA (Fig. 
3). Concerning the IL-1/IL-1R family, 
no difference was observed in the ex-
pression of the genes that were studied 
between the patients with active and 
inactive disease when basic statistics 
were applied (Suppl. Table S2B). 
Then, combinations of multiple genes 
for the discrimination of active and in-
active RA were investigated by multi-
variate data analysis. The gene expres-
sion similarity network for active RA 
was characterised by the expression 
of TLR2, TLR3, TLR8, and IL18R1, 
and inactive RA was associated with 
the TLR2, TLR5, TLR7, IL18R1, and 
IL1RAP genes (Fig. 4). The selected 
genes had the highest representative-
ness in the individual networks. 
To investigate and visually assess the 
complex expression innate signatures 
in our patients, we performed analysis 
by utilising the abovementioned pa-
tient similarity networks. This analysis 
revealed the existence of four patient’s 
subsets (clusters) based on different 
TLR8 and IL1RN expression profiles, 
two in active and two in inactive RA. 
The high modularity and the good per-

Table II. Relative mRNA expression levels of genes differentially expressed between A) RA vs. 
healthy controls, B) active vs. inactive RA.

A: RA vs. healthy controls 

Gene  Mean (95 % CI)   FC  p pcorr

 Healthy controls RA   

SIGIRR 0.196 (0.167-0.225) 0.367 (0.329-0.405) 1.87 3.9 × 10-10 0.1 × 10-9

IL18 0.036 (0.031-0.042) 0.060 (0.054-0.067) 1.56 4.1 × 10-8 3.7 × 10-7

IL1RN 0.018 (0.013-0.024) 0.039 (0.034-0.044) 2.75 1.4 × 10-7 8.6 × 10-7

TLR5 0.029 (0.020-0.037) 0.060 (0.052-0.067) 3.20 4.4 × 10-7 2.0 × 10-6

IL18R1 0.006 (0.004-0.007) 0.011 (0.009-0.012) 1.99 3.4 × 10-6 1.2 × 10-5

TLR3 0.003 (0.002-0.004) 0.006 (0.005-0.007) 6.59 1.8 × 10-5 5.4 × 10-5

IL1RAP 0.008 (0.006-0.010) 0.014 (0.012-0.017) 2.08 4.2 × 10-5 1.1 × 10-4

TLR8 0.040 (0.032-0.049) 0.062 (0.053-0.071) 1.59 4.2 × 10-4 9.5 × 10-4

IL1B 0.035 (0.002-0.067) 0.062 (0.033-0.091) 1.79 8.2 × 10-4 1.6 × 10-3

TLR2 0.049 (0.035-0.062) 0.067 (0.057-0.077) 1.91 1.3 × 10-3 2.3 × 10-3

CXCL8/IL8 0.108 (0.025-0.191) 0.145 (0.096-0.195) 2.48 2.2 × 10-3 3.7 × 10-3

TLR10 0.007 (0.006-0.008) 0.010 (0.008-0.011) 1.41 2.1 × 10-2 3.2 × 10-2

TLR4 0.050 (0.043-0.057) 0.041 (0.036-0.046) 0.86 3.2 × 10-2 4.5 × 10-2

    
B: Active vs. inactive RA

Gene  Mean (95 % CI)  FC p pcorr

 Inactive RA Active RA   

TLR10 0.011 (0.009-0.013) 0.008 (0.005-0.011) 0.49 6.5 × 10-3 1.2 × 10-1

TLR8 0.057 (0.042-0.072) 0.067 (0.056-0.077) 1.37 1.4 × 10-2 1.2 × 10-1

TLR6 0.023 (0.017-0.028) 0.030 (0.024-0.036) 1.57 2.1 × 10-2 1.3 × 10-1

TLR2 0.057 (0.046-0.068) 0.078 (0.061-0.095) 1.40 3.3 × 10-2 1.5 × 10-1

TLR4 0.039 (0.031-0.048) 0.043 (0.037-0.049) 1.34 4.1 × 10-2 1.5 × 10-1

pcorr value corrected for multiple comparisons (Benjamini-Hochberg correction)
FC (Fold change) between group medians of relative mRNA expression levels. 
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Fig. 1. Relative mRNA expression levels of genes differentially expressed in RA vs. healthy control 
subjects.  
Group means are indicated by horizontal bars, error bars indicate 95% CI.



