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ABSTRACT
Sjögren’s syndrome (SS) is a chronic au-
toimmune disease characterised by lym-
phocytic infiltration in exocrine glands 
with secretory dysfunction. Although 
both environmental triggers and genetic 
predisposition have been recognised as 
important factors in the initiation and 
development of SS, the pathogenesis of 
SS is complex and still largely unclear. 
Animal models have served as useful 
tools for studying SS pathogenesis with 
several advantages. A number of animal 
models recapitulating key characteristics 
of primary SS patients including secre-
tory dysfunction, glandular inflamma-
tion and presence of autoantibodies were 
developed in the past years. The studies 
based on the animal models of SS have 
provided significant insight in SS patho-
genesis and therapeutic intervention. 
This review summarises current animal 
models with primary SS-like symptoms 
including spontaneous models, geneti-
cally modified models, induced models 
and humanised models, and discusses 
their contribution to the understanding 
of SS aetiology and therapies. 

Introduction
Sjögren’s syndrome (SS) is a hetero-
geneous autoimmune disease charac-
terised by lymphocytic infiltration in 
exocrine glands, predominantly sali-
vary and lachrymal glands (LG), re-
sulting in dry mouth and dry eyes (1). 
SS is also a systemic disease with the 
involvement of multiple extraglandu-
lar organs including lung, kidney, and 
skin (1, 2). SS may either occur alone 
as primary SS or exist in the presence 
of other autoimmune diseases as sec-
ondary SS (1). Glandular infiltration of 
lymphocytes and the presence of anti-
SSA autoantibodies are key evidence 
for the diagnosis of SS while ocular 
problems and salivary hypofunction 
are also important criteria (3, 4). 

Although SS has been studied for dec-
ades, the pathogenesis is still largely 
unclear. Both B cells and T cells activa-
tion as well as disturbed cytokine net-
work in SS pathogenesis were demon-
strated in clinical research and animal 
models studies (5-7). The predominant 
infiltration of CD4 T cells and B cells 
in salivary gland (SG) tissues of both 
SS patients and animal models with 
SS-like symptoms strongly suggested 
the involvement of dysregulated B and 
T cell responses in SS pathogenesis 
(6, 8). However, the exact roles of the 
immune populations in initiation and 
maintenance of SS are illusive. Increas-
ing evidence suggests that both genetic 
predisposition and environmental trig-
gers including virus infection are sig-
nificant mediators in SS pathogenesis 
(5, 9). Clinical observations have pro-
vided important information on disease 
manifestations but can hardly delineate 
immunological and pathogenic changes 
before the occurrence of overt clinical 
signs (10). The studies based on SS 
animal models have the advantages 
of illustrating the whole disease spec-
trum before and after the appearance of 
disease symptoms, and bridging basic 
research and clinical observation. Dur-
ing recent years, a number of animal 
models with primary SS-like symptoms 
have been developed and those studies 
have provided new insight in the under-
standing of SS aetiologies (11-13).
This review summarises and discusses 
recent studies on animal models that re-
semble key features of primary SS pa-
tients, including spontaneous models, 
genetically modified models, induced 
models and humanised models. Current 
understanding and future perspectives 
of SS animal models studies are also 
discussed. 

Spontaneous models
A number of mouse strains spontane-
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ously develop SS-like phenotypes. The 
lupus-prone mice such as MRL/lpr and 
NZB/NZW F1 mice exhibited lympho-
cytic infiltration in SG tissues and were 
considered as secondary SS models 
(14, 15). Non-obese diabetic (NOD) 
mice with insulin-dependent diabetes 
also showed SS-like symptoms (16). 
Moreover, the NOD derivatives with 
only SS but not diabetic symptoms 
were developed. Other spontaneous 
models include NFS/sld model, IQI/Jic 
model and Aly/aly model. Although the 
spontaneous models are useful tools for 
studying SS pathogenesis, the accom-
panying phenotypes of other diseases 
have limited their applications.

