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ABSTRACT
Autoimmune diseases (AIDs) result in 
high levels of various autoantibodies in 
the serum as well as systemic inflamma-
tion and targeted organ damage. The 
incidence of AID has increased over 
recent decades. Glycosylation is a sig-
nificant part of the post-translational 
modification of proteins and has been 
recognised as an important part of im-
mune regulation in humans. Aberrant 
glycosylation manifests as pro- or anti-
inflammatory effects. Numerous studies 
have confirmed that aberrant glyco-
sylation plays a crucial role in the AID 
process. The development of emerging 
technologies such as the lectin micro-
array has facilitated research on the 
structure and function of glycans and 
glycosylation. Newly developed devices 
allow for high-throughput, high-speed, 
and highly specific research on aber-
rant glycosylation. Here, we review the 
role of glycosylation in the regulation 
of effector function in the context of 
autoimmunity and aberrant glycosyla-
tion in AIDs. This paper also discusses 
emerging technologies and clinical ap-
plications of glycosylation. 

Introduction
The autoimmune diseases (AIDs) are a 
family of over 80 inflammatory disor-
ders, in which the immune component 
of the host treats self-substance as a 
foreign invader, leading to a series of 
specific target organ damage, systemic 
disturbance, and even death (1). It has 
been shown that the incidence of AIDs 
has increased over the past two decades 
(2). Worldwide, 5–10% of humans may 
develop some type of autoimmune dis-
order throughout their lifetime (3-5). 
Several lines of clinical research have 
identified a common pathogenic mech-
anism of AIDs: once immune tolerance 
is broken, autoantibodies and autoreac-
tive immune cells mediate an inflam-
matory response, resulting in pathologi-

cal autoimmunity and eventually lead-
ing to organ and tissues damage (6-9). 
Nevertheless, the further development 
of AIDs requires the involvement of 
genetic susceptibility (10, 11) and the 
ability of environmental factors to act as 
triggers (12, 13). With the development 
of pathogenesis research and diagnos-
tic experiments, mounting indicators 
provide evidence for elucidating the 
mystery of AIDs. The pathogenesis and 
early diagnosis of AIDs have attracted 
significant attention because early diag-
nosis and therapeutic management can 
help to prevent the onset of AIDs and 
associated irreversible damage (14, 15).
Glycans are sugar molecules that ad-
here to glycoprotein. This group of 
molecules exhibits abundant structural 
diversity (16). It is known that almost 
all immune effector molecules are gly-
coproteins, including inflammatory 
mediators, immunoglobulins (Ig), and 
nearly 50% of serum proteins. Glyco-
sylation is one of the most common 
and complex forms of post-transla-
tional protein modification. Glycosyla-
tion affects the biological functions of 
glycoproteins, such as the ability to 
maintain cell stability, the regulation 
of cellular activity, cell-cell adhesion, 
immunogenicity, and secretion (17, 
18). Although the synthesis of glycans, 
as opposed to DNA and protein, does 
not require a template, structural modi-
fications are mediated by glycosidases, 
glycosyltransferases, and sialidases. 
Numerous other factors regulate gly-
cosylation, such as age, environmental 
factors, cell type and activation status, 
and inflammatory mediators (19, 20). 
All of these factors may be changed 
in the setting of inflammation and au-
toimmunity. In the context of inflam-
mation and the autoimmune response, 
glycoprotein glycans may interact with 
immune effector molecules to foster the 
development of diseases characterised 
by specific glycosylation patterns. Each 
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disease thus has a specific glycosylation 
profile that can be viewed as an autoim-
mune signature. Mounting evidence has 
confirmed that the characteristic profile 
of glycosylation in AIDs can provide 
information related to disease patho-
genesis and biomarkers that may be ef-
fective for use in the clinic. 
In the following sections, we provide 
a review of recent developments in the 
field of experimental technology for 
glycomic analysis and the role of gly-
coprotein glycosylation in AIDs. Our 
purpose is to provide a comprehensive 
perspective from which researchers 
may develop glycosylation research to 
help in the treatment of AIDs. The find-
ings presented below may encourage 
researchers to explore new approaches 
to therapeutic management based on 
the role of glycosylation in AIDs. 

