Oral ulcer activity assessment with the composite index according to different treatment modalities in Behçet’s syndrome: a multicentre study

G. Mumcu\(^1\), Ü. Karaçaylı\(^2\), M. Yay\(^3\), A. Aksoy\(^4\), M.N. Taş\(^5\), B. Armağan\(^6\), A. Sari\(^6\), B.C. Bozca\(^7\), E. Tekgöz\(^8\), D.T. Karadağ\(^9\), S.Ö. Badak\(^10\), D. Teker\(^11\), C. Bes\(^12\), A. Şahin\(^13\), E. Erken\(^10\), A. Cefle\(^9\), M. Çinar\(^8\), S. Yılmaz\(^8\), E. Alpsoy\(^6\), S. Şenel\(^14\), Ş.Y. Bilge\(^15\), T. Kaşıfoğlu\(^16\), Ö. Karadağ\(^6\), K. Aksu\(^5\), G. Keser\(^5\), F. Alibaz-Öner\(^4\), N. İnanç\(^4\), T. Ergun\(^16\), H. Direskeneli\(^4\)

Affiliations: see page S-104.

Goncu Mumcu, PhD, Dr
Ümit Karaçaylı, PhD, Dr
Meral Yay, PhD
Aysun Aksoy, MD
Mehmet Nedim Taş, MD
 Berkcan Armağan, MD
Alper Sari, MD
Barçın Cansu Bozca, MD
Emre Tekgöz, MD
Duygu Temiz Karadağ, MD
Suade Özem Badak, MD
Duygu Teker, MD
Cemal Bes, MD
Ali Şahin, MD
Eren Erken, MD
Ayse Cefle, MD
Muhammet Çınar, MD
Sedat Yılmaz, MD
Erkan Alpsoy, MD
Soner Şenel, MD
Şule Yaşar Bilge, MD
Tümüz Kaşıfoğlu, MD
Ömer Karadağ, MD
Kenan Aksu, MD
Gökhan Keser, MD
Fatma Alibaz-Öner, MD
Nevsun İnanç, MD
Nesrin Ergun, MD
Haner Direskeneli, MD

Please address correspondence to: Prof. Dr. Ümit Karaçaylı,
Department of Oral and Maxillofacial Surgery, Gulhane Faculty of Dentistry, Health Science University, 06018 Ankara, Turkey.
E-mail: ukaracayl@gmail.com
Received on May 4, 2019; accepted in revised form on September 18, 2019.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2019.

Objectives. The aim of this multicentre study was to understand patients’ needs and to evaluate the oral ulcer activity with the Composite Index (CI), according to different treatment modalities in Behçet’s syndrome (BS).

Methods. BS patients (n=834) from 12 centres participated in this cross-sectional study. Oral ulcer activity (active vs. inactive) and the CI (0: inactive vs. 1-10 points: active) were evaluated during the previous month. The effects of treatment protocols [non-immunosuppressive: non-IS vs. immunosuppressive: ISs (azathioprine)], severity (mild vs. severe), disease duration (<5 years vs. ≥5 years) and smoking pattern (non-smoker vs. current smoker) were analysed for oral ulcer activity.

Results. Oral ulcer activity was observed in 65.1% of the group (n=543). In both genders, the activity was higher in mild disease course with non-IS treatment group compared to severe course with ISs (p<0.05). As a resistant group, patients with mild disease course whose mucocutaneous symptoms were unresponsive to non-IS medications were treated with ISs in a limited period and achieved the highest CI scores in females. Oral ulcer activity and poor CI score were associated with disease duration less than 5 years compared to others in male patients (p<0.05).

Conclusion. Oral ulcer activity pattern is affected by both the combination of disease course, treatment protocols and disease duration. CI scores reflected the oral clinical activity and CI might be a candidate scale to evaluate the efficacy of treatments during the follow-up of oral ulcer activity in BS.