NOD and derivative mice
The NOD model is widely used to study 
the immune-pathogenesis and develop 
potential therapeutics for human SS. 
The NOD mice spontaneously develop 
both diabetic and SS-like symptoms, 
which serves as a typical secondary SS 
model. Lymphocytic infiltration was 
observed in exocrine glands including 
SG and LG, resulting in sialadenitis and 
dacryoadenitis (17). The autoantibody 
signature in NOD model resembles hu-
man SS patients with the presence of 
anti-SSA, anti-SSB and anti-muscarinic 
receptor type III (M3R) autoantibodies 
but usually with low levels (13, 18-20). 
Moreover, a number of NOD derivative 
models including NOD.B10-H2b and 
NOD.H-2h4 mice recapitulated key 
symptoms of SS patients without the 
occurrence of diabetes, indicating the 
independent development of glandu-
lar dysfunction and diabetic symptoms 
(21, 22). Multiple insulin dependent 
diabetes (idd) loci were identified in 
NOD mice for diabetes development 
while two of them Idd3 and Idd5 were 
found to be critical for SS-like pheno-
types (23). C57BL/6 mice with congen-
ic loci of Idd3 and Idd5 from NOD mice 
termed as C57BL/6.NOD-Aec1Aec2 
also mirrored human SS characteristics 
without diabetic symptoms, thus serv-
ing as another primary SS model (24).
Recent studies on NOD and derivative 
models have indicated key features of 
SS pathogenesis and provided strate-
gies for developing novel therapies. 
Recently, it’s reported that blocking 

CD40-CD40L interactions markedly 
reduced lymphocytic infiltration and 
glandular ectopic lymphoid structures 
(ELS) in NOD model (25). Even a 
single treatment of anti-CD40L sig-
nificantly decreased ELS formation and 
serum autoantibodies levels in NOD.H-
2h4 mice (26). Consistently, clinical 
studies also indicated the benefits of an-
ti-CD40 monoclonal antibody CFZ533 
in SS patients (27). Together, these 
results demonstrated the involvement 
of CD40–CD40L pathway in SS patho-
genesis and suggested the therapeutic 
potential of targeting CD40/CD40L for 
treating SS.

NFS/sld mice
NFS/sld mutant mice bear defects of 
salivary glands differentiation. The 
mice with thymectomy at 3 days after 
birth (3d-Tx NFS/sld) exhibited sig-
nificant inflammatory lesions in SG 
and LG with secretory dysfunctions 
(28). Aging-associated CD4 T cells 
dysregulation and Fas-mediated epi-
thelial cell apoptosis were suggested 
to be involved in autoimmune devel-
opment in this model (29). Moreover, 
α-fodrin appeared to be an important 
autoantigen. Neonatal immunisation 
with recombinant 120-kDa α-fodrin 
decreased inflammatory lesions in 3d-
Tx NFS/sld mice (30) while immuni-
sation in 4-week old normal NFS/lsld 
mice induced autoimmune SS symp-
toms (31). However, anti-α-fodrin an-
tibodies are less specific and sensitive 
when compared with anti-SSA autoan-
tibodies in SS patients (32), suggesting 
that anti-α-fodrin antibodies may not 
be suitable for SS diagnosis.

Aly/aly mice
The alymphoplasia mutated (aly/aly) 
mice possess a spontaneous mutation 
which causes a systemic lack of Pe-
yer’s patches and lymph nodes (33). 
Aly/aly mice developed inflammatory 
infiltration in exocrine glands includ-
ing SG, LG and pancreas (34). Inflam-
matory lesions in liver and lung were 
also observed but autoantibodies were 
not detected in aly/aly mice. Transfer 
of T cells from aly/aly mice into RAG2 
knockout (KO) mice induced inflam-
mation in exocrine organs, suggesting 

that autoreactive T cells are critical for 
disease initiation and progression in 
this model.

IQI/Jic mice
IQI/Jic mice spontaneously develop 
lymphocytic inflammation in SG and 
LG with increased incidence and se-
verity in aged mice (35). Female IQI/
Jic mice exhibit severer tissue damage 
when compared with male mice. CD4 
T cells were found to be the dominant 
population in small foci while the fre-
quencies of B cells were elevated in 
accordance with increased disease se-
verity, which was consistent with B and 
T cells quantification in minor salivary 
glands of SS patients (35, 36). How-
ever, anti-SSA autoantibodies were not 
detected (35). Notably, inflammatory 
lesions within multiple organs includ-
ing pancreas, lung and kidney were 
observed in IQI/Jic mice , resembling 
systemic manifestation in SS patients 
(37). Increased expression of kallikrein 
(Klk)-13 in salivary tissues and elevated 
levels of antibodies against Klk-13 in 
diseased mice were detected, suggesting 
that Klk-13 may function as an autoanti-
gen in the disease development (38). 