Glycosylation regulates 
immune effector functions 
AIDs is characterised by the exces-
sive production of autoantibodies, and 
aberrant glycosylation of antibodies 
has been shown to be involved in the 
pathogenesis of AIDs. The most abun-
dant serum glycoprotein in humans is 
immunoglobulins (Ig), which are pro-
duced by B cells and plasma cells. Ig 
plays a crucial role in inflammation and 
autoimmunity. There are five types of 
Ig: IgG, IgM, IgA, IgE, and IgD. For 
IgG, the most abundant type of immu-
noglobulins, both the Fc (crystallisable 
fragment), in charge of modulating ef-
fector functions, and Fab (antigen-bind-
ing fragment), in charge of binding Ag, 
may undergo glycosylation.

Effects of glycosylation on 
IgG Fc functionality
IgG Fc fragments determine the effec-
tor function of IgG and the nature of 
the inflammatory response by bind-
ing to Fcγ receptors (FcγRs). FcγRs 
may be roughly categorised as either 
activating FcγRs (FcγRI, FcγRIIA, 
and FcγRIIIA) or inhibitory FcγRs 
(FcγRIIB) (21). Once accumulated 
IgG-Fc fragments have bound to acti-
vated FcγR, they induce cross-linking 
between two or more receptors, which 
triggers receptor signalling. Subsequent 
immune responses include antibody-de-

pendent cellular cytotoxicity (ADCC), 
the regulation of antibody production, 
reactive oxygen species (ROS) produc-
tion, secretion of inflammatory media-
tors, and phagocytosis (22, 23). IgG Fc 
glycosylation can alter the affinity of 
activated immune complexes (ICs). ICs 
are formed by IgG, interact with FcγR, 
and are expressed by recruited inflam-
matory effector cells, ultimately lead-
ing to disease onset, even tissue damage 
(24). The levels of IgG fucosylation has 
been shown to be play an important role 
in ADCC. Most circulating IgG is fu-
cosylated (25). The addition of fucose 
glycan significantly reduces ADCC by 
reducing binding affinity between IgG 
and activated FcγRIII(23, 26). In addi-
tion, fucosylation seems to weaken an-
tibody-dependent cell-mediated phago-
cytosis (27, 28). Furthermore, high 
levels of mannose structures affect IgG 
effector function. One study investigat-
ed the effects of human monoclonal an-
tibodies containing oligomannose-type 
glycans on the presence of kifunensine, 
which improved ADCC function and 
affinity for FcγRIIIA but decreased C1q 
binding (29). Moreover, reduction of Fc 
sialylation also inhibited binding of the 
antibody to C1q (30). Thus, the process 
of Fc glycosylation implies a potential 
role in proinflammatory effector func-
tions such as ADCC and complement-
dependent cytotoxicity (CDC).

Effects of glycosylation on 
IgG Fab functionality
Although an IgG’s Fc region dictates its 
effector function, antigen-specificity is 
determined by the Fab arm. The bind-
ing affinity of Fab arms may be affected 
by the presence of glycosylation in the 
variable domains. For instance, it has 
been confirmed that the removal of sial-
ic acid glycans from Fab arms may de-
crease Ag-binding affinity (31). A 3–8-
fold reduction in binding to CD33 was 
observed when N-linked glycans were 
present in the Fab arms of anti-CD33 
antibodies (32). It is generally accepted 
that the proinflammatory efforts of IgG 
are achieved through activation of the 
complement system and stimulation of 
the ADCC effect. Fab arm glycosylation 
could influence antibodies aggregation 
and modulate the formation of immune 

complex. Researchers designed aggre-
gation-prone regions on the Fab domain 
of a therapeutic monoclonal antibody, 
bevacizumab, to rationally design a 
biobetter drug candidate according to 
engineering single point mutations of 
aggregation-prone residues and gly-
cosylation site near aggregation-prone 
residues to mask these residues with a 
carbohydrate moiety (33). In addition, 
Fab glycan could modulated half-life 
of serum glycoproteins and organ tar-
geting through their position (34). The 
extent to which IgG Fc and Fab are gly-
cosylated is associated with individual 
age and gender, respectively (35).

