Systemic sclerosis Progression INvestiGation (SPRING) Italian registry: demographic and clinico-serological features of the scleroderma spectrum

ABSTRACT

Objective. Systemic sclerosis (SSc) is a severe multiple-organ disease characterised by unpredictable clinical course, inadequate response to treatment, and poor prognosis. National SSc registries may provide large and representative patients cohorts required for descriptive and prognostic studies. Therefore, the Italian Society for Rheumatology promoted the registry SPRING (Systemic sclerosis Progression INvestiGation).

Methods. The SPRING is a multicentre rheumatological cohort study encompassing the wide scleroderma spectrum, namely the primary Raynaud’s phenomenon (pRP), suspected secondary RP. Very Early Diagnosis of Systemic Sclerosis (VEDOSS), and definite SSc. Here we describe the demographic and clinical characteristics of a population of 2,028 Italian patients at the initial phase of enrolment, mainly focusing on the cohort of 1,538 patients with definite SSc.

Results. Definite SSc showed a significantly higher prevalence of digital ulcers, capillaroscopic ‘late’ pattern, oesophageal and cardio-pulmonary involvement compared to VEDOSS, as expected on the basis of the followed classification criteria. The in-depth analysis of definite SSc revealed that male gender, diffuse cutaneous subset, and anti-Scl70 seropositivity were significantly associated with increased prevalence of the most harmful disease manifestations. Similarly, patients with very short RP duration (≤1 year) at SSc diagnosis showed a statistically increased prevalence of unfavourable clinico-serological features.

Conclusion. Nationwide registries with suitable subsetting of patients and follow-up studies since the prodromal phase of the disease may give us valuable insights into the SSc natural history and main prognostic factors.

Introduction

Systemic sclerosis (SSc) is a complex disease characterised by the involvement of the skin and internal organs, heavily affecting patient’s quality of life and survival (1-5). The disease pathogenesis encompasses a number of causative genetic and/or environmental co-factors leading to a complex of immune-system, fibroblast, and vascular alterations responsible for diffuse collagen tissue deposition and microangiopathy (1, 2). A clinical heterogeneity of the disease is suggested by several studies frequently focusing on small patients’ populations (6). For this reason, SSc registries have been developed worldwide to provide large and homogeneous patients’ subgroups (7). In 2015, the Italian Society for Rheumatology (SIR) promoted the creation of the national SPRING (Systemic sclerosis Progression INvestiGation) registry, including both precursory clinical conditions and overt disease variants. The present multi-centre rheumatological cohort study aimed to describe the clinico-serological characteristics of a...
large Italian SSc series recorded during the recruitment period of the SPRING, and represents the largest cohort of patients examined up to now on the Italian territory.

Patients and methods

Patients’ recruitment and assessment

SPRING is a multicentre national non-profit cohort study, promoted by SIR in 2015 as part of SIR-Strategic Projects; therefore, all the Italian rheumatology centres were invited to participate. The study protocol was approved by the IRB in every participating centre (38 centres); all patients provided written informed consent to enter in the study with the explicit protection of their identity.

Study data were collected and managed using REDCap, electronic data capture tools hosted at SIR REDCap (Research Electronic Data Capture), which is a secure, web-based application designed to support data capture for research studies (8).

Patients were consecutively screened and enrolled at each participating centre according to standardised study procedures.

All patients were hierarchically classified into 4 different cohorts: 1) primary RP (pRP); 2) suspected secondary RP (ssRP); RP with one or more clinicorheological features not fulfilling the classification criteria of SSc or other CTDs (3); 3) Very Early Diagnosis of Systemic Sclerosis (VEDOSS) according to previously proposed criteria (9, 10); 4) definite SSc according to ACR/EULAR 2013 classification criteria for systemic sclerosis (11). The main inclusion criteria were: 1) presence of Raynaud’s phenomenon (RP) for the cohorts 1 and 2; 2) age>18 years; 3) absence of a definite diagnosis of connective tissue disease (CTD) other than SSc for the cohorts 2 and 3.

At the time of patient’s enrollment the following data were collected: demographic characteristics, disease history (including RP duration, date of diagnosis if appropriate) and clinical manifestations, life-styles (smoking, BMI), and comorbidities.