Genetically modified models
Genetic factors play critical roles in 
SS development. Various genetically 
modified models were established in 
the past decades. Some genetically 
modified mice such as BAFF transgen-
ic mice exhibited secondary SS pheno-
types (39). Moreover, genetically mod-
ified models recapitulating primary SS 
symptoms were also studied. The gene 
editing technologies will further eluci-
date new pathogenic pathways in SS 
pathogenesis.

Inhibitor of differentiation 3(Id3) 
KO mice 
Id3 is a critical transcriptional regulator 
in cell proliferation and differentiation 
of various cell types, including B and T 
cells (40, 41). The Id3 KO mice devel-
oped glandular lymphocytic infiltration 
and secretory dysfunction at early stag-
es while the presence of autoantibodies 
was detected at late stage (42). Adop-
tive transfer of Id3 KO T cells induced 
SS-like secretory dysfunction in recipi-
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ent mice, suggesting a T cell-intrinsic 
role of Id3. Furthermore, mice with 
Id3 deficiency in T cell lineage also 
exhibited comparable SS-like pheno-
types with Id3 germline KO mice (43), 
further demonstrating the critical roles 
of T cells in driving disease develop-
ment. However, B cells depletion ame-
liorated glandular inflammation with 
improved secretory functions (44), 
suggesting differential roles of B and T 
cells at different stages of disease pro-
gression. The clinical relevance of Id3 
in SS patients has not been confirmed 
as available studies suggested no obvi-
ous predisposition of Id3-related SNPs 
in SS patients (45).

Aromatase KO mice
The higher incidence of SS in females 
has suggested the involvement of oes-
trogen in disease pathogenesis (2). 
Ovariectomy of the normal mice led to 
SS-like disease symptoms while admin-
istration of oestrogen prevented apopto-
sis of SG epithelial cells in oestrogen-
deficient mice, indicating the protective 
effects of oestrogen in SS (46,47). Aro-
matase is an enzyme that controls a key 
step in the biosynthesis of oestrogens. 
Aromatase KO mice developed severe 
inflammatory infiltrates in SG with 
glandular dysfunction, which was possi-
bly related to adipose tissue-associated 
macrophages (48, 49).

Autoimmune regulator (Aire) KO mice
Aire is a transcription factor that regu-
lates self-tolerance by promoting ectop-
ic expression of autoantigens in thymus 
and controlling peripheral autoreactive 
B cells (50, 51). Aire is not only ex-
pressed in thymic medullary epithelial 
cell but also in peripheral lymphoid or-
gans (52). Previous clinical observa-
tions revealed that Aire deficient pa-
tients harboured unique autoantibodies 
profiles with loss of B cell tolerance 
(53). Aire deficient mice exhibited 
spontaneous development of autoim-
mune profiles and served as an animal 
model for SS (54). The Aire KO mice 
developed SS-like lymphocytic infiltra-
tion in lacrimal glands, parotid glands 
and submandibular glands together with 
severe dry eyes (54–56). It was found 
that autoimmunity against α -fodrin and 

odorant binding protein 1a were asso-
ciated with disease development while 
both the autoantigens were identified in 
thymus (54, 57). Moreover, mouse ge-
netic background markedly affected SS 
progression in Aire KO mice because 
disease development differed in C57/
BL6, BALB/c and NOD background 
(54, 55). Recently, neuropathic chang-
es were found to be associated with 
chronic lacrimal inflammation in Aire 
KO mice (58), suggesting disturbed 
neuronal regulation in SS pathogenesis. 
Additionally, gene expression analysis 
in Aire KO mice revealed the involve-
ment of multiple signalling pathways in 
early regulation of inflammation, inner-
vation, and cell survival during autoim-
mune SS development (55).

T cell-specific phosphoinositide 
3-kinase (PI3K) KO mice
PI3K functions as a second messenger 
downstream of multiple receptors and 
has key roles in regulating immune cell 
functions (59).  Mice with T cell-specif-
ic PI3K deficiency showed autoimmune 
development with SS-like phenotypes. 
Glandular lymphocytic infiltration, in-
creased antinuclear antibodies (ANA) 
and anti-SSA antibodies were detected 
(60). A recent study reported that in vivo 
blockade of PI3Kδ activity ameliorated 
disease symptoms in a SS-like siaload-
enitis model, suggesting that PI3K path-
way might be a novel therapeutic target 
for SS treatments (61).