Effects of glycosylation on 
glycoprotein functionality
Approximately 50% of the proteins in 
serum are glycoproteins. Numerous 
proteins, other than immunoglobu-
lins, are considered to play a role in 
the pathogenesis of AIDs. These pro-
teins include α-1 acid glycoprotein 
(AGP), α-2 macroglobulin (AMG), 
haptoglobin (HAP), C-reactive protein 
(CRP), and transferrin (TFN), all of 
which are acute-phase proteins (APPs). 
The aberrant glycosylation status and 
modified glycan structure of APPs con-
tribute significantly to the progression 
of AIDs. For example, increased levels 
of glucosamine, galactose, mannose, 
fucosylated AGP, and sialyl Lewis-x 
(sLex), were observed in rheumatoid 
arthritis (RA) (36-38). Abnormal gly-
cosylation of APPs contributes to the 
pathogenesis of RA by increasing fu-
cosylation, mannosylation HAP (38), 
and branching TFN (39). AIDs are 
also associated with increased binding 
to some lectins contained in APPs. In 
RA, with secondary Sjögren syndrome 
(SS), and systemic lupus erythematosus 
(SLE), alterations in the pattern of gly-
cosylation result in increased reactivity 
to concanavalin A (Con A) (40, 41). In 
the contexts of inflammation and the 
autoimmune response, aberrant glyco-
sylation in APPs results in high levels 
of fucosylation, sialylation, and man-
nosylation, as well as increased expres-
sion of sLex in branched glycans (42).
In addition to serum proteins, others 
that are expressed or secreted by par-
ticular organs or tissues are thought 
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to be involved in the pathogenesis of 
AIDs. A study of parotid saliva from 
patients with SS showed that measure-
ments of Dolichos biflorus agglutinin 
(DBA)-glycan-specific binding activity 
may provide a more specific indicator 
of salivary gland disease than meas-
urements of lactoferrin concentration 
alone (43). Nayab et al. proposed that 
levels of MUC7 (a secreted mucin) gly-
cosylation may be an index for saliva 
quality in patients with SS (44). 

Recent progress in tools 
for the analysis of glycosylation
The analytical procedures required for 
measuring glycan levels, identifying 
sites of glycosylation, and characteris-
ing glycan structure are challenging and 
complicated. Additional research on the 
effects mediated by glycoproteins and 
glycans is urgently needed. The results 
obtained will inform disease diagnosis 
and may have therapeutic utility. The 
general idea of glycosylation analysis 
is based on the following premise. Con-
sidering that the state of glycoprotein 
glycosylation changes in parallel with 
the disease process, target glycopro-
teins may be extracted and enriched to 
investigate the degree to which a spe-
cific disease has progressed (45). After 
extraction and enrichment, laboratory 
methodology will be used to dissociate 
the glycan from the glycoprotein. The 
glycans obtained in this fashion will 
then be analysed using mass spectrom-
etry (MS) (46), capillary electrophore-
sis (CE) (47), and lectin-based enzyme-
linked immunosorbent assay (ELISA) 
(48). Use of these research strategies 
has revealed mounting evidence of ab-
errant glycosylation in association with 
AIDs (as described in 3).

MS/MS-based analysis 
of glycosylation
Most studies on AID glycosylation per-
formed to date have been based on the 
use of MS. One common approach to 
the measurement of glycosylation in-
cludes the preliminary capture of gly-
cans and glycopeptides, followed by 
the analysis of glycans using MS and 
profiling to characterise the glycan and 
glycopeptide structures collected. In-
tegrated glycans may be captured with 

hydrophilic interaction chromatography 
(HILIC) enrichment (42, 49), lectin af-
finity enrichment (50), or mixed anion 
exchange (MAX) extraction (51). The 
MAX method was considered to be su-
perior for capturing for native N-linked 
glycans and N-terminal–labeled intact 
glycans. Several types of MS have 
been used to resolve integrated glycans. 
The residues may be distinguished 
using vibrational energy-based CID 
or HCD, electronic excitation-based 
ETD, or ECD. These methodological 
approaches provide highly complex 
spectra. Several software programmes 
have been developed to analyse the MS 
spectra associated with various pat-
terns of glycosylation. These software 
programs include Glycopep Grader 
(52), GPQuest (53, 54), Glycopeptide 
Search (GPS) (55), and pGlyco (56, 
57). Although MS/MS-based methods 
have advantages for analysing glycan 
structure, but the glycan enrichment 
step requires large quantities of purified 
glycoprotein (on the range of micro-
grams or milligrams). MS analysis is 
not conducive to broad use in clinical 
applications. 