Introduction

As a chronic and relapsing systemic inflammatory disorder, Behçet’s syndrome (BS) is characterised by oral, genital, mucosal and cutaneous involvement, ocular, arthritic, vascular, central nervous system and gastrointestinal involvement. Oral and genitourinary involvement such as mucocutaneous manifestations and mucoskeletal involvement may be indicative of the mild clinical spectrum of the disease. In contrast, the severe course includes ocular, vascular, neurological and gastrointestinal manifestations with high risk for mortality and morbidity. Severe disease course and resistant mucocutaneous manifestations are treated with immunosuppressives (ISs: azathioprine, corticosteroids, anti-TNF-α agents and interferon-α), whereas non-IS medications (colchicine, salazopyrine, NSAIDs and antibiotics) could be used in mild disease course and during the remission phase of major organ involvement, especially in the older age group (1). Severe disease course is commonly observed in male BS patients, whereas females are usually in the mild disease spectrum (2). Neutrophils are implicated in the pathogenesis and activated by testosterone as the primary sex hormone in men. Male gender is thought to be a critical prognostic factor in BS (3-7). Clinical presentations are key assessment tools as specific laboratory tests are not available for disease monitoring in BS. Oral ulcers are considered to be a diagnostic hallmark in the internationally accepted criteria (8). In clinical practice, they could be the first sign or the primary symptom of BS.
Associations are present between disease severity, treatment protocols and oral ulcer activity in BS patients (2). Topical medications are thought to be the first line of treatment for oral ulcers. Oral ulcer activity is commonly seen in patients with mild disease course and patients treated with non-IS medications (9). However, IS medications are used in a limited period in patients whose mucocutaneous manifestations are uncontrolled with non-IS medications. In addition, oral ulcer could be persistent, although manifestations regarding severe disease course are in remission (2, 10). While achievement of complete remission is an unrealistic target in clinical practice (2), oral ulcer activity of patients can be used to assess the disease activity and the efficacy of treatment protocols (11, 12). Although a reliable tool for the assessment of oral ulcer activity is necessary, no consensus exists on the ideal method in BS. The number and healing time of oral ulcers are commonly evaluated in BS, however, pain and functional status that affects daily life are underestimated. The ‘Composite Index’ as a patient-reported outcome measure (PROM) is a validated oral ulcer activity index, developed by our study group, that evaluates pain and functional limitation due to oral ulcers and easily monitors oral ulcer activity in patients with BS (11, 12) and recurrent aphthous stomatitis (RAS) (11) (Fig. 1). No multicentre study focusing on oral ulcer activity and PROMs has been performed in BS. Therefore, the aim of the multicentre study was to evaluate oral ulcer activity and the “Composite Index (CI)” as an organ-specific oral ulcer activity index according to different treatment modalities in mild versus severe course in BS.

Materials and methods
In this cross-sectional study, 834 BS patients (F/M: 441/393, age: mean: 38.4±10.9 years) diagnosed by the International Study Group criteria (8) and followed in BS clinics from 12 centres were included. The data were collected through clinical examinations and a questionnaire regarding disease-related factors and smoking pattern from September 2017 to March 2018. A meeting with the study group was held to standardise data collection protocol before starting the study.

Clinical manifestations of BS patients were as follows: oral ulcers (n=834, 100%), genital ulcers (n=710, 85.1%), cutaneous (n=633, 75.9%), musculoskeletal (n=444, 53.2%), ocular (n=165, 19.8%), vascular (n=106, 12.7%), neurological (n=34, 4.1%) and gastrointestinal (n=13, 1.6%) involvement (Table I). Positive pathergy reaction was observed in 57.7% of the patients (n=481). The mean disease duration was 9.0±3.7 years in the study group. Disease duration was categorised estimating the early period of the disease as less than 5 years (n=334, 40.04%) vs. ≥5 years (n=484, 58.03%) for the analysis. It was not determined in 16 patients (1.94%).

A disease severity score reflecting organ involvement was calculated in BS patients (13) and was found to be 4.5±1.9 in the group. The patients were then categorised as mild disease course with mucocutaneous manifestations and musculoskeletal involvement (n=582, 69.8%) and severe disease course with ocular, vascular, neurologic, and gastrointestinal involvement (n=252, 30.2%).

They were treated with non-immunosuppressive (non-IS) medications regarding colchicine, salazopyrine, NSAIDs, antibiotics (n=501, 60.07%) or immunosuppressive medications (ISs; n=289, 34.65%), such as azathioprine, corticosteroids, anti-TNF-α and interferon-α in severe disease course. In addition, 44 patients were not taking any medication (Table I).

The primary objective of the study was to evaluate factors associated with oral ulcer activity in BS. During the clinical examination the patients were asked about the number and healing time of their oral ulcers in the previous month. Since oral ulcer activity could be affected by both disease severity (mild vs. severe) and treatment protocols (non-IS vs. ISs), they were combined to eliminate bias in the study. However, the 44 patients who were not taking any medications were not included in these subgroups. Oral ulcer activity was evaluated in these four subgroups: Group 1) mild disease course with non-IS medications (n=429; 51.4%); Group 2) mild disease course with IS medications (n=111; 13.3%); Group 3) severe disease course with non-IS medications (n=72, 8.6%) and Group 4) severe disease course with IS medications (n=178; 21.3%). (Table I).