IκBαM/M mice
NF-κB represents a family of tran-
scription factors with diverse roles. 
Defective NF-κB signalling substan-
tially contributed to the development 
of autoimmunity (62). IκBα is induced 
by NF-κB activation and in turn in-
hibits NF-κB activity with a feedback 
loop. Polymorphisms in IκBα promot-
er region were suggested to be related 
with SS susceptibility (63). IκBαM/M 
mice with mutated κB enhancers in 
IκBα promoter developed autoimmune 
symptoms which were very similar to 
SS patients (64). The IκBαM/M mice 
exhibited inflammatory infiltrates in 
SG, LG and lung tissues. Moreover, 
autoantibodies against SSA and SSB 
were detected.

Osteopontin (OPN) transgenic mice
OPN is a multifunctional cytokine with 
diverse sources (65). Previous studies 
suggested that aberrant expression and 
function of OPN were associated with a 
number of autoimmune diseases, includ-
ing systemic lupus erythematosus (SLE), 
rheumatoid arthritis and multiple scle-
rosis (66-68). The association between 
OPN and SS pathogenesis was further 
revealed by the SS-like phenotypes in 
OPN transgenic mice which served as 
another SS model (69). OPN transgenic 
mice recapitulated SS characteristics in 
terms of exocrine histopathology, saliva 
hypofunction, increased anti-SSA anti-
bodies and female predilection.

Overexpression of retinoblastoma-
associated protein 48 (RbAp48) in SG
RbAp48 is a histone binding protein 
with multiple functions. Previous stud-
ies reported that RbAp48 induced ap-
optosis in the exocrine glands which 
was dependent on oestrogen deficiency 
(70). Moreover, transgenic expression 
of RbAp48 in SG tissues resulted in au-
toimmune exocrinopathy (71). Inflam-
matory infiltrates with CD4 T cells in 
SG and LG tissues and reduced saliva 
and tear secretion were observed. In 
addition, increased anti-SSA/SSB au-
toantibodies levels were detected. SG 
epithelial cells may serve as antigen-
presenting cells and promote disease 
progression in this model.

Overexpression of TNF-α in SG
TNF-α is an important cytokine in au-
toimmunity. Increased TNF-α expres-
sion was observed in patients with au-
toimmune diseases, including SS (72). 
Moreover, TNF-α levels were implicat-
ed to be associated with secretory dys-
functions and inflammation in SS (73). 
A recent study showed that overexpres-
sion of TNF-α within salivary glands 
induced SS-like sialadenitis symptoms, 
including lymphocytes aggregation in 
SG tissues and secretory dysfunction 
(74). However, autoantibodies were not 
observed in this model, suggesting the 
autoantibody-independent induction of 
SG hypofunction in the model. 

Induced models
In addition to genetic background, 
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extrinsic triggers are also important 
factors involved in SS pathogenesis. 
Immunisation with specific autoan-
tigens can induce breakdown of the 
immune-tolerance and result in glan-
dular inflammation and hypofunction, 
which resembles the symptoms of SS 
patients. Currently, the antigens used 
for SS induction include Ro peptides, 
M3R peptides, carbonic anhydrise 2 
(CA2) and SG protein extracts. Moreo-
ver, adenovirus infection in SG tis-
sues also induced SS-like symptoms. 
The induced models serve as powerful 
tools for translational studies and have 
the advantage of exploring the whole 
disease development spectrum from a 
precise point of disease onset.