An emerging lectin microarray 
technique for glycosylation analysis
Lectin microarray is an emerging and 
high-throughput method that has long 
been used to measure levels of gly-
cosylation in purified glycoproteins, 
serum, live cells, sperm, and various 
other tissue types (58-62). Lectin mi-
croarrays, which consist of nearly 100 
lectins, may be used to reliably identify 
specific binding glycans. Lectin micro-
arrays allow for fast and high-through-
put glycan profiling. Compared with the 
MS method, use of a lectin microarray 
does not require many specimens. Use 
of only a small amount of material (e.g. 
1 nanogram) allows for the reliable 
characterisation of lectin binding char-
acteristics (63, 64). Using the lectin mi-
croarray, Shinzaki (65) et al. confirmed 
that both Agaricus bisporus agglutinin 
(ABA) and Griffonia simplicifolia lec-
tin-II (GSL-II) preferentially recognise 
agalactosylation IgG. The binding af-
finity of each of these lectins for IgG is 
significantly elevated in Crohn disease 
(CD). Additional studies performed us-

ing the lectin-antibody enzyme immu-
noassay (EIA) confirmed that agalac-
tosylation IgG may be used as a serum 
marker for inflammatory bowel disease 
(IBD). Li et al. (62) showed that a two-
phase platform combining lectin micro-
array and lectin-based immunosorbent 
assays may be used to diagnose ag-
gressive prostate cancer or to measure 
glycosylation in tissue samples from 
patients with prostate cancer as well 
to diagnose aggressive prostate cancer. 
These results point to a role for the lec-
tin microarray in the analysis of specific 
binding between lectins and glycans 
and in the measurement of glycosyla-
tion. When used in combination with 
other techniques, the lectin microarray 
may be used to elucidate the pathogen-
esis and diagnosis of AIDs.

The role of glycosylation in AID
Aberrant glycosylation is an essential 
characteristic of immune disorders 
such as AIDs. The ability to delineate 
the glycosylation patterns of glycopro-
teins associated with AIDs may allow 
researchers to identify changes that are 
specific to disease onset and thereby 
improve efforts at disease management. 
Aberrant glycosylated MPO may react 
with antibodies in most patients diag-
nosed with anti-GBM disease without 
MPO-ANCA. These findings suggest 
that the abnormal glycosylation of MPO 
molecules may expose neoepitopes to 
the immune system (66). One previous 
study described decreased oxidation 
and a microbicidal effect of deglyco-
sylated MPO in ANCA-associated vas-
culitis, demonstrating the effects of gly-
coprotein glycosylation on inflamma-
tion and the autoimmune response (67). 
Studies of protein glycosylation have 
been identified as a potential tool for 
elucidating the pathogenesis of AIDs as 
well as the optimal approach to disease 
management. 

Disease pathogenesis
• Aberrant IgG glycosylation in AIDs
IgG galactosylation is decreased in RA 
(68-71). In patients with RA, levels 
of the agalactosyl glycoforms of IgG 
(IgG-G0) are increased and positively 
associated with levels of disease activ-
ity (70, 71). Levels of this glycoform 
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are increased in AIDs, SLE, SS, Wegen-
er’s granuloma (WG), and microscopic 
polyarteritis (MPA) (72-74). Studies 
in patients with RA have revealed a 
relationship between increased levels 
of IgG-G0 and decreased levels of ga-
lactosyltransferase (GTase) activity in 
B-cells (75). The resection of terminal 
galactoses of human IgG increases the 
uptake of soluble IgG, which is mediat-
ed by the mannose receptor on dendritic 
cells (DCs) and macrophages (76). This 
form of uptake may represent a pathway 
by which autoantibodies and ICs can 
be incorporated into macrophages and 
DCs, leading to the production of an-
tigen epitopes by T-cells (73). IgG-G0 
is structurally susceptible to insufficient 
numbers of sialic acid residues, which 
has a pro-immune effect in AIDs (77). 
Similarly, the IgG-G0 glycopattern re-
vealed that core-fucosylation levels 
of IgG were unaffected; however, in-
creased levels of core-fucosylation may 
enhance the effect of ADCC (78, 79). 