Although IS medications were not the standard treatment protocol in the mild disease course, they were used in limited periods (0.7±0.6 years) to control mucocutaneous manifestations that were unresponsive to non-ISs in Group 2. Since there was evidence of remission of major organ involvement in this group, non-ISs were also used in Group 3. As predicted, the disease duration was longer in Group 3 (12.4±9.1 years) compared to the others (Group 1: 8.9±7.5, Group 2: 6.8±6.2, Group 4: 8.7±6.9 years) (p<0.05). Smoking habits of the group (n=812) were categorised as current smokers (n=216, 25.9%) and non-smokers that included past smokers/never smokers (n=596, 71.5%). Data were not available for the other 22 patients (2.6%).

Composite index as a patient-reported outcome measure
The presence of oral ulcers, as well as oral ulcer-related pain and functional disabilities were evaluated using the Composite Index (CI) as a secondary outcome of the study (11, 12) (Fig. 1). Since CI is an organ-specific patient-reported outcome measure, it assesses both pain and functional status such as chewing, speech and tasting, which are directly affected by oral ulcer activity. The patients filled in the index form during the clinical examination. The score of the CI ranged between 0 and 10 points; the presence of oral ulcer was coded as “0” for inactive and “1” for active.

• Oral ulcer-related pain was evaluated using a 100 mm-visual analogue scale (VAS; 0 = no pain, 100 = severe pain). The scores were presented as ≤10: 0; 11-20: 1; 21-40: 2; 41-60: 3; 61-80: 4; 81 and over: 5 points.
• The impact of oral ulcers on functional status was assessed by Likert type scale: (none of the time: 0 points, a little of the time: 1 point;
Table I. Clinical manifestations in patients with Behçet’s syndrome.

<table>
<thead>
<tr>
<th>Organ involvement</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral ulcer</td>
<td>834</td>
<td>100</td>
</tr>
<tr>
<td>Genital ulcer</td>
<td>710</td>
<td>85.1</td>
</tr>
<tr>
<td>Cutaneous</td>
<td>633</td>
<td>75.9</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>444</td>
<td>53.2</td>
</tr>
<tr>
<td>Ocular</td>
<td>165</td>
<td>19.8</td>
</tr>
<tr>
<td>Vascular</td>
<td>106</td>
<td>12.7</td>
</tr>
<tr>
<td>Neurological</td>
<td>34</td>
<td>4.1</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>13</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Disease course
- Mild (mucocutaneous manifestations and musculoskeletal involvement): 582 (69.8%)
- Severe (ocular, vascular, neurologic and gastrointestinal involvement): 252 (30.2%)
- Total: 834 (100%)

Current treatment modalities
- Non-IS: colchicine, salazopyrine, NSAID, antibiotics: 501 (60.07%)
- IS: azathioprine, steroids, anti-TNF-α and interferon-α: 289 (34.65%)
- No medication: 44 (5.27%)
- Total: 834 (100%)

Disease course with treatment protocol
- Mild disease course with non-IS medications: 429 (51.4%)
- Mild disease course with IS medications: 111 (13.3%)
- Severe disease course with non-IS medications: 72 (8.6%)
- Severe diseases course with IS medications: 178 (21.3%)
- Total: 834 (100%)

1. Oral ulcer activity: (0-1 points)
 Number of oral ulcers during the last month: 0=0 point, ≥1=1 point

2. Pain status: (0-5 points)
 Please place a vertical mark on the scale below to describe how you felt pain due to your oral ulcer during the last month.

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>No pain</td>
<td>Severe pain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Functional status: Please describe the effects of oral ulcers on your oral functions in the last month (0-4 points)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>None of the time</td>
<td>Little of the time</td>
<td>Some of the time</td>
<td>Most of the time</td>
<td>All of the time</td>
</tr>
</tbody>
</table>

How often............
- Did you feel unpleasant taste in your mouth due to oral ulcers?
- Did you have difficulty in speaking due to oral ulcers?
- Did you have difficulty in eating/swallowing due to oral ulcers?

*Total score: 0-10

Fig. 1. Composite index for oral ulcer.