Ro immunisation
The presence of anti-SSA/Ro autoan-
tibody is important for the diagnosis 
and classification of SS patients. Re-
peated immunisation with short pep-
tide derived from Ro 60 induced pro-
found lymphocytic infiltrates in SG 
tissues with glandular hypofunction in 
BALB/c mice (75). Moreover, the im-
munised mice exhibited anti-SSA/Ro 
autoantibodies while oral feeding of Ro 
60 peptides prevented disease progress 
through induction of immune tolerance 
(76). Recent studies reported that im-
munisation of mRo60_316-335 pep-
tide antigen with a predominant T cell 
epitope induced several major SS-like 
symptoms in mice, including glandular 
dysfunction and tissue inflammation 
as well as the increase of autoantibod-
ies and inflammatory cytokines (77). 
An indispensable role of B cells was 
demonstrated in this model when B cell 
depletion prevented the development of 
SS-like disease. Genetic predisposition 
was also important because immunisa-
tion with Ro 60 peptides induced differ-
ent degrees of preclinical autoimmun-
ity with diverse phenotypes in different 
strains of mice (78). 
Autoantibodies against SSA/Ro rec-
ognise two types of ribonucleoprotein 
antigens with 52 kDa and 60 kDa, re-
spectively. Not only Ro 60 but also 
Ro 52 peptides immunisation induced 
SS-like phenotypes in mice. NZM2758 
mice with immunisation of Ro52 exhib-
ited symptoms resembling those of SS 

patients(79). Moreover, Ro52-induced 
antibodies were capable of inducing SG 
hypofunction, which was dependent on 
activation of innate immunity (79).

M3R peptide immunisation
Anti-M3R autoantibodies detected 
in SS patients are suggested to be in-
volved in SS pathogenesis (80). M3R 
is located on the surface of SG acinar 
cells and plays key roles in saliva se-
cretion. The predominant role of M3R 
in regulating saliva production was 
revealed by findings that M3R KO 
mice showed 20% reduction of saliva 
secretion when compared with wild 
type (WT) mice (81). Previous studies 
suggested that anti-M3R autoantibod-
ies bound to M3R in SG tissues and 
contributed secretory dysfunction (82). 
Adoptive transfer of splenocytes from 
the M3R KO mice which received im-
munisation with M3R-derived peptides 
into Rag KO immunodeficient mice 
resulted in profound hyposalivation 
accompanied with severe glandular 
inflammation (83). The immune patho-
genesis in this model was dependent on 
T cells because the transfer of CD3+ T 
cells but not CD3- cell population con-
ferred development of SS-like pheno-
types in recipient mice. M3R-specific 
effector T cells especially Th17 cells 
were critically involved in M3R-in-
duced SS development. RORγt antago-
nist treatment significantly improved 
SG secretory functions with suppressed 
IFN-γ and IL-17 production (84), indi-
cating that RORγt antagonism might be 
a potential therapeutic strategy for SS 
patients. However, immunisation with 
second extracellular loop of M3R in 
BALB/c mice induced neither secre-
tory hypofunction nor histological ab-
normality though the presence of high 
levels of anti-M3R autoantibodies (85), 
suggesting that anti-M3R autoantibod-
ies for the second extracellular loop 
may not exert any pathogenic function 
in SS development.

SG protein immunisation
Early studies reported the induction of 
salivary gland inflammation in SMA 
mice with repeated immunisation of sal-
ivary gland extract with Klebsiella O3 
Lipopolysaccharide as adjuvant (86). 

Moreover, SS-like keratoconjunctivi-
tis sicca symptoms were also observed 
in Lewis rats with immunisation of a 
mixture of lacrimal and salivary gland 
extract (87), suggesting that salivary 
and lacrimal glands-derived proteins 
may contain autoantigens for the induc-
tion of SS-like symptoms. Our recent 
work has established an experimental 
SS (ESS) model induced in C57BL/6 
mice, which may serve as a powerful 
tool for studying SS pathogenesis and 
screening potential therapeutic candi-
dates (88). The proteins were prepared 
from homogenised SG tissues in nor-
mal mice. Upon immunisation with the 
SG-derived proteins, the mice displayed 
decreased saliva production, increased 
anti-SSA and anti-M3R autoantibod-
ies, profound glandular inflammation 
with the infiltration of both T and B 
cells. Pulmonary and renal inflamma-
tion were also observed in some mice 
at chronic disease stage (unpublished 
data), suggesting that the ESS mice also 
mimicked systemic manifestation with 
multiple organs-injury in SS patients. 
Using this ESS model, we demonstrated 
a critical role of Th17 cells in SS de-
velopment (88). IL-17 KO mice were 
resistant to ESS induction while adop-
tive transfer of polarised Th17 cells 
into IL-17 KO recipient mice induced 
hyposalivation and focal sialadenitis 
(88). Moreover, the proteasome inhibi-
tor Bortezomib suppressed Th17 but not 
Th1 responses in ESS development ac-
companied with ameliorated disease pa-
thology, suggesting that targeting Th17 
cells might be a promising therapeutic 
strategy for treating SS patients (89). 
In addition, IL-25 pathway was dem-
onstrated to be involved in human pri-
mary SS patients and ESS model (90). 
Furthermore, our recent work revealed 
the regulatory roles of IL-10-producing 
B cells and myeloid-derived suppressor 
cells in SS pathogenesis (91, 92).