• Glycosylation of disease 
   biomarkers in AIDs
Recent studies have clarified the spe-
cific autoantigen reactivity of autoanti-
bodies produced by patients with AIDs, 
with implications for the diagnosis of 
disease. Magorivska compared the gly-
cans in native IgG between seropositive 
RA and seronegative RA using capil-
lary electrophoresis with laser-induced 
fluorescent detection (CE-LIF). The 
results obtained by the authors showed 
that the proportion of glycans differed 
between seropositive and seronegative 
RA because of the specific autoantibod-
ies present in patients with seropositive 
RA (80). Several studies also revealed 
that glycosylation of anti-citrullinated 
protein antibodies (ACPAs), an RA-
specific biomarker, has a critical effect 
on diseases onset (81, 82). ACPA-IgGs 
were isolated from RA patients by af-
finity purification using fast protein liq-
uid chromatography (FPLC). Structural 
analysis by MS showed that a high pro-
portion of ACPA IgG from RA patients 
could be distinguished by the presence 
of additional N-linked glycans in the 
variable domains. The presence of ad-
ditional N-linked glycans was caused 
by somatic hypermutation at the N-

linked glycosylation site, which facili-
tated binding between aberrant glycans 
and citrullinated antigens (81). This 
alternative advantage to ACPA-produc-
ing B-cells also suggests a pro-immune 
role for hyperglycosylated ACPA IgG 
molecules in RA.
Rombouts et al. also investigated ACPA 
glycosylation with affinity purification 
and cleavage of ACPA IgG from RA 
serum. Analysis of serum ACPA-IgG1 
levels before the onset of RA revealed 
decreased levels of galactosylation and 
increased levels of core fucosylation 
(82). The same changes were observed 
for ACPA in synovial fluid, indicating 
a strong IgG-G0 pattern (83). Although 
the biological processes involved in 
these results remain to be elucidated, 
they imply a relationship with bind-
ing to FcγR. The authors observed de-
creased binding affinity of ACPA for 
FcγRIIIa and FcγRIIb, compared with 
other activating receptors (e.g. high-
affinity FcγRI) (26, 84, 85). This find-
ing suggests that reduced affinity for 
FcγRIIIa and FcγRIIb may increase the 
effect of ACPA binding to FcγRI, fur-
ther enhancing pro-immune effects. In 
combination with a previously reported 
finding that IgG Fc glycosylation is reg-
ulated by various extracellular factors 
in vitro, this report of aberrant glyco-
sylation in ACPA-IgG1 highlights the 
crucial role of the microenvironment 
for IgG Fc glycosylation (86). 
Anti-histone antibodies have been re-
ported to be involved in the recruitment 
of polymorphonuclear cells (PMN) to 
destroy apoptotic cells. After the activa-
tion of phagocytes, autoantibody-load-
ed secondary necrotic cells (SNEC) 
trigger an immune response (87, 88). 
Anti-histone IgG in serum from SLE 
patients has high levels of asialylation 
and may thus be distinguished from 
total IgG from the same patients (89). 
The binding affinity of sialylated anti-
bodies for FcγRIIB is decreased (77). 
A lack of sialic acid residues in anti-
histone antibodies may alter the pat-
tern of binding to FcγR, resulting in a 
pro-inflammatory effect. The presence 
of asialylated anti-histone antibodies 
in SLE patients may be related to tis-
sue damage because of the targeting of 
SNEC towards PMN.

Another study was conducted to in-
vestigate the role of anti Jo-1 autoan-
tibody glycosylation in inflammatory 
myopathies (IIM) and anti-synthetase 
syndrome (ASS). Significant decreases 
in bisected, afucosylated, and galacto-
sylated glycopatterns were observed in 
anti Jo-1 IgG Fc samples from patients 
with ASS or IIM, compared with serum 
total IgG from the same patients (90). 
Although the particular mechanism un-
derlying aberrant glycosylation of dis-
ease-specific autoantibodies with AIDs 
in disease pathogenesis remains to be 
elucidated, it is certain that the glycan 
residues attached to the autoantibodies 
affect the affinity of autoantibodies, re-
action with FcγR, participation in com-
plement activation, and the secretion of 
cytokines (91). An overview of aber-
rant glycosylation in the pathogenesis 
of AIDs is given in Table I.