The disease severity score that reflects organ involvement was significantly lower in female patients (4.2±1.8) than males (4.7±1.9) (p=0.000) and, as expected, IS use was higher in males (46% vs. 28% of females). Being a non-smoker was also higher in females (82.5%) than males (63.3%) (p=0.000). Therefore, statistical analyses were performed in order to eliminate the effects of these factors on oral ulcer activity according to both genders separately.

Female patients
The presence of oral ulcer activity was significantly lower in the severe clinical course with IS group (8.9%) compared to those of the mild course with non-IS group (63.2%), severe with non-IS group (12.7%) and the mild course with IS group whose mucocutaneous symptoms were not controlled by non-IS medications and were treated...
Oral ulcer activity in Behçet’s syndrome / G. Mumcu et al.

Table II. Gender and disease-related factors according to oral ulcer activity.

<table>
<thead>
<tr>
<th>Disease-related factors</th>
<th>Oral ulcer inactive (n=291; 34.9%)</th>
<th>Oral ulcer active (n=543; 65.1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
</tr>
<tr>
<td>Age*</td>
<td>40.7 11.3</td>
<td>37.1 10.4</td>
</tr>
<tr>
<td>Disease duration*</td>
<td>10.5 8.03</td>
<td>8.3 7.6</td>
</tr>
<tr>
<td>Severity score*</td>
<td>4.9 2.2</td>
<td>4.2 1.7</td>
</tr>
<tr>
<td>n %</td>
<td>132 45.4</td>
<td>309 56.9</td>
</tr>
<tr>
<td>Gender**</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td>159 54.6</td>
<td>234 43.1</td>
</tr>
<tr>
<td>Total</td>
<td>291 100</td>
<td>543 100</td>
</tr>
</tbody>
</table>

*p=0.000; **p=0.002

with ISs, and had the highest CI scores. In contrast, the lowest CI score was observed in the severe course with IS group (3.01±3.7) compared to other groups (p=0.005; p=0.01 and p=0.047) (Table V).

Prominent correlations were presented according to the disease pattern. The number of oral ulcers correlated with the CI score and pain status in the mild course with non-IS group (r: 0.48, p=0.000; r: 0.50, p=0.000). Healing time of oral ulcers was related to CI scores and functional status in the severe course with non-IS group (r: 0.6, p=0.000 for both) and scores of CI and pain level in severe course with IS group (r: 0.47, p=0.026; r: 0.57 p=0.005).

A significant relationship was not observed in oral ulcer activity related to smoking pattern and disease duration (p=0.12; p=0.10, respectively) (Table III). In addition, the number of oral ulcers was very similar in both groups (p=0.05). An increase in the healing time of oral ulcers was observed in non-smokers compared to smokers (p=0.02), whereas no significant relationship was observed in the other groups (p=0.05) (Table IV). Although the CI score was higher in non-smokers than current smokers, a statistically significant difference was not observed (p=0.055) (Table V).

Male patients

Oral ulcer activity was lower in the severe course with IS group (25.3%) than in the mild course with non-IS group (52.4%) (p=0.028). The severe course with IS group also had higher oral ulcer activity compared to the severe course with non-IS (7.1%) and mild course with IS group as resistant cases (15.1%) (p=0.03, p=0.048). However, the number and healing time of oral ulcers were almost identical in the groups (p>0.05). The number and healing time of oral ulcers were almost identical in the groups (p>0.05) (Table IV). In addition, no significant relationship was observed between oral ulcer activity, CI score, the number and healing time of oral ulcers related to smoking pattern (p>0.05) (Table III-V).

Female patients vs. male patients

In the mild course with non-IS group,
CI scores (Table V), functional status, pain level and healing time of oral ulcers (Table IV) were higher in females (4.52±3.36, 1.5±1.3, 2.4±1.9 and 7.27±3.62 days) compared to males (3.33±3.24, 1.2±1.3, 1.9±1.7 and 6.15±3.02 days) (p=0.021, p=0.035, p=0.008 and p=0.028, respectively). Yet, the number of oral ulcers was similar (p=0.57). This pattern was not seen in other groups (p>0.05) (Table IV).

An increase in the healing time of oral ulcers was observed in females (7.68±3.59) compared to males (6.43±3.41) with a disease duration of less than 5 years (p=0.016). A similar trend was seen in disease duration longer than 5 years (7.55±4.61 vs. 6.64±4.32) (p=0.04). In addition, female patients had poor CI scores (4.27±3.57) (Table V) and subscales regarding functional limitation (1.42±1.41) and pain (2.23±1.95) compared to males (3.09±3.36) (Table V) (p=0.017). 1.63±1.79 with disease duration more than 5 years (p=0.000, p=0.000, p=0.001). A similar trend was not observed in the early disease period (p>0.05).