CA2 immunisation
CA2 is a metalloenzyme that cataly-
ses the reversible hydration of carbon 
dioxide. Antibodies against CA2 were 
detected and associated with renal dam-
age in a subset of SS patients (93). PL/
J(H-2u) mice immunised with human 
CA2 exhibited lymphocytic infiltration 
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in SG tissues with the presence of anti-
CA2 antibodies (94, 95). Moreover, 
impaired renal functions were also ob-
served in immunised mice.

Virus-induced model
Environmental triggers including virus 
infections have been suggested to be 
important for SS initiation and progres-
sion. Several viruses such as Epstein-
Barr virus (EBV) and cytomegalovirus 
(CMV) were associated with SS devel-
opment (96). Previous studies showed 
that murine CMV (MCMV)-infected 
autoimmune-prone mice including B6-
lpr/lpr and NZM2328 mice exhibited 
SS-like disease symptoms and served 
as secondary SS models (97, 98). Nota-
bly, SG administration of a replication-
defective adenovirus 5 in WT C57BL/6 
mice reproduced several phenotypic 
and functional features of SS patients 
including lymphocytic infiltration in 

SG tissues, decreased saliva secretion 
and functional B cell activation with 
increased ANA levels (99). Ectopic 
lymphoid structures with germinal cen-
tres were observed in the majority of 
infected mice. Therefore, the adenovi-
rus-infected mice may also serve as a 
SS model for studying cellular and mo-
lecular mechanisms.

SG cannulation of Ad5-IL17 vectors
A number of studies strongly sug-
gested the involvement of IL-17 in SS 
pathogenesis (100-103). Our previous 
studies also showed the critical roles 
of Th17 cells in driving SS progres-
sion in a murine model (88). Moreover, 
overexpression of IL-17 in SG tissues 
directly induced SS-like disease pro-
files, serving as another SS model. The 
mice with retrograde salivary gland 
cannulation of adenovirus serotype 5 
vectors expressing IL-17 (Ad5-IL-17) 

exhibited increased IL-17 production 
accompanied with elevated inflamma-
tory cytokines, glandular lymphocytic 
infiltration, presence of autoantibodies, 
and reduction of saliva secretion (103). 
In addition, blocking IL-17 reduced 
SS pathology in C57BL/6.NOD-Ae-
c1Aec2 model (104, 105), further dem-
onstrating that IL-17 might be a prom-
ising therapeutic target for treating SS.

Humanised model
Animal models are proved to be useful 
tools for studying human diseases, but 
the differences between animals and 
human biology limit the translation of 
knowledge from animal models to clini-
cal outputs. In current research, human-
ised mouse models have been increas-
ingly recognised as important pre-clin-
ical tools to fill the gap between mouse 
and human. The humanised SS model 
was developed by adoptive transfer 

Table I. Animal models of Sjögren’s syndrome.

Models	 Glandular	 Impaired fluids	 Autoantibodies	 Other organs involved	 References
	 infiltration	 secretion	

Spontaneous models

NOD	 SG, LG	 saliva, tear	 anti-SSA, anti-SSB, anti-M3R, ANA	 pancreas (T1D)	 17-19
NOD.B10-H2b	 SG, LG	 saliva, tear	 anti-SSA, anti-SSB, anti-M3R, ANA	 not determined	 21
C57BL/6.NOD-Aec1Aec2	 SG, LG	 saliva, tear	 anti-SSA, anti-SSB, anti-M3R, ANA	 not determined	 24
NFS/sld	 SG, LG	 saliva	 anti-SSA, anti-SSB, anti-α fodrin	 not determined	 28-31
Aly/aly	 SG, LG	 not determined	 Negative for ANA	 pancreas, liver, lung	 34
IQI/Jic	 SG, LG	 not determined	 ANA	 pancreas, kidney, lung	 35, 37, 38