The evaluation of the collected variables followed previously described criteria (3, 5). In particular, the patient’s age was calculated at the following conventional times: a) at the appearance of isolated RP; b) at the disease onset, considered to be the age at which the first non-Raynaud’s sign(s) and/or symptom(s) compatible with the disease appeared, i.e. digital ischaemic lesions, puff hands, sclerodactyly with or without proximal scleroderma, dyspnea, and/or dysphagia; c) at the SSc diagnosis at the referral centres. At the same time, patients were also classified based on the extent of skin sclerosis as limited cutaneous SSc (sclerosis of distal extremities, not above the elbows and knees, with or without sclerosis of neck and face), diffuse cutaneous SSc (sclerosis of both distal and proximal extremities, with or without truncal involvement), or sine scleroderma SSc (ssSSc) in the complete absence of cutaneous sclerosis. Besides, the following SSc-related symptoms and organ involvement were evaluated according to the criteria previously described (3, 5, 11, 12): modified Rodnan skin score (mRSS), digital ulcers, gangrene and/or osteomyelitis (13); arthritis (inflammatory changes observed in more than 2 joints); muscle weakness with/without elevated serum creatine kinase; oesophageal involvement (dysphagia and oesophageal radiographic dysmotility); pulmonary involvement (dyspnoea, ground glass and/or bibasilar fibrosis at HRCT and/or restrictive lung disease on pulmonary function tests, including decreased diffusion capacity for carbon monoxide (DLCO), cardiac involvement (at least 1 of the following features: pericarditis, severe arrhythmias and/or atrioventricular conduction abnormalities at EKG, left ventricle diastolic dysfunction and/or abnormal ejection fraction (< 50%) at Doppler echocardiography; pulmonary arterial hypertension (PAH) evaluated by means of systolic pulmonary arterial pressure (sPAP) at Doppler echocardiography and confirmed by right heart catheterization according to current diagnostic criteria (14); and scleroderma renal crisis (sudden onset of severe arterial hypertension together with acute renal failure)).

Statistical methods

Descriptive statistics were performed for demographic, clinical, laboratory, instrumental characteristics and for treatment, reporting results as percentages, mean with standard deviation (SD) or median and interquartile range (IQR). Differences between groups are detected by t-test or non-parametric Wilcoxon Test for continuous variables while Chi-squared test or non-parametric Fisher’s exact test were performed to compare frequencies in different groups of categorical variables.

Analyses were made using R-3.5.2 statistical software (Foundation for Statistical Computing, Vienna, Austria).

Results

Patients’ population

Within October 2018, a series of 2,028 patients was enrolled and individuals distributed in the 4 cohorts according to the entry criteria; the demographic and clinicorheological features are summarised in Table I. The two cohorts of pRP and ssRP displayed demographic and clinical composition consistent with the above inclusion criteria. On the other hand, some significant differences observed between the two cohorts of SSc patients, namely the VEDOSS (242 pts) and definite SSc (1,538 pts cohorts) were in keeping with the followed classification criteria (Table II); namely, patients with definite SSc were characterised by longer disease duration, higher mean age and mRSS. Moreover, the VEDOSS cohort
Scleroderma progression investigation registry / C. Ferri et al.