In non-smokers, the healing time of oral ulcers was longer in females (7.82±4.25) than males (6.47±3.81) (p=0.001) whereas a similar trend was not seen in current smokers (p=0.74) (Table IV). Moreover, CI scores were first assessed according to gender. Oral ulcer related predictive factors and subscales regarding functional limitation (1.44±1.34 vs. 1.16±1.30) and pain (2.32±1.9 vs. 1.81±1.76) were found to be more impaired in females than males (p=0.004, p=0.011, p=0.000). However, no difference was observed in the number of oral ulcers in both groups in terms of gender (p>0.05).

Discussion

Since recurrent exacerbation and remission periods are a characteristic disease pattern (14, 15), the suppression of oral ulcer activity is an essential issue in the management of BS (2). This is one of the largest studies in oral ulcer assessment in BS with 834 patients from 12 different BS tertiary clinics in Turkey. Consequently, the reliability of the statistical analysis was quite high. Oral ulcer related predictive factors were first assessed according to gender. The effects of disease severity with different treatment protocols on oral ulcer activity and the Composite Index were also evaluated in four subgroups to eliminate bias with this new approach in BS. As a result, factors linked with oral ulcer activity and the Composite Index as the patient’s perspective were analysed in more detail.

In the present study, a severe disease course, male gender, and an increase in age and disease duration were found to be prominent variables for inactive patients. Similarly, oral ulcer activity was observed to be negatively correlated with both immunosuppressive treatment protocols and increase in age in our previous study (2). Besides, IS treatment protocols as aggressive treatment options are commonly preferred in severe disease course, especially in male BS patients with major organ involvement and risk of mortality and/or morbidity (3).

In both genders, oral ulcer activity was associated with non-IS medication use in mild course compared to severe course with IS. Moreover, the activity was also seen in the severe course with non-IS group in the study. These relations were predicted because aggressive treatment modalities are not used in mild course with no mortality risk (16, 17). Although standard treatment protocols with low side effects are frequently used for the remission of oral ulcers, their evidence is weak. Since the primary aim of the disease management focuses on the prevention of irreversible tissue damage and life-threatening conditions in BS, patients with a severe course could be treated with non-IS medications in their remis-
An increase in the number and/or healing time of oral ulcers were also associated with poor CI score in females treated with non-IS in both disease courses. Topical treatments may be helpful for these patients, however, they do not prefer them in their disease management because they only give partial relief of ulcers (19). Therefore, the impact of oral ulcers on daily life is present in this group. In contrast, the lowest oral ulcer activity and CI scores were seen in females with severe course treated with IS. Both oral activity and its effect on daily life were not prominent issues for this group because IS usage has a beneficial effect on the control of disease symptoms, especially in females.

In both genders, patients with mild course whose mucocutaneous symptoms were not controlled by non-IS were treated with IS medications for a limited period. Many systemic IS treatments such as corticosteroids, azathioprine, and biologic agents are also used for mild disease course due to resistant mucocutaneous cases with no life-threatening symptoms (20). According to the patients’ perspective, a significant impact of oral ulcers was observed in this group as the highest CI scores were observed in females in the resistant group.

In our study, being a non-smoker was not a discriminative factor associated with the activity of oral ulcers in both genders. However, the ratio of non-smokers to smokers was higher in females than males. An increase in healing time of oral ulcers and CI and subgroup scores were observed to be more prominent in females than males in non-smokers, whereas the number of oral ulcers was similar in both genders among non-smokers. A similar pattern was not seen among smokers. Although smoking has beneficial effects on oral ulcer activity in BS, it leads to oral cancer (21) and severe health problems (22). The protective effect on oral ulcer occurrence in BS could be explained by the increase in the proliferation of oral epithelial cell and altered host response (23, 24). Since non-smoker females had more severe ulcer related problems, this condition is thought to be an important factor in the evaluation of treatment protocols and PROMs in clinical practice and trials.