294 Clinical and Experimental Rheumatology 2020

Innate heterogeneity in RA / A. Petrackova et al.

formance of silhouette analysis were 
observed across the combinations that 
were tested (Fig. 5). To exclude the 
differences in gene profiles due to the 
different treatment regimen, the dis-
tributions of used drugs in particular 
subgroups were compared. As shown 
in Figure S3, the proportion of patients 
treated with a particular drug did not 
differ among revealed subsets (clusters).
Further, using ANN we identified two 
combinations of genes: TLR1, TLR2, 
TLR7, TLR8, IL1RN, IL18R1, and 
CXCL8/IL8, and TLR1, TLR2, TLR3, 
IL1RN, and IL18R1, whose co-expres-
sion discriminates between patients 
with active and inactive RA. With these 
combinations used as an input to a clas-

sifier containing ten neural networks, 
80% overall agreement was achieved 
for blinded patient data on the basis 
of five-fold cross-validation. Further-
more, two combinations of genes were 
needed for successful characterisation 
of the subgroups of patients, showing 
that within the active RA subgroup, 
there are at least two different gene 
expression signatures. When ANN was 
constructed for the combination of only 
TLR genes associated with disease ac-
tivity on the basis of classical statis-
tics (TLR2, TLR4, TLR6, TLR8, and 
TLR10), this combination reached only 
40% overall agreement for blinded pa-
tient data based on five-fold cross-val-
idation. Moreover, the observed exist-

ence of two main subsets with different 
expression signatures within the active 
RA patients confirmed the result from 
patient similarity network analysis. 

Discussion

A growing body of evidence highlights 
a persistent activation of the innate im-
mune system and IFN signature in the 
pathogenesis of RA as well as its rela-
tionship with the disease activity. In 
addition to recent studies that revealed 
heterogeneity in the IFN signature in 
RA (10, 14), our study for the first time 
also highlighted the heterogeneity in the 
innate signature within RA patients.
To analyse the innate signature in our 
patients, we used two multivariate data 
mining approaches that have excellent 
properties for analysing gene expres-
sion patterns. Firstly, gene expression 
and patient similarity networks explo-
ration enables visual assessment of 
the most informative markers within a 
sample set and shows the relationship 
between patients with similar gene pro-
files (24-26). Also applied neural net-
work approach takes into account the 
intrinsic characteristics of gene expres-
sion data (27, 28), confirms the most 
informative gene subsets, and improves 
classification accuracy with best pa-
rameters based on datasets (14, 24, 29, 
30). Using patient similarity network 
analysis, four patient’s subsets based on 
the innate signature were detected, two 
in active and two in inactive RA. The 
applied network exploration identified 
expression of TLR8 and IL1RN as the 
most discriminant among detected sub-
groups. Importantly, the heterogeneity 
in RA patients was further supported 
by the neural network analysis which 
identified two main gene sets describ-
ing active RA within an innate signa-
ture (TLR1, TLR2, TLR3, TLR7, TLR8, 
CXCL8/IL8, IL1RN, IL18R1). Our data 
for the first time identified certain het-
erogeneity in innate signature in RA, 
which may have a significant impact 
on the disease course and treatment re-
sponse, thus    deserving future inves-
tigations.
From our results, TLR8 and IL1RN ap-
pear to be key genes whose expressions 
characterise diversity in RA and active 
and inactive RA subgroups. TLR8 is 