Table I. Main demographic and clinico-serological features of 2028 SSc patients of the Italian registry SPRING.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>pRP</th>
<th>ssRP</th>
<th>VEDOSS</th>
<th>definite SSc</th>
<th>p<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients no.</td>
<td>2028</td>
<td>51</td>
<td>136</td>
<td>242</td>
<td>1538</td>
<td></td>
</tr>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex males no.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>210 (10.5%)</td>
<td>8 (16.3%)</td>
<td>19 (14.1%)</td>
<td>17 (7.1%)</td>
<td>161 (10.5%)</td>
<td>0.086</td>
</tr>
<tr>
<td>Age mean (DS)</td>
<td>58.0 (14.3)</td>
<td>54.2 (14.3)</td>
<td>54.1 (16.2)</td>
<td>53.3 (15.3)</td>
<td>59.2 (13.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Disease duration yrs mean (DS)<sup>b</sup></td>
<td>8.3 (7.5)</td>
<td>10.8 (8.0)</td>
<td>7.1 (6.9)</td>
<td>4.2 (4.9)</td>
<td>8.9 (7.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin inv. no. (%)</td>
<td>1474 (78.5%)</td>
<td>0 (0%)</td>
<td>27 (22.9%)</td>
<td>90 (38.5%)</td>
<td>1338 (90.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Puffy fingers no. (%)</td>
<td>815 (42.8%)</td>
<td>0 (0%)</td>
<td>10 (8.1%)</td>
<td>59 (25.4%)</td>
<td>740 (49.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Teleangectasias no. (%)</td>
<td>956 (50%)</td>
<td>0 (0%)</td>
<td>17 (13.7%)</td>
<td>27 (11.6%)</td>
<td>894 (59.3%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Calcinosis no. (%)</td>
<td>186 (9.8%)</td>
<td>0 (0%)</td>
<td>3 (2.4%)</td>
<td>5 (2.2%)</td>
<td>177 (11.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Digital ulcers no. (%)</td>
<td>352 (18.5%)</td>
<td>0 (0%)</td>
<td>7 (5.6%)</td>
<td>9 (3.9%)</td>
<td>332 (22%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Oesophageal inv. no. (%)</td>
<td>843 (44.1%)</td>
<td>0 (0%)</td>
<td>34 (27.6%)</td>
<td>68 (29.2%)</td>
<td>725 (48.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sicca syndrome no. (%)</td>
<td>552 (29%)</td>
<td>0 (0%)</td>
<td>34 (27.4%)</td>
<td>64 (27.5%)</td>
<td>441 (29.4%)</td>
<td>0.774</td>
</tr>
<tr>
<td>Cardio-respiratory symptoms no. (%)</td>
<td>476 (25%)</td>
<td>0 (0%)</td>
<td>11 (8.9%)</td>
<td>22 (9.5%)</td>
<td>431 (28.7%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lung inv (radiological) no. (%)</td>
<td>566 (54.4%)</td>
<td>0 (0%)</td>
<td>8 (28.6%)</td>
<td>23 (11.1%)</td>
<td>523 (59.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Heart inv (EKG and/or ECHO) no. (%)</td>
<td>423 (95.9%)</td>
<td>0 (0%)</td>
<td>15 (93.8%)</td>
<td>26 (83.9%)</td>
<td>366 (96.8%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Cardiopatopaties alterations** no. (%)</td>
<td>1521 (81%)</td>
<td>0 (0%)</td>
<td>42 (33.3%)</td>
<td>150 (64.1%)</td>
<td>1311 (89%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Serological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACA - no. (%)</td>
<td>1794 (93.2%)</td>
<td>0 (0%)</td>
<td>69 (53.1%)</td>
<td>233 (97.9%)</td>
<td>1454 (96.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td>anti-Scl70 - no. (%)</td>
<td>561 (29.2%)</td>
<td>0 (0%)</td>
<td>4 (3.1%)</td>
<td>33 (13.9%)</td>
<td>513 (34.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ACA - no. (%)</td>
<td>857 (42.3%)</td>
<td>0 (0%)</td>
<td>13 (9.6%)</td>
<td>126 (52.1%)</td>
<td>700 (45.5%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

p^aPrimary Raynaud’s phenomenon; ss^RP: suspected secondary RP; VEDOSS: very early diagnosis of systemic sclerosis; *disease duration from diagnosis; †limited or diffuse cutaneous involvement; heart involvement on the basis of EKG and/or Doppler echocardiography alterations. ANA: anti-nuclear antibodies; anti-ENA: anti-extractable nuclear antigen antibodies. **early, active and/or late patterns; °comparison between the 4 cohorts.