In males, an important result was that almost a quarter of active patients had severe disease course treated with IS. Moreover, the lowest CI score and decrease in the number and healing time of oral ulcers were also found in this group. Since these patients had critical health problems regarding mortality and morbidity, a decrease in the number of oral ulcers with a rapid healing period should be a priority for these patients. Interestingly, the highest CI score was observed in the severe disease course with non-IS group. In addition, the number and healing time of oral ulcers were higher in this group compared to severe course with IS. In the present study, an unmet need for oral ulcer activity was newly identified in this group in the heterogeneity of the disease pattern. It is well known that oral microbial pathogens and their inflammatory mediators easily pass from oral ulcer sites to systemic circulation thus contributing to an inflammatory response (25, 26). Poor oral health is also found to be a significant mediator for severe disease course in males (27), therefore, a continuous activity could pose an organ risk in patients with active oral ulcers.

In males, disease duration less than 5 years was associated with both oral ulcer activity and poor CI scores. Since disease activity could not be controlled and remissions could not be achieved in the early period of the disease following the diagnosis (28), these results could be predicted. The risk of disease severity is the other critical point owing to the connection between oral ulcer environment and systemic immune response in young male patients who could potentially have new severe organ involvement (25, 26). Therefore, these results could reflect both discomfort due to oral ulcers and the risk in disease management.

Better understanding of the effects of oral ulcer activity is a critical component of disease management in BS (2). The assessment of oral ulcer activity in BS could be better performed by using PROMs which give important information about the clinical condition from the patient’s perspective (29). Organ-specific PROMs are suitable in clinical practice for oral ulcers (11, 12, 30), genital ulcers (12, 30) and erythema nodosum (12) for mucocutaneous involvement. The CI as a PROM which was specifically developed for oral ulcer activity was used in this study (12). PROMs evaluate how disease symptoms and their treatment protocols affect the patient’s life. They reflect the patient’s perspective and/or the patient’s experience regarding sign and symptoms of the underlying disease (31). Based on their location, counting oral ulcers or measuring their diameters could be a problem. In addition, it is fairly difficult to assess the effect of multiple oral ulcers with different diameters. In this perspective, the impact of oral ulcers was evaluated using the Composite Index that combines the assessment of oral ulcer-related pain and functional disability during the previous month.

In the present study, the mean score of CI was found to be 6 points, which was similar to our previous study (11). CI and its subscales were associated with oral ulcer pattern regarding the number and healing time of oral ulcers in different clinical conditions in both genders. The presence of oral ulcers as well as healing time and the number of oral ulcers could not reflect patient’s condition effectively. Therefore, our results may help health professionals in the decision-making process, to understand patients’ needs in clinical practice and trials and to design the best treatment protocols in clinical practice. The main limitation of the study was its multicentre nature, which may have caused patient heterogeneity from reference clinics in different cities. In addition, the data regarding oral ulcer activity was based on patient-reported measures, which may reflect subjectivity.

In conclusion, oral ulcer activity was
associated with non-IS use in both genders as well as early period of disease duration in males and resistant cases in females. Moreover, CI as an organ-specific oral ulcer activity index was associated with oral ulcer-related conditions. It helps to understand person-alised needs in BS patients, as limited information is available for oral ulcers. Therefore, it might be a candidate scale to evaluate treatment efficacy for the follow-up of oral ulcer activity and future clinical studies in BS. Physicians and dentists should work together to achieve the best outcomes in disease management.

Affiliations
1. Marmara University, Faculty of Health Sciences, Istanbul; 2. Gulhane Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, University of Health Sciences, Ankara; 3. Department of Statistics, Mimar Sinan Fine Arts University, Istanbul; 4. Marmara University, Medical School, Division of Rheumatology, Istanbul; 5. Hacettepe University, Medical School, Division of Rheumatology, Ankara; 6. Akdeniz University, Medical School, Dermatology Department, Antalya; 7. Gulhane Medical Faculty, Gulhane Education and Research Hospital, Division of Rheumatology; 8. Kocaeli University, Medical School, Division of Rheumatology, Kocaeli; 9. Cukurova University, Medical School, Division of Rheumatology, Adana; 10. Sanliurfa Mehmet Akif Inan Education and Research Hospital, Sanliurfa; 11. Istanbul Bakirköy Dr. Sadi Konuk Education and Research Hospital, Rheumatology Clinic, Istanbul; 12. Cumhuriyet University, Medical School, Division of Rheumatology, Sivas; 13. Erciyes University, Medical School, Division of Rheumatology, Kayseri; 14. Eskisehir Osmangazi University, Medical School, Division of Rheumatology, Eskisehir; 15. Marmara University, Medical School, Dermatology Department, Istanbul, Turkey.

References