Fig. 2. Relative mRNA expression levels of 
genes differentially expressed in active vs. in-
active RA.  
Group means are indicated by horizontal bars; 
error bars indicate 95% CI; Pcorr values for dif-
ferences after multiple corrections are stated.
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able to recognise viral single-stranded 
and bacterial RNAs and induce both 
NF-κB-dependent cytokines and type 
I IFNs (31). Studies on the role of the 
TLR8 in arthritic inflammation showed 
that its increased expression corre-
lates with the elevation of IL-1β levels 
and disease status (32). Another study 
proved that the activation of the TLR8 
signalling pathway in human blood    
results in a predominant pro-inflamma-
tory gene signature (33). Importantly, 
recent studies demonstrated that the ac-
tivation profile of individual TLRs may 
be influenced by the complex TLR-TLR 
interactions (34, 35). Regarding TLR8, 

a distinct immune activation profile 
was observed by co-signalling of TLR8 
together with TLR2 when compared 
to TLR8 alone (36). Moreover, TLR2 
was shown to suppress IFNβ produc-
tion induced by TLR8 activation (37). 
Additionally, a cross-talk of TLR8 with 
other endosomal TLRs has been identi-
fied crucially involved in the generation 
of autoimmunity (31).
Next, key gene within innate signature 
was IL1RN which codifies IL-1 receptor 
antagonist (IL-1Ra) that blocks IL-1 sig-
nalling. The importance of IL1RN in the 
RA pathogenesis has been demonstrated 
by Il1rn(-/-) mice, which spontaneously 

Fig. 4. Gene expression similarity network in  
A) active and B) inactive RA. 
Vertices represent the individual genes, and the 
size of each vertex corresponds to the local im-
portance (representativeness) of the expression 
of a particular gene on the basis of the number 
of its nearest neighbours. Links (edges) between 
vertices and their strength represent similarities 
between pairs of vertices.

Fig. 5. Patient similarity network analysis based on TLR8 and IL1RN expression in RA patients A) 
with active (red) and inactive disease (green). 
B) Of four well-separated clusters, two clusters included predominantly inactive RA patients (C1 - violet, 
C3 - blue) and two predominantly active RA (C2 - orange, C4 - green). 
C) The silhouette analysis of detected clusters. The bars represent individual patients, and high values 
for them indicate that the patient is well matched to their own cluster and poorly matched to neighbour-
ing clusters. 
D) Characteristics of observed clusters showing the normalised gene expression values of IL1RN and TLR8.

Fig. 3. Relative mRNA expression levels of 
TLR4 and TLR10 in active RA, inactive RA, and 
healthy control subjects. 
Group means are indicated by horizontal bars, 
error bars indicate 95 % CI. Kruskal-Wallis test 
revealed differences among all tested subgroups 
(TLR4: p=0.02; TLR10: p=0.001).
The horizontal connecting lines show significant 
differences between two particular subgroups 
(controls vs. inactive RA, inactive RA vs. active 
RA, respectively); comparison between controls 
and active RA did not reach significance for both 
TLR4 and TLR10.
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develop autoimmune arthritis that is de-
pendent on TLR activation (38). In hu-
man, associations of sequence variants 
IL1RN VNTR (rs2234663) and +2018 
SNP with RA disease activity was re-
ported (39, 40). Other VNTR variant 
(allele IL1RN*2) was found to influence 
not only the plasma levels of IL-1Ra, but 
also the response to infliximab therapy 
(41). However, contrary to the animal 
studies (38), we and others observed 
elevated expression of IL1RN in RA 
patients compared to healthy subjects 
(39). Our multivariate analysis revealed 
very high variability in IL1RN expres-
sion among our patient subgroups, irre-
spective of the disease activity. This led 
us to suggest that IL1RN may act in a 
dose-dependent manner and most likely 
in interaction with complex TLR inter-
actions, thus deserving future investiga-
tions. Our data further supports the cru-
cial role of IL-1Ra together with TLR8 
in the RA pathogenesis, thus nominating 
them as candidates for future studies. 
Also, other genes or their protein prod-
ucts of an innate signature identified 
from neural network analysis have been 
associated with RA disease activity in 
previous studies, such as TLR3 (42), 
IL18R1 (43), TLR7 (44), and CXCL8/
IL8 (45). Although individual innate 
genes have been already linked to RA, a 
more complex picture may be observed 
when using multivariate analysis. Over-
all, our findings revealed heterogeneity 
in RA in innate signature including TLR 
and IL1/IL1R genes. Whether the het-
erogeneity of innate signature contrib-
utes to the reported variability in IFN 
signature in RA (11) deserves future 
investigations.
In our study, we also comprehensively 
explored the RA-associated signature 
when compared to healthy controls. 
Of 13 innate deregulated genes (TLR2, 
TLR3, TLR4, TLR5, TLR8, TLR10, 
IL1B, IL1RN, IL18, IL18R1, IL1RAP, 
and SIGIRR/IL1R8) associated with 
RA, TLR10 and IL1RAP are being re-
ported for the first time. In line with 
our results, the upregulation of TLR2, 
TLR5, and TLR8 in peripheral blood 
monocytes (46-48) and TLR3 in syno-
vial tissue (49) was reported. Regarding 
TLR4, which is highly expressed in the 
synovium (50), we and others (51) ob-

served the downregulation of TLR4 ex-
pression in RA PBMC. We also detected 
the upregulated expression of TLR10 in 
the PBMC of RA patients as a whole for 
the first time. The first evidence about 
the possible involvement of TLR10 in 
RA already exists; it is based on the 
association of a TLR10 I473T allelic 
variant with RA (52). However, there 
are controversies regarding its function. 
Some studies have demonstrated that 
TLR10 is a pro-inflammatory receptor 
activating NF-κB signalling (53, 54), 
while others have reported NF-κB in-
hibitory activity (52, 55) and inflamma-
tion suppression (56, 57). Further stud-
ies are needed to clarify its function, 
ligands, and the influence of the genetic 
background in RA on its regulation. 
Our study also confirmed the results 
from analyses of individual members of 
the IL-1 family: increased expression of 
the pro-inflammatory members IL1B, 
IL1RN, and IL18 was demonstrated in 
the peripheral blood cells (39, 58) and 
of IL18R1 and SIGIRR in the synovial 
tissue (59, 60) of RA patients. Here, we 
report for the first time upregulated gene 
expression of IL1RAP in RA. IL-1RAP 
is a co-receptor involved in several sig-
nalling pathways, including IL-1, IL-
33, IL-36G, and SCF (61, 62), and a 
lack of IL-1RAP was shown to abrogate 
the cellular response to IL-1 (63). The 
contribution of this co-receptor to the 
RA pathogenesis deserves future inves-
tigation. Additionally, elevation in the 
expression of the chemokine CXCL8/
IL8 was observed in our study, which 
is in line with the reported elevation of 
IL-8 in synovial fluids and serum in RA 
patients (64). When active and inactive 
disease were compared, the upregula-
tion of TLR2, TLR4, TLR6, and TLR8 
and downregulation of TLR10 were 
revealed in active RA. Concerning 
TLR10, an association of the I473T al-
lelic variant (rs11466657) with disease 
severity and a low response to inflixi-
mab has been reported (52). Functional 
studies have shown that the TLR10 
I473T variant lacks inhibitory activity 
on the NF-κB inflammatory pathway in 
comparison to the wild-type allele (52). 
Similarly, downregulation of TLR10 
was also observed in our patients with 
active disease. These observations 

nominate TLR10 as a candidate target 
molecule able to attenuate the inflam-
mation in active RA. 
The authors are aware of some limita-
tions. First, the study was performed in 
a real-world cohort of patients treated 
with different medications, however, 
the distribution of various medications, 
its duration and dosage did not differ 
between compared subgroups of active 
and inactive patients. Second, the innate 
gene signature should be completed on 
a protein level of functionally active cy-
tokines in future studies. However, we 
believe that this multivariate approach 
highlighted for the first time the hetero-
geneity of innate molecules in RA and 
nominated combinations of key innate 
molecules for further functional studies.
To conclude, our study on comprehen-
sive innate gene profiling together with 
multivariate data mining analysis re-
vealed a certain heterogeneity in innate 
signature within RA patients. More-
over, TLR8 and IL1RN were identified 
as the key genes whose expressions 
contribute to the heterogeneity of in-
nate signature in RA. The clinical con-
sequences of the observed heterogene-
ity of innate signature in RA should be 
addressed in future studies. We believe 
that this integrated approach is likely to 
generate insights into the heterogeneity 
of innate signature in RA.
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