showed a high prevalence of the ssSSc cutaneous subset, while several SSc manifestations were significantly more frequent in definite SSc cohort, i.e. puffy fingers, digital ulcers, teleangectasias, calcinosis, arthritis, tendon friction rubs, oesophageal dysmotility, and cardio-respiratory manifestations, including exercise dyspnea, interstitial lung involvement at HRCT; functional respiratory alterations, and left ventricular diastolic dysfunction at Doppler echocardiography (Table II). The presence of PAH, suspected on the basis of clinical symptoms and Doppler echocardiography, was diagnosed by right heart catheterisation only in 26 patients with definite SSc. At capillaroscopic examination, VEDOSS patients showed a significantly increased prevalence of ‘early’ pattern, while definite SSc displayed a high percentage of either ‘active’ or ‘late’ patterns. The definite SSc was confirmed as more severe clinical condition as a whole, requiring more aggressive therapeutic approach such as combined vasoactive and immunosuppressive treatments (Table II).

Considering that definite SSc represented a wide cohort of patients with well-established disease (1,538 pts), in-depth statistical analysis of this cohort was carried out. In particular, male patients (161) showed a significantly lower mean age (56.1±14.2SD years vs. 59.6±13.8SD years; p=0.002) and shorter disease duration (7.6±7.7 vs. 9±7.7 years; p=0.003) than females (1,377). Moreover, diffuse cutaneous subset, digital ulcers, anti-Scl70 antibodies, capillaroscopic late pattern (33.1% vs. 23.0%, p=0.036), and severe lung fibrosis (honeycombing at HRCT) were significantly more prevalent in males (Fig. 1). These subjects underwent immunosuppressive treatments in a higher percentage of cases than females who, on the contrary, showed a higher prevalence of limited SSc and ssSSc (limited 21.0% and 1521 vs. 30.2% and 20.9%, p<0.001) vs. females (1,377). Finally, a higher percentage of individuals with diffuse cutaneous SSc underwent immunosuppression compared to the other two subsets (Fig. 3). On the other side, the presence of the two autoantibodies commonly found in scleroderma patients, i.e. ACA and anti-Scl70, was significantly associated with specific clinical features. In particular, anti-Scl70 seropositive individuals showed a significantly lower mean age (55.0±14.5 SD years vs. 59.6±14.2SD years; p<0.001) and higher percentage of the following clinical manifestations: oesophageal involvement, digital ulcers, tendon friction rubs, arthritis, calcinosis, cardiac and/or pulmonary symptoms, severity of lung fibrosis (honeycombing at HRCT), renal crisis (2.5% vs. limited 0.7% and ssSSc 0%; p=0.018), and capillaroscopic ‘late’ pattern (44.8% vs. limited 21.0% and ssSSc 8.3%; p<0.001). With regards the serological hallmarks, anti-Scl70 were significantly associated with diffuse SSc (68.7% vs. limited 27.2% and ssSSc 17.4%; p=0.001), while ACA were more frequently detected in limited SSc and ssSSc (limited 52.1%, ssSSc 63.4%, diffuse 14.9%; p<0.001). Finally, a higher percentage of individuals with diffuse cutaneous SSc underwent immunosuppression compared to the other two subsets (Fig. 3). On the other side, the presence of the two autoantibodies commonly found in scleroderma patients, i.e. ACA and anti-Scl70, was significantly associated with specific clinical features. In particular, anti-Scl70 seropositive individuals showed a significantly lower mean age (55.0±14.5 SD years vs. 59.6±14.2SD years; p<0.001) and higher percentage of the following clinical manifestations: oesophageal involvement, digital ulcers, tendon friction rubs, arthritis, calcinosis, cardiac and/or pulmonary symptoms, severity of lung fibrosis (honeycombing at HRCT), renal crisis (2.5% vs. limited 0.7% and ssSSc 0%; p=0.018), and capillaroscopic ‘late’ pattern (44.8% vs. limited 21.0% and ssSSc 8.3%; p<0.001).
vs. ACA+ 63.2±12.5 SD; p<0.001) and a higher percentage of male gender, diffuse cutaneous SSc, digital ulcers, tendon friction rubs, arthritis (18.8% vs. ACA+ 9.4%; p<0.001), ‘late’ capillaroscopic pattern (31.9% vs. ACA+ 19.3%; p<0.001), lung/heart manifestations, interstitial lung involvement at HRCT. Moreover, a significant higher percentage of anti-Scl70 seropositive individuals underwent immunosuppressive treatments (Fig. 3).