Disease activity
Researchers have proposed that ab-
normal glycosylation of autoantigen-
specific autoantibodies may play a role 
in the pathogenesis of AIDs. Elevated 
G0 IgG levels are a characteristic fea-
ture of RA and associated with disease 
activity (92-95). In addition, levels of 
serum total sialic acid (TSA) and free 
sialic acid (FSA) were increased in RA 
patients, compared with systemic scle-
rosis (SSc) patients, SLE patients, and 
heathy individuals; levels of TSA and 
FAS were positively correlated with 
the RA disease activity index (DAS28) 
(96). The pathogenic role of aberrant 
glycosylation in RA may be due to 
increased affinity for FcγR when IgG 
molecule terminals lack galactose resi-
dues and sialic acid residues (97, 98). 
Instead, the adherence of terminal sialic 
acid residues to IgG could reduce the 
affinity of autoantibodies to FcγRs and 
further enhance the anti-inflammatory 
effect of IgG-G0 (77, 99). 
Serum IgG4 concentration level is 
abnormally elevated in patients with 
IgG4-related disease (IgG4-RD). As 
one of the subtypes of IgG molecules, 
IgG4 was confirmed to has aberrant 
glycosylation in IgG4-RD. Naok et 
al. found that IgG4 G0 N-glycans and 
IgG4 fucosylated N-glycans in IgG4-
RD when compared with healthy con-
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trols, with IgG4 non-fucosylated N-
glycans decreased in those with hypoc-
omplementaemia (100). Subsequently, 
Emma et al. confirmed that IgG4 fuco-
sylation negatively correlated with C3 
and C4 levels in patients with IgG4-RD 
(101). These results indicated that IgG4 
fucosylation correlated with disease ac-
tivity according to alteration between 
complement-mediated and IgG FcγR-
mediated effector function (102).
Additional studies were conducted to 
investigate glycosylation in the con-
text of pregnancy-related RA. Results 
obtained by MS revealed significant 
differences between pregnant patients 
with RA and controls in levels of ga-
lactosylation and sialylation in the AC-
PA-IgG Fc domain. Furthermore, the 
increase in galactosylation observed in 
ACPA-IgG–positive patients was as-
sociated with lower levels of DAS28-
CRP (46). Interestingly, the association 
between galactosylation of the ACPA-
IgG Fc domain and disease activity in 
pregnant RA patients was limited to the 
Fc domain of ACPA-IgG. This trend 
was not observed in analysis of serum 
total IgG, IgA, or IgG Fab segments 
(46, 103, 104). One possible mecha-
nism for pregnancy-specific changes 
in ACPA-IgG glycosylation is that the 

increase in levels of estrogens decreas-
es aberrant glycosylation, especially 
aberrant galactosylation (105). Other 
important factors include the secretion 
of cytokines [e.g. interleukin (IL)-6] by 
immune cells which further promotes 
up-regulation of estrogens receptors 
and exerts a pro-inflammatory effect 
(106).
Another study showed that the sialyla-
tion level of anti-PR3 autoantibodies 
was significantly decreased in patients 
with active GPA and negatively cor-
related with the Birmingham vascu-
litis activity score (BVAS)(107). In 
one study that involved use of MS for 
structural analysis, purified IgG from 
active GPA was compared with puri-
fied IgG from non-active GPA and from 
control subjects. The results showed 
decreased levels of 2,6-linked sialylat-
ed N-glycans and increased levels of 
agalactosylated glycans in purified IgG 
from active GPA. This implied that the 
sialylation level of anti-PR3 antibodies 
may be used as a marker of disease ac-
tivity in GPA.
Binding to Aleuria aurantia lectin 
(AAL) and Lens culinaris agglutinin 
(LCA) was increased in the IgG com-
plexes of patients with SLE compared 
with healthy controls, and high AAL 

binding activity was related to the level 
of disease activity (48). IgG-capture 
lectin ELISA analysis revealed that the 
binding of immobilised IgG complexes 
to lectin involves the fucosylated resi-
dues attached to the IgG. High levels 
of AAL-fucosylated residue activity is 
positively associated with disease ac-
tivity and negatively associated with 
levels of circulating C3 in patients with 
SLE (48). Ahn reported that serum lev-
els of Mac-2-binding protein, which 
binds specifically to Wisteria floribun-
da agglutinin (WFA) and may be cap-
tured by with a WFA-positive-M2BP 
ELISA, reflect levels of disease activity 
in patients with SLE (108). These con-
clusions suggest that the glycosylation 
status of glycoproteins may be used as a 
marker of disease activity in AIDs.

Disease relapse
ANCA are pathogenic autoantibod-
ies found in patients with AAV, levels 
in serum appear to be associated with 
disease activity (109). However, this 
association is not clear enough to pre-
dict clinical outcomes and risk for dis-
ease relapse (110). GPA patients with 
low levels of total IgG1 galactosylation 
and sialylation were more likely to re-
lapse after an increase in ANCA levels. 

Table I. Aberrant glycosylation changes in the pathogenesis of AIDs.

Disease Aberrant glycosylation Reference

RA Decreased serum IgG galactosylation, increase in IgG G0  (68-71)
 Decreased ACPA-IgG galactosylation, increase in IgG G0 (81-83)
 increase in serum matrix metalloproteinase-3 α-2,6-sialylation (127)
 Increased in acute-phase proteins galactosylation and fucosylation  (36-38)
  
SLE Increased CD4+ T cells core fucosylation (128)
 Decreased serum IgG sialylation (74, 89, 96)
 Decreased serum IgG galactosylation and core fucosylation, increased bisecting N-acetylglucosamine structure (74)
 Increase in Aleuria aurantia lectin- and Lens culinaris agglutinin reactive glycans in serum IgG (48)
 Increased alpha 2-macroglobulin galactosylation  (41)
  
AAV Decreased serum IgG galactosylation and increase in IgG G0 (73, 110, 129, 130)
 Decreased anti-PR3 ANCA galactosylation, sialylation and bisection (107, 110)
  
pSS Decrease in the extended core 2 disialylated structure and fucosylated core 2 disialylated structure in mucins MUC7  (44)
 Decreased mucin sialylation in saliva (131)
 Increased numerous salivary glycoproteins N-glycosylation (132)
 Increased both IgA1 Fc- and Fab-sialylation  (133)
  
IIM Increase in pro-inflammation associated IgG Fc-glycans, decrease in bisected, afucosylated and galactosylated 
 anti-Jo1 antibody  (90)
 Increase in core-fucosylated agalactosyl glycans (134)
  
IgG4-RD Decreased IgG-Fc galactosylation, increased IgG Fab sialylation and IgG4 fucosylation (101)
 Increase in IgG4 G0 N-glycan and IgG4 fucosylated N-glycan, decreased levels of IgG4 F0 glycan in IgG4-RD 
 with hypocomplementaemia. (100)
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Compared with non-relapsing patients, 
relapsing patients showed high levels of 
fucosylation and changes in total IgG1, 
including decreases in galactosylation, 
sialylation, and bisected structures. 
Levels of PR3-ANCA IgG1 did not dif-
fer between relapsing and non-relapsing 
GPA patients; both groups had decreas-
es in the galactosylation, sialylation, 
and fucosylation of PR3-ANCA IgG1 
(110). Further research will be neces-
sary to explore the relationship between 
the glycosylation state of disease-spe-
cific autoantibodies and disease relapse 
in patients with AIDs.

Disease therapy
An effective anti-inflammatory thera-
peutic is required to slow the progress 
of inflammation. Biologic therapies, 
especially anti-tumor necrosis fac-
tor (TNF)-α therapy, have been used 
widely in the treatment of AID. When 
combined with chemically synthe-
sised disease-modifying anti-rheumatic 
drugs (DMARDs) in the treatment of 
AIDs (mainly SLE and RA), TNF an-
tagonists may suppress binding to the 
TNF-α receptor, which blocks the cell 
signalling mediated by these patho-
genic cytokines and improves the se-
cretion of anti-inflammatory factors 
(111, 112). Anti-TNF-α treatment may 
also reduce IgG-G0/G1 levels to nor-
mal range (113-117). Effective biologic 
treatment for RA is also associated with 
decreased levels of sialylated trianten-
nary glycans and increased levels of 
core-fucosylated biantennary galacto-
sylated glycans (114).
The pro- and anti-inflammatory effector 
functions of IgG are mediated by dif-
ferent subclasses of IgG molecules and 
various patterns of Fc glycosylation. 
IVIG (pooled human serum IgG from 
healthy donors) is widely used in the 
treatment of AIDs and inflammatory 
diseases (77, 118, 119). Sialylated IgG 
has an anti-inflammatory effect on the 
immune response in humans. Because 
of the sialylation of IVIG, high doses 
(2 g/kg) may be used to treat patients 
with AIDs (77, 118, 119). Research in 
a mouse model showed that sialylated 
IVIG binds to specific ICAM-3 grab-
bing non-integrin-related 1 (SIGN-R1), 
a C-type lectin receptor on marginal-

zone macrophages, to attenuate the 
onset of arthritis (120). This binding 
activity leads to an anti-inflammatory 
microenvironment and up-regulates 
the expression of inhibitory FcγR (es-
pecially FcγRIIB) on functional mac-
rophages. Furthermore, sialylated IVIG 
inhibits dendritic cell (DC) maturation 
through an FcγRIIB signalling pathway 
(121-124). ICs containing sialylated an-
tigen-specific IgG antibodies limit the 
production of IL-6 induced by lipopoly-
saccharide (LPS) in DCs in vitro (121). 
Finally, endogenous sialylated IgG 
molecules exhibit decreased disease ac-
tivity in mouse models of nephritis and 
arthritis. The underlying mechanism is 
thought to be similar to that responsible 
for the effects of IVIG (125). 
Researchers have also studied the effect 
of low levels of sialylated autoantigen-
reactive IgG antibodies on inflamma-
tion in mouse models (126). One study 
showed that treatment with sialylated 
autoantigen-reactive IgG antibodies 
did not induce inflammation or lupus 
nephritis in a mouse model of lupus. 
However, treatment with sialylated 
autoantigen-reactive IgG antibodies 
decreased the magnitude of pathogenic 
Th1, Th17, and B-cell responses. None-
theless, treatment with these antibodies 
may alleviate disease symptoms and 
reduce the number of pathogenic Th17 
cells and autoantigen-specific IgG an-
tibodies (126). Indeed, the sialylation 
of pathogenic antibodies could effec-
tively attenuate inflammation in vivo. 
Researchers have designed solubilised 
glycosyltransferases that attach sialic 
acid to autoantibodies (125). The results 
obtained in subsequent experiments 
suggest that sialylated autoantigen-
reactive IgG antibodies may attenuate 
pathogenic T- and B-cell-induced im-
mune responses in patients with AIDs.

Concluding remarks 
and future prospects
As an effective mediator of AID, meas-
urements of protein glycosylation may 
be used to elucidate pathogenesis, di-
agnose disease, manage disease activ-
ity, and effectively treat patients with 
AIDs. The occurrence and develop-
ment of AIDs is accompanied by the 
aberrant glycosylation of glycoproteins 

in the immune system. Emerging ex-
perimental methods, which may benefit 
from the rapid development of detec-
tion technology, are currently used to 
analyse the glycosylation status of gly-
coproteins and the structure of glycans. 
Increasing numbers of clinical studies 
have reported the effector function of 
glycosylation in AIDs. High-through-
put experimental techniques such as 
lectin microarray can quickly screen for 
glycans that bind specifically to lectin 
in specimens from human individuals. 
This implies that lectin microarray may 
play a potential role in individualised 
therapy for AIDs.
Therapeutic strategies for glycosyla-
tion seem to be a hot issue. Booming 
knowledge of how Fc glycans conform 
to IgG structure and effector functions 
has opened up a new field for the thera-
peutic development of defined antibody 
glycopatterns in the treatment of AIDs. 
The crucial role of Ig glycosylation in 
the effector function of autoantigen-
reactive IgG antibodies may now be 
considered a remarkable target for the 
development of new AIDs therapeutics.
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