Genetically modified models

Id3 KO	 SG, LG	 saliva, tear	 anti-SSA, anti-SSB	 not determined	 42, 43
Aromatase KO	 SG	 not determined	 anti-α fodrin	 kidney	 48, 49
Aire KO	 SG, LG	 tear	 anti-α fodrin	 liver, lung, pancreas prostate,	 54-58 
				    stomach	
T cell-specific PI3K KO	 SG, LG	 not determined	 anti-SSA, anti-SSB, ANA	 lung, liver, intestines	 60
IκBαM/M	 SG, LG	 not determined	 anti-SSA, anti-SSB	 lung	 64
OPN transgenic	 SG, LG	 saliva	 anti-SSA, ANA	 not determined	 69
Overexpression of RbAp48 in SG	 SG, LG	 saliva, tear	 anti-SSA, anti-SSB	 not determined	 71
Overexpression of TNF-α in SG	 SG	 saliva	 Negative for anti-SSA/SSB	 not determined	 74

Induced models

Ro immunisation 	 SG	 saliva	 anti-SSA, anti-SSB, ANA	 not determined	 75
(hRo60-480-494/274-290/273-289)	
Ro immunisation (mRo60-316-335)	 SG, LG	 tear	 anti-SSA	 not determined	 77
Ro immunisation (mRo52)	 SG	 saliva	 anti-SSA	 not determined	 79
M3R immunisation	 SG, LG	 saliva	 anti-M3R	 not determined	 83-85
Salivary gland protein immunisation	 SG, LG	 saliva, tear	 anti-SSA, anti-M3R	 lung, kidney	 88-92
CA2 immunisation	 SG, LG	 not determined	 not determined	 not determined	 94, 95
SG infection of adenovirus 5	 SG	 saliva	 ANA	 not determined	 99
SG cannulation of Ad5-IL17 vectors	 SG	 saliva	 ANA	 not determined	 103

Humanised model

Chimeric human–mouse model	 SG, LG	 saliva	 negative for ANA	 not determined	 106
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of peripheral blood mononuclear cells 
(PBMCs) from SS patients into im-
munodeficient NOD-scid IL-2rγ(null) 
recipient mice (NSG mice) (106). The 
chimeric mice with PBMCs from SS 
patients exhibited inflammation in SG 
and LG tissues together with reduced 
saliva production. Further histological 
analysis revealed primarily CD4 T cells 
infiltration with minimal CD8 T cells 
and B cells. This chimeric humanised 
model represents an important platform 
for future translational studies. 

Conclusions and future perspectives
SS is a heterogeneous disease with 
complex pathogenesis. Both external 
triggers and intrinsic factors contribute 
to SS development. Clinical research 
has provided important evidence for the 
understanding of SS aetiology. Howev-
er, the pathological changes before the 
clinical diagnosis can hardly be stud-
ied from clinical observations. Animal 
models, especially murine models with 
the advantages of genetic consistency, 
short life span and sufficient sample 
size, have provided a myriad of infor-
mation regarding disease initiation, pro-
gression and treatment. During recent 
decades, a number of animal models 
recapitulating the key characteristics of 
SS patients have been developed (Table 
I). Those animal models of SS serve as 
excellent tools for studying full disease 
spectrum. The advancement and appli-
cations of genetically modified mice in 
SS models will identify the direct roles 
of target genes in disease pathogenesis. 
In addition, pre-clinical studies based 
on animal models will benefit the po-
tential development of novel therapies 
for SS patients.
Although there are still discrepancies 
between SS animal models and pa-
tients, numerous studies on SS models 
have contributed substantially to the 
current understanding of SS pathogen-
esis. Notably, the humanised mouse 
model has markedly narrowed the gap 
between animal models and SS pa-
tients, allowing the in vivo study of 
human immune cells under SS disease 
condition. Moreover, the humanised 
mouse model is usually patient-specif-
ic, which may benefit the advancement 
of clinical applications of personalised 

therapies. Further research in animal 
models is needed for a comprehensive 
understanding of SS pathogenesis. The 
future translational studies from animal 
models to clinical research will certain-
ly provide new insight in understanding 
SS pathogenesis and further developing 
effective therapies for patients. 
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