Table II. Main clinico-epidemiological features of 1780 Italian SSc patients.

<table>
<thead>
<tr>
<th>Patients no.</th>
<th>Total</th>
<th>VEDOSS</th>
<th>definite SSc</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex - males (%)</td>
<td>178 (10.1%)</td>
<td>17 (7.1%)</td>
<td>161 (10.5%)</td>
<td>0.125</td>
</tr>
<tr>
<td>Sex - females (%)</td>
<td>1602 (89.9%)</td>
<td>225 (92.9%)</td>
<td>1341 (89.5%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Age mean (DS)</td>
<td>58.4 (14.2)</td>
<td>53.3 (15.3)</td>
<td>59.2 (13.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dis duration yrs mean (SD)*</td>
<td>8.3 (7.6)</td>
<td>4.2 (4.9)</td>
<td>8.9 (7.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited SSc no. (%)</td>
<td>1149 (66.9%)</td>
<td>87 (37.2%)</td>
<td>1062 (71.6%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diffuse SSc no. (%)</td>
<td>279 (16.2%)</td>
<td>0 (0%)</td>
<td>276 (18.6%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ssSSc no. (%)</td>
<td>289 (16.8%)</td>
<td>144 (61.5%)</td>
<td>145 (9.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td>mRSS - mean (SD)</td>
<td>5.2 (6.4)</td>
<td>0.4 (1.3)</td>
<td>5.9 (6.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Puffy fingers no. (%)</td>
<td>799 (46.1%)</td>
<td>59 (25.4%)</td>
<td>740 (49.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Telangiectasias no. (%)</td>
<td>921 (53%)</td>
<td>27 (11.6%)</td>
<td>894 (59.3%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Calcinoïd no. (%)</td>
<td>182 (10.5%)</td>
<td>5 (2.2%)</td>
<td>177 (11.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Digital ulcers no. (%)</td>
<td>341 (19.6%)</td>
<td>9 (3.9%)</td>
<td>332 (22.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gangrena no. (%)</td>
<td>16 (0.9%)</td>
<td>0 (0%)</td>
<td>16 (1.1%)</td>
<td>0.151</td>
</tr>
<tr>
<td>Osteomyelitis no. (%)</td>
<td>11 (0.6%)</td>
<td>0 (0%)</td>
<td>11 (0.7%)</td>
<td>0.378</td>
</tr>
<tr>
<td>Oesophageal inv. no. (%)</td>
<td>793 (45.6%)</td>
<td>68 (29.2%)</td>
<td>725 (48.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sicca syndrome no. (%)</td>
<td>505 (29.1%)</td>
<td>64 (27.5%)</td>
<td>441 (29.4%)</td>
<td>0.607</td>
</tr>
<tr>
<td>Renal crisis no. (%)</td>
<td>15 (0.9%)</td>
<td>1 (0.4%)</td>
<td>14 (0.9%)</td>
<td>0.708</td>
</tr>
<tr>
<td>Tendon friction rubs no. (%)</td>
<td>138 (8%)</td>
<td>1 (0.4%)</td>
<td>137 (9.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Arthritis no. (%)</td>
<td>228 (13.2%)</td>
<td>18 (7.8%)</td>
<td>210 (14.1%)</td>
<td>0.011</td>
</tr>
<tr>
<td>Cardiorespiratory no. (%)</td>
<td>453 (26.2%)</td>
<td>22 (9.5%)</td>
<td>431 (28.7%)</td>
<td><0.001</td>
</tr>
<tr>
<td>symptoms no. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung HRCT normal no. (%)</td>
<td>450 (45.2%)</td>
<td>86 (78.9%)</td>
<td>364 (41%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ILD at HRCT no. (%)</td>
<td>548 (55%)</td>
<td>23 (21.1%)</td>
<td>525 (59.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ground glass no. (%)</td>
<td>336 (33.7%)</td>
<td>12 (11%)</td>
<td>324 (36.5%)</td>
<td><0.001</td>
</tr>
<tr>
<td>reticulation no. (%)</td>
<td>269 (27%)</td>
<td>12 (11%)</td>
<td>257 (29%)</td>
<td><0.001</td>
</tr>
<tr>
<td>honeycomb no. (%)</td>
<td>80 (8%)</td>
<td>2 (1.8%)</td>
<td>78 (8.8%)</td>
<td>0.005</td>
</tr>
<tr>
<td>LV diastolic inv. no. (%)</td>
<td>273 (19.9%)</td>
<td>16 (10%)</td>
<td>257 (21.2%)</td>
<td>0.001</td>
</tr>
<tr>
<td>FVC (%) mean (DS)</td>
<td>102.7 (22.5)</td>
<td>108.6 (18.4)</td>
<td>101.8 (23)</td>
<td><0.001</td>
</tr>
<tr>
<td>DLco (%) mean (DS)</td>
<td>69.7 (20.2)</td>
<td>77.8 (17.1)</td>
<td>68.4 (20.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Capillaroscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal no. (%)</td>
<td>141 (8.3%)</td>
<td>68 (29.1%)</td>
<td>73 (5%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Early no. (%)</td>
<td>372 (21.8%)</td>
<td>91 (38.9%)</td>
<td>281 (36.5%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Active no. (%)</td>
<td>729 (42.7%)</td>
<td>54 (23.1%)</td>
<td>675 (45.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Late no. (%)</td>
<td>360 (21.1%)</td>
<td>5 (2.1%)</td>
<td>355 (24.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Laboratory findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANA+ no. (%)</td>
<td>1687 (97%)</td>
<td>233 (97.9%)</td>
<td>1454 (96.8%)</td>
<td>0.478</td>
</tr>
<tr>
<td>anti-ENA no. (%)</td>
<td>1156 (70.3%)</td>
<td>135 (60%)</td>
<td>1021 (72%)</td>
<td><0.001</td>
</tr>
<tr>
<td>anti-Scl70 no. (%)</td>
<td>546 (31.4%)</td>
<td>33 (13.9%)</td>
<td>513 (34.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ACA no. (%)</td>
<td>826 (46.4%)</td>
<td>126 (52.1%)</td>
<td>700 (45.5%)</td>
<td>0.056</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunosuppressors no. (%)</td>
<td>426 (23.9%)</td>
<td>20 (8.3%)</td>
<td>406 (26.4%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

VEDOSS: very early diagnosis of systemic sclerosis; *from diagnosis; mRSS: modified Rodnan skin score; HRCT: high-resolution computed tomography; ILD: interstitial lung diseases; LV: left ventricular; FVC: forced vital capacity; DLco: diffusing capacity of the lungs for carbon monoxide; ANA: anti-nuclear antibodies; anti-ENA: anti-extractable nuclear antigen antibodies; *comparison between VEDOSS and definite SSc.

Discussion

The present study described the main demographic and clinical characteristics of a large Italian scleroderma spectrum patients’ population recorded in the nationwide SPRING registry after the initial phase of enrolment, focusing mainly on the analysis of the sizeable cohort of patients with definite SSc. The comparison between VEDOSS and definite SSc showed some differences as expected on the basis of the followed classification criteria; definite SSc cohort was confirmed as more severe variant due to the presence of digital ulcers, interstitial lung fibrosis, and/or cardiac involvement.

Considering the cohort of definite SSc, some important clinical correlations were detected that frequently agreed with previous clinico-epidemiological studies (1-5, 15). In particular, the male gender per se was significantly associated with diffuse cutaneous subset, anti-Scl70, capillaroscopic ‘late’ pattern, and one or more severe SSc clinical manifestations like digital ulcers, and/or lung fibrosis. This confirms data from the literature that males are affected by more severe form of disease with respect to females and emphasises the importance of an early treatment to tackle disease progression (16). Similarly, patients with diffuse cutaneous SSc showed an increased prevalence of digital ulcers, oesophageal, cardiac/pulmonary involvement, renal crisis, serum anti-Scl70, and/or ‘late’ capillaroscopic pattern. Consequently, the combination of male gender, diffuse cutaneous scleroderma, and anti-