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ABSTRACT
In the most recent years, an extraor-
dinary research effort has emerged to 
disentangle osteoarthritis heterogene-
ity, opening new avenues for progress-
ing with therapeutic development and 
unravelling the pathogenesis of this 
complex condition. Several phenotypes 
and endotypes have been proposed al-
beit none has been sufficiently validated 
for clinical or research use as yet. This 
review discusses the latest advances 
in OA phenotyping including how new 
modern statistical strategies based on 
machine learning and big data can help 
advance this field of research.

Introduction
Osteoarthritis (OA) is among the most 
prevalent and debilitating chronic dis-
eases worldwide, affecting predomi-
nantly older adults (1, 2). There has 
been significant effort to develop ther-
apies to improve care for OA patients 
both from the symptomatic perspective 
and from the point of view of structure 
modification. Despite that, no therapies 
have been proven to modify disease 
progression or proven to be highly ef-
fective for symptomatic relief, other 
than joint replacement for advanced 
disease, leading to profound disap-
pointment among researchers, patients 
and clinicians.
The contemporaneous evidence-based 
management of OA is based on non-
pharmacological and pharmacological 
therapies, with surgical intervention re-
served for patients with severe disabling 
symptoms who have not improved with 
non-surgical interventions (3). Howev-
er, despite numerous treatment options 
being available, outcomes for patients 
with OA are usually suboptimal and pa-
tients remain vulnerable to the clinical 
consequences of the disease on pain and 
physical function (4). An important as-
pect of OA is its extraordinary interpa-
tient variability in clinical and structural 

manifestations (5, 6). This heterogene-
ity may be one of the major factors as-
sociated with the complexity of OA and 
with the difficulties to identify one-size.
fits-all therapeutic strategies.
Major advances in the physiopathol-
ogy and manifestations of OA have 
occurred in the last decade, revealing 
the variety of potential molecular and 
cellular changes that can be involved in 
the joint destruction process. It has been 
demonstrated that all joint tissues can 
be affected (7), which occurs in differ-
ent extents across patients and results 
in an array of possible structural OA 
manifestations (e.g. variable degrees of 
inflammation, meniscal lesions, bone 
damage, etc.). In addition, the pain 
experience can be caused by different 
factors including the peripheral joint 
pathology and extra-articular sources 
of pain such as psychosocial factors and 
neural mechanisms (8). New therapies 
have been developed that target pain 
but not structure including inhibitors 
of nerve growth factor (NGF) such as 
the anti-NGF monoclonal antibody tan-
ezumab (9, 10). Interventions targeting 
many of these structural pathologies 
and pain mechanisms have been tested 
in trials but none to date have been ap-
proved as structural or disease modify-
ing therapies. 
One reason for the failure of clinical 
trials testing therapeutics intended for 
structure modification in OA is that it 
is unclear at present which patients 
would be most suitable for a specific 
therapy. For example, the failure of bi-
sphosphonates to slow OA progression 
might have been due to enrolling any 
patient with symptomatic OA rather 
than selecting patients with greater sub-
chondral bone turnover (11). In order to 
address the heterogeneity of OA to im-
prove clinical research and trials, a new 
model of understanding OA based on a 
phenotype-guided approach is needed. 
Recently, a significant research effort 
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has emerged aimed to define a classi-
fication of OA phenotypes for the pur-
pose of better identifying individuals at 
higher risk of progression and to better 
delineate OA subpopulations caused by 
distinct risk factors and disease mecha-
nisms that would be suitable for target-
ed treatment and prevention strategies.
Other medical fields are more advanced 
than OA when it comes to disease 
phenotyping such as chronic obstruc-
tive pulmonary disease (12) and heart 
failure (13). A classification of pheno-
types has been achieved in these fields, 
defining disease subtypes within the 
spectrum of the condition. In this re-
gard, such classifications are only rel-
evant and clinically useful if they can 
inform on differences in underlying 
pathophysiology, clinical outcomes or 
management. For example, heart fail-
ure is recognised as being divided into 
two main types according to a patient’s 
left ventricle ejection fraction (i.e. per-
centage of blood that comes out of the 
heart with each contraction), which can 
be reduced or preserved and is associ-
ated with differences in systemic and 
local mechanisms, risk factors, natural 
history and treatment options (14). An-
other example is the field of oncology. 
Diseases such as breast cancer used to 
be seen as the same condition across 
different patient groups. It is now 
known that breast cancer is a heteroge-
neous condition with varied molecular 
pathophysiology, such as the presence/
absence of biomarkers including hor-
mone-receptors and the HER2 protein 
(15). Patients are now treated and have 
their prognosis estimated according to 
these biomarkers which delineate dis-
ease subtypes with particular behaviors. 
In knee OA, for example, clinically 
distinct subtypes exist such as medial 
and lateral tibiofemoral OA and patel-
lofemoral knee OA, and potentially 
many others. However, the understand-
ing of how this affects treatment deci-
sions and prevention strategies is still 
in its infancy. Identifying specific OA 
phenotypes and endotypes can inform 
both prognosis and guide therapeutic 
development for this prevalent disease, 
with the potential of positively impact-
ing patient care. This review summaris-
es the latest progress on phenotyping/

endotyping OA research and includes a 
discussion on novel methodologies for 
phenotyping based on machine learning 
and big data.

Approaches for OA phenotyping 
A phenotype can be understood as the 
composite observable characteristics of 
an individual that result from genetic 
combined with environmental factors. 
Subgroups of patients that have simi-
lar clinically observable characteristics 
are considered to represent a pheno-
type. Division of patients into discrete 
subgroups or subtypes is sometimes 
referred to as stratification. Prognos-
tic phenotyping is the identification of 
subgroups that are more likely, within a 
specified period of time, to reach a spe-
cific outcome of interest (e.g. disease 
progression defined by deterioration in 
joint structural features and worsening 
pain) (Fig. 1). Prescriptive phenotyping 
aims to define subgroups more likely 
to respond to a specific intervention 
with an outcome of interest (e.g. im-
proved pain or function). Identifying 
subgroups by prognostic and prescrip-
tive phenotyping (e.g. using prediction 
models) is necessary to meet the goals 
of precision medicine, defined as “treat-
ments targeted to the needs of indi-
vidual patients on the basis of genetic, 
biomarker, phenotypic, or psychosocial 
characteristics that distinguish a given 
patient from other patients with similar 
clinical presentations” (16).
Another concept that has emerged from 
phenotyping studies in chronic condi-
tions such as asthma is the term “endo-
type” (17). Unlike phenotypes, which 
are based on clinical characteristics that 
are not necessarily connected to an es-
tablished pathophysiologic mechanism 
of disease, an endotype “is a subtype of 
disease defined functionally and patho-
logically by a molecular mechanism” 
(17). It is important to note that a given 
OA phenotype (e.g. medial tibiofemo-
ral OA) may be common to multiple 
endotypes (i.e. different mechanisms 
leading to the same manifestation). The 
importance of identifying endotypes 
for targeted treatment has gained much 
attention particularly from the point of 
view of drug discovery, where identify-
ing the right target is key for success.

How to best subset OA into phenotypes 
and endotypes and whether certain 
subsets are of any clinical value is an 
important issue that has not yet been 
fully addressed but is under active in-
vestigation. A commentary was written 
in 2009 (18) by three notable figures in 
OA research in response to an article 
suggesting that “primary” or idiopathic 
OA could be divided into subsets con-
sisting of genetic defects, menopause-
associated estrogen deficiency, and ag-
ing (19). The authors of the commen-
tary, Ken Brandt, Paul Dieppe, and Eric 
Radin, eloquently argued that dividing 
OA into primary and secondary subsets 
is not useful since “all OA is second-
ary” and that any attempt to subset OA 
had to take into account the fact that OA 
is largely a condition driven by the re-
sponse to mechanical stress on the joint. 
They suggested that subsetting OA 
should be done on the basis of the me-
chanical abnormalities responsible for 
OA in a group of individuals that could 
include joint trauma, neuromuscular 
factors that affect the ability to absorb 
loading, congenital or developmental 
anatomic abnormalities causing joint 
incongruities or postinfectious. They 
also noted that it will be important to 
consider the large number of confound-
ing variables involved.
Like other chronic heterogeneous con-
ditions, there are multiple genetic and 
environmental factors that increase the 
risk of developing the joint changes 
characteristic of OA, clinical manifes-
tations of pain and loss of function, 
and progression to end-stage disease 
(20, 21). There is a critical need to ac-
curately define the various factors that 
could contribute to phenotypes and 
subgroups of OA from a large num-
ber of potentially important variables 
(Fig. 2).  It is becoming clear that sim-
ply defining OA phenotypes based on 
risk factors (for example posttraumatic 
OA, obesity-related OA, age-related 
OA, postmenopausal OA, genetic OA, 
mechanical OA) is far too simplistic. 
Many individuals have more than one 
risk factor and, as already noted in the 
case of mechanics, there are shared 
mechanisms among risk factors with 
mechanical factors likely contributing 
to all OA. For phenotyping to be suc-
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cessful, datasets with a diverse set of 
variables and well-defined outcomes 
are needed. This may include various 
socio-demographic factors and clini-
cal, imaging, and biochemical marker 
measurements in addition to mechani-
cal measures. In some cases, genetic 
and “omic” data (transcriptomic, prot-
eomic, metabolomic, microbiomic), or 
data from histologic analysis of tissue 
samples may be needed that will allow 
for more precise phenotyping.
Various types of analysis can be used 
to define phenotypes using clinical and 
biological data, which are discussed 
below in the “Big data/ machine learn-
ing for OA phenotyping” section. La-
tent class analysis was used to cluster 
clinical and imaging data from the Os-
teoarthritis Initiative (OAI) database 
and four clusters were identified that 
represented mild OA, mild OA with 
areas of denuded bone that the authors 
called “classical OA”, and two severe 

OA groups of “aggressive OA” with 
larger areas of denuded bone and a high 
prevalence of progression with one of 
the two latter groups exhibiting more 
lateral involvement (22). Variables that 
were significantly different among clus-
ters included BMI, alignment, and his-
tory of trauma which again emphasises 
the importance of mechanics in OA.
A recent systematic review of OA 
phenotypes published in 2016 exam-
ined the current evidence for groups 
of variables that would distinguish OA 
phenotypes (23). This review identi-
fied six phenotypes from 24 published 
studies that included: 1) chronic pain 
phenotype with central sensitisation; 
2) inflammatory phenotype; 3) meta-
bolic syndrome phenotype; 4) bone 
and cartilage metabolism phenotype; 
5) mechanical (malalignment) pheno-
type; and 6) minimal joint disease phe-
notype. It is not clear how meaningful 
these phenotypes might be clinically 

or if they could be used for attempts at 
stratifying patients for clinical trials. A 
“metabolic syndrome phenotype” may 
simply represent individuals with obe-
sity and OA. The association between 
metabolic syndrome and OA has not 
been well established and, after control-
ling for BMI, the correlations between 
OA and features of the metabolic syn-
drome are not significant (24). As men-
tioned above, all OA has a mechanical 
component and so it is unlikely to rep-
resent a distinct phenotype and all OA 
has involvement of bone and cartilage 
also making it unlikely to represent a 
distinct phenotype.
There has been much interest in defin-
ing an inflammatory phenotype or en-
dotype in OA as well as a bone pheno-
type. Methodologies that can be used to 
better define an inflammatory pheno-
type include imaging (e.g. ultrasound 
or MRI) to detect synovitis (25, 26), 
blood levels of high sensitivity CRP 
and IL-6 (27-29), soluble macrophage 
markers (CD14 and CD163 in the syn-
ovial fluid and CD163 in serum) (30) 
and transcriptome data from peripheral 
blood leukocytes (31). Defining a bone 
phenotype would likely include imag-
ing of osteophytes and subchondral 
sclerosis using radiographs and bone 
marrow lesions detected by MRI. How-
ever, since these are common features 
of OA, it is difficult to envision how 
they would define a distinct bone phe-
notype. Biomarkers of bone turnover 
such as urinary CTX-1, urinary NTX-
1, serum PINP, and serum osteocalcin 
could be used to provide additional data 
on bone turnover (32, 33). Attempts to 
utilise inflammatory and bone pheno-
types for targeted therapy, as well as the 
use of additional biomarkers, will be 
discussed below.  

Current state of OA phenotyping
Endotypes/mechanistic subgroups
As discussed above, endotypes are 
disease subtypes resulting from dif-
ferences in specific pathobiological 
mechanisms. Research so far has sug-
gested the existence of a few possible 
endotypes that will be discussed in this 
review. However, there may be many 
others that are not included herewith. In 
this regard, pre-clinical studies are key 

Fig. 1. Examples of different types of phenotypes and endotypes and their potential uses.

Fig. 2. Factors and manifestations that could contribute to OA phenotypes/subgroups.
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to understand how different etiologies 
such as post-traumatic and age-related 
OA may be associated with differences 
in disease pathophysiology and expres-
sion.
A structural endotype related to ageing 
or cell senescence has been suggested 
by a few studies, primarily in pre-clin-
ical models (34, 35). Not only greater 
OA severity but differences in gene 
expression and pathways represented 
by these genes have been observed in 
older mice compared to younger mice 
in an injury-induced OA model (36), 
suggesting that the same OA model 
may result in different phenotypes de-
pending on age. Defining a senescence 
endotype in human OA may be impor-
tant as drugs for treatment of OA called 
senolytics are being developed that tar-
get and kill senescent cells in the joint 
(37). 
There is an active interest in defining 
an inflammatory endotype that would 
have a shared mechanism related to a 
specific cytokine that could be target-
ed for therapy. Given the role for cy-
tokines in OA this could be of value in 
advancing OA treatment as well. Sup-
porting the existence of an endotype 
with increased inflammatory charac-
teristics, Attur et al. showed the ex-
istence of two subgroups of knee OA 
patients with different gene expression 
profiles in peripheral blood leukocytes. 
In this study, clinical and structural 
outcomes were worse in the subgroup 
with higher production of IL-1β com-
pared to the subgroup with lower lev-
els (31). However, whether targeting 
specific anti-cytokine therapies to an 
inflammatory OA phenotype would 
be useful remains unproven. A recent 
phase 2 trial of an anti-IL1α/β antibody 
lutikizumab in patients with knee OA 
and synovitis detected by MRI showed 
limited improvement in pain scores 
and no change in synovitis in the treat-
ed group compared to placebo controls 
(38). This does not necessarily mean 
that targeting the inflammatory pheno-
type will not be successful but rather 
that inhibition of IL-1 may not be the 
right target. Other potential endotypes 
include ones associated with metabolic 
factors (39, 40) and hormonal dysregu-
lation (41, 42). 

Pain endotypes have also been inves-
tigated. Individuals with or at risk of 
knee OA who displayed greater features 
of sensitisation such as pressure pain 
sensitivity and temporal summation 
experienced worse clinical outcomes 
in cross-sectional studies (43-45) and 
were more likely to develop incident 
persistent pain after two years in a re-
cent longitudinal analysis (46, 47). 
Presence of psychological character-
istics such as pain catastrophising has 
additionally been shown to negatively 
influence pain outcomes (48). Identify-
ing individuals with those characteris-
tics and tailoring pain therapies to each 
patient’s needs may be vital to achieve 
better clinical outcomes.

Prognostic subgroups
Heterogeneity in long-term OA out-
comes has been highlighted by a num-
ber of recent studies using trajectory 
analysis. This statistical methodology 
uses a data-driven approach to iden-
tify clusters of people following dif-
ferent trajectories in a given outcome 
over time. Using trajectory analysis, we 
have recently shown that a minority of 
knee OA individuals (around 1 in 10) 
experience medial cartilage thickness 
loss assessed on MRI over 2 years (49), 
which is consistent with other studies 
using radiographs for outcome assess-
ment (50, 51). This subgroup had great-
er odds of experiencing concurrent pain 
progression and requiring total knee re-
placement. Importantly, this subgroup 
could be identified with relatively good 
accuracy by a set of baseline clinical 
and disease characteristics. Other stud-
ies have also defined prediction models 
to identify knee OA progression (52-
54) and incident knee OA with fast 
progression (55); however, there were 
different definitions of progression in 
these studies, such as an increase in 
Kellgren Lawrence grade (KLG) (52) 
and a reduction in medial joint space 
on radiographs (54). It should be high-
lighted that prediction models in most 
of these studies used characteristics that 
can be easily obtained through the clini-
cal history, physical examination or ra-
diographic assessment to facilitate their 
use in clinical practice or research using 
clinical datasets. 

Other subgroups have been defined ac-
cording to trajectories of clinical pro-
gression (56-59). Clear differences in 
prognosis have been shown, with the 
majority of individuals following a 
stable course over several years with 
mild to moderate symptoms, while oth-
ers experience a more severe disease 
course with persistent intense pain and 
disability or significant decline over a 
few years. We have previously summa-
rised these studies as well as the base-
line characteristics that more frequent-
ly predicted worse trajectory outcomes 
(60). These included high BMI, lower 
education, more severe symptoms and 
radiographic disease at baseline, psy-
chological factors (use of passive cop-
ing strategies and depression) and pres-
ence of other comorbidities including 
concomitant hip pain (60). 
Defining individuals most likely to de-
velop OA and the subgroup of individu-
als with OA most likely to exhibit struc-
tural progression within a selected time 
frame (rapid progressors) for both obser-
vational studies and clinical trials is ex-
tremely important. Latent class analysis 
of MRI variables collected at baseline 
from individuals without radiographic 
OA in the Multicenter Osteoarthritis 
Study, including cartilage damage, bone 
marrow lesions, meniscal tears, menis-
cal extrusion, synovitis, and effusion, 
was used to determine the odds of de-
veloping incident radiographic OA in 4 
subgroups (61). As might be expected, 
those in the subgroups with more severe 
lesions were at greater risk than those 
with mild lesions. Radiographic criteria 
for progressor versus non-progressors 
by measurement of change in joint 
space width on plain films includes the 
OARSI-OMERACT criteria (62). These 
criteria were used to select progressors 
and non-progressors for a urine me-
tabolomics study of participants in the 
Intensive Diet and Exercise for Arthritis 
(IDEA) trial that analysed the metabo-
lomics data using OPLS-DA, a com-
monly employed method for analysis 
of such high dimensional multicolline-
ar data (63). OPLS-DA distinguished 
the metabolite profile of radiographic 
progressors from non-progressors and 
found a panel of metabolites that associ-
ated with radiographic progression (63). 
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Biochemical markers, measured in se-
rum, plasma, urine or synovial fluid, 
represent measures that can provide im-
portant information for phenotyping. To 
date no single marker has been found to 
be sufficient for diagnosis or prognosis 
in OA. A study from the Foundation 
for the NIH (FNIH) OA biomarkers 
Consortium, examined 18 biomarkers 
measured at baseline, 12 and 24 months 
in 194 participants from the OAI study 
(64). Eight catabolic biomarkers (urine 
(u) c-terminal crosslinked telopeptide 
type II collagen (uCTXII), uC2C-Hu-
man Urine Sandwich Assay (HUSA), 
type I collagen cross-linked N-telopep-
tide (uNTXI), c-terminal crosslinked 
telopeptide of type I collagen α and β 
(uCTX1α and uCTXIβ, respectively), 
serum (s) hyaluronic acid (sHA) and 
c-terminal crosslinked telopeptide type 
II collagen (sCTXI)) and one anabolic 
marker, N-terminal pro-peptide of col-
lagen IIA (sPIIANP), were shown to 
be the best predictors of pain and ra-
diographic progression over 48 months. 
These and newer biomarkers under 
development may be useful to define 
phenotypes most likely when used in 
combination with other data such as 
imaging and clinical data.

Treatment response subgroups / 
prescriptive phenotyping
There is an increasing understanding 
and awareness that optimal effects of 
OA treatments might be attained by 
personalising care according to clini-
cally relevant characteristics, which is 
a goal of precision medicine. Clinical 
trials can be used to investigate varia-
tions in the extent patients improve or 
fail to improve with a given treatment, 
while observational studies cannot dif-
ferentiate the effect of the interven-
tion from the disease natural history 
without an appropriate control. Most 
analyses investigating subgroup ef-
fects of interventions in OA have been 
post-hoc and exploratory. For exam-
ple, there is a great interest to identify 
subgroups of patients in whom biome-
chanical interventions may be more ef-
fective, which has been highlighted as 
a research priority by the National In-
stitute for Health Care and Excellence 
(65). It has been shown, in an under-

powered analysis from a clinical trial, 
that unloading shoes alleviate knee 
pain in a significantly greater extent 
in patients with more severe structural 
disease (KLG 3 or 4) than those with 
milder disease (KLG 2) compared to 
conventional shoes, and that this may 
be mediated by a decrease in peak knee 
adduction moment (66). Baseline dis-
ease severity, represented by higher 
baseline knee pain scores (at least 70 in 
a 0–100 scale), was also significantly 
associated with a greater response to 
intra-articular glucocorticoid injection 
after up to 4 weeks compared to pla-
cebo injection (67).
There is also interest in determining 
if a bone phenotype exists in OA that 
might be responsive to agents that act 
on bone such as the antiresorptive bi-
sphosphonates. Selecting OA patients 
with bone marrow lesions in a clinical 
trial of the bisphosphonate zoledronic 
acid resulted in reduction in pain and 
the size of the bone marrow lesions in 
the treatment group compared to the 
placebo group over 6 months but not 
over 3 or 12 months (68). An individual 
patient data meta-analysis is underway 
to investigate whether particular patient 
subgroups are more likely to benefit 
from bisphosphonates than others (69).
Trajectory analysis has been used to 
investigate heterogeneous response fol-
lowing exposure to interventions (70). 
Lee et al. found four patterns of response 
to exercise over 12 weeks among knee 
OA patients, with over 70% of patients 
displaying early improvement while a 
minority experienced delayed improve-
ment (15%) or no improvement (10%). 
Individuals with poorer physical and 
psychosocial status at baseline were 
more likely to follow an unfavourable 
trajectory. These findings highlight that 
early treatment is vital to reduce pain 
and disability and suggest that ap-
propriate patient stratification may be 
needed to triage patients according to 
their likelihood of improvement with 
a given intervention. In other words, 
it would be helpful for clinicians to be 
able to differentiate patients who are 
likely to improve with safer and cheap-
er interventions, such as exercise and 
diet, from those who may need addi-
tional interventions (likely more com-

plex and expensive) or a higher level 
of care. Currently, new OA models of 
care, characterised by a multi-discipli-
nary and holistic approach to personal-
ise the therapeutic plan, have been im-
plemented in several countries (71). At 
present, a decision support tool to iden-
tify persons with OA who would benefit 
the most from those programmes and 
who would be best targeted by specific 
interventions is lacking.
Prescriptive phenotyping can also be 
used to identify individuals more likely 
to experience serious side effects from 
interventions. A subgroup of patients 
receiving anti-NGF experience more 
rapid progression of their structural 
changes which is a serious concern that 
could limit its use unless those at higher 
risk of this adverse effect can be iden-
tified before treatment is initiated (72). 
A recent exploratory study attempted 
to do just that using a panel of serum 
biomarkers in an attempt to phenotype 
participants in the tanezumab trials who 
were most at risk of developing a rap-
idly progressive OA phenotype (73).

Big data / machine learning 
for OA phenotyping
Data sets in medicine are becoming 
ever larger, and in order to utilise these 
vast amounts of data, researchers need 
to look beyond traditional statistical 
methodology. Enter machine learning, 
where a computer learns from a variety 
of examples, eventually “learning” to 
classify new information based on these 
inputs (74). There are many names for 
machine learning methodologies, in-
cluding artificial intelligence, artificial 
neural networks, deep learning, support 
vector machines, decision trees, etc. 
Machine learning algorithms can be su-
pervised, unsupervised, or somewhere 
in between. 
Only recently have these methodolo-
gies begun to impact the world of OA 
research (75). A variety of machine 
learning methodologies initially utilised 
primarily for image analysis in OA (76-
78), are being increasingly applied to 
large datasets, often including detailed 
imaging, biochemical biomarker, and 
genetic/genomic information, for the 
purpose of identifying important OA 
subgroups (79-82). Of course, no meth-
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od is a panacea, and analysis of large 
datasets can also generate seemingly 
meaningful results which are, in fact, 
spurious artifacts. As datasets become 
ever larger, and incorporate more com-
plex objects, it becomes increasingly 
important to link confirmatory analysis 
with the scientific discovery process, 
while incorporating study design and 
subject area expertise.

Unsupervised learning
There are many alternative approaches 
to the validation and discovery of novel 
phenotypes (e.g. latent class methods, 
Bayesian approaches, factor analysis, 
etc.). A variety of tools are available 
for exploring clusters within data, all 
of which have positive and negative 
aspects, particularly in the high dimen-
sion and relatively low sample size set-
ting (83). For example, cluster analy-
sis (i.e. data segmentation) attempts 
to group items into clusters, such that 
items within a cluster are more closely 
related than those in different clusters. 
Once identified, these clusters are fre-
quently arranged into a hierarchy to 
represent similarity among clusters. 
Principal components analysis and 
related methods attempt to reduce di-
mensionality in a dataset, thus provid-
ing more interpretable clusters, similar 
to the goals of latent class analysis (a 
subset of structural equation model-
ling) and factor analysis. Regardless of 
methods used, clusters can be readily 
identified in large datasets; the central 
challenge is to determine whether iden-
tified clusters are actually important in 
such unsupervised analyses. SigClust is 
an example of a novel method for hy-
pothesis testing of clusters in high di-
mensions (84, 85), which can be used in 
conjunction with subject area expertise 
to determine whether identified clusters 
are likely important.

Supervised learning
In contrast to data-driven clustering, su-
pervised machine learning methods are 
based in hypotheses, but take advantage 
of the computer’s ability to utilise high 
dimensional data, beyond what is of-
ten possible using traditional statistical 
methods. One approach, described by 
Marron et al., is Object Oriented Data 

Analysis (OODA (86, 87)). OODA at-
tempts to understand the data structure, 
determine appropriate data objects, 
and choose an appropriate analysis 
for the situation. Whereas in a typical 
analysis, the experimental unit may 
be a number or a set of numbers (i.e. 
a vector), OODA allows assessment of 
more complicated data objects, such as 
images or large multivariable datasets 
with repeated observations. Through 
consideration of all of the variables re-
lated to a given observation as a single 
data object, potential biases related to 
variable selection are alleviated, while 
providing a more complete picture us-
ing all available data. 
Some of the OODA methods devel-
oped by Marron and colleagues include 
Distance Weighted Discrimination 
(DWD) and the Direction-Projection-
Permutation (DiProPerm) test, which 
can be utilised in the setting where the 
classes are known, for example when 
validating previously hypothesised 
phenotypes, or comparing progressors 
and non-progressors. DWD is a linear 
discriminant analysis method allow-
ing maximal separation of data points 
by class (88), which has been utilised 
in OA (78, 81), and is particularly 
suited to cases where the dimension of 
the data vector exceeds the number of 
samples (i.e. a large number of meas-
urements relative to the sample size). 
The difference between two distribu-
tions obtained using DWD can then be 
tested for statistical significance using 
the DiProPerm test (89). DiProPerm 
ensures statistical specificity of the hy-
pothesis test for two previously defined 
populations by first finding a separat-
ing direction (e.g. DWD), then project-
ing the data and using a one dimen-
sional summary of the separation (e.g. 
the difference of the means. Statistical 
significance is obtained by a permuta-
tion approach, where the class labels 
are randomly shuffled and the DWD 
direction and projections are recom-
puted, giving a null distribution whose 
quantiles are used to compute p-values. 
This powerful machine learning meth-
od treats the overall vector of features 
as a single data object, so there is no 
requirement for adjustment for multi-
ple comparisons.

Examples of applied machine 
learning in OA
Our group has applied DWD and 
DiProPerm to the publicly available 
OA Initiative FNIH Biomarkers Con-
sortium dataset to assess differences 
between non-progressors and progres-
sors by both radiographic (rKOA) 
and pain criteria (81). We found that, 
among 597 observations and 73 vari-
ables, the grouped baseline MRI vari-
ables contributed more (z score range 
10.28–11.62) to the difference between 
progressors and non-progressors than 
did demographic and clinical variables 
(z score =1.47) or biochemical mark-
ers (z score =2.43). In addition, specific 
baseline variables (Western Ontario and 
McMaster Universities Osteoarthritis 
Index [WOMAC] pain, sPIIANP, and 
lateral meniscal extrusion) were higher 
among non-progressors, while uCTX-
II, bone marrow lesions, and osteophyte 
number were higher among progres-
sors; features that might inform pheno-
types. In support of the validity of our 
methods, the published FNIH biomark-
ers study (64) also found sPIIANP was 
higher in non-progressors and uCTX-II 
was the strongest biomarker predictor 
of progression in the same dataset. The 
consistency of the results is reassuring, 
but notably, we were able to identify 
all of these associations in a single ma-
chine learning based analysis, rather 
than numerous studies focused on one 
or only a few features.

Strengths and limitations
Machine learning methodologies pro-
vide several advantages, including the 
ability to treat all available data as a 
single data object in high dimensional 
space, thereby obviating the need to ad-
just for multiple comparisons in some 
cases. All variables, even when there 
are hundreds or thousands of variables, 
can be considered together, reducing 
bias related to variable selection. A sin-
gle analytic model can simultaneously 
identify a number of key variables or 
contributors to outcomes of interest. 
Limitations include the inherent limi-
tations of the dataset (the analysis is 
limited to what is available), issues of 
generalisability, which requires both in-
ternal and external validation, and the 
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need for further analyses to determine 
the importance of the associated vari-
ables. These approaches, as currently 
described, are akin to genome-wide 
association study (GWAS) in that they 
provide several variables (i.e. single-
nucleotide polymorphisms (SNPs)) of 
interest, but further “functional” as-
sessments are needed to confirm and 
characterise the importance of those 
variables to the disease process both 
in the discovery cohort and in external 
populations.

Future directions
The field of OA phenotyping has 
evolved significantly, with multiple 
studies aiming to identify phenotypes 
based on different OA aspects (e.g. 
clinical, structural, laboratory and aeti-
ologic phenotypes) and employing dif-
ferent methodologies. A framework to 
guide future research is underway and 
will hopefully help to optimise efforts 
in this field. As highlighted in this re-
view, efforts in OA phenotype research 
should focus on one or more of three 
main goals: identify those individuals 
at higher risk of progression; identify 
those more likely to benefit from a giv-
en existing treatment; and identify spe-
cific pathological processes (i.e. disease 
mechanisms representing specific en-
dotypes) for targeted treatment, poten-
tially with new agents/treatment strat-
egies. Ultimately, all approaches aim 
to achieve improved clinical outcomes 
for individual OA patients. In addition, 
there is a widely recognised discord-
ance between structural involvement 
and symptomatic disease in OA, and 
phenotypes are likely to be more help-
ful if defined according to a specific 
perspective (i.e. structural damage and 
pain mechanisms) to inform treatment 
strategies. There is a need to identify 
those individuals in whom structural 
and clinical progression are coupled 
and those in whom they are dissociated.  
Research investigating phenotypes in 
other joints such as the hip, hand, foot 
and spine has lagged far behind that of 
knee OA and should also be the focus of 
future studies. Different OA phenotypes 
are likely to exist in joints with differ-
ent pathophysiological drivers (knee vs. 
thumb base vs. hip), although risk fac-

tors that are common to more than one 
joint may be implicated in a phenotype 
of multiple joint OA (90).
Most evidence on the presence of phe-
notypes/endotypes so far come from 
single or few studies and lack valida-
tion. Further research is needed to 
validate previous findings and to assess 
their implications for clinically impor-
tant outcomes and clinical trial design. 
In this regard, the availability of high-
quality data, ideally longitudinal and 
from different populations, is key for 
OA phenotyping research. Efforts to 
combine datasets from existing OA co-
horts/previous clinical trials are likely 
to be helpful by providing larger data-
sets for the identification and valida-
tion of phenotypes. In addition, imag-
ing and/or laboratory biomarkers may 
be useful to define clinically relevant 
phenotypes. Nonetheless, to increase 
the uptake of proposed phenotypes and 
translation into practice, phenotypes 
should be recognisable using easy to 
obtain patient data (either clinical, im-
aging or laboratory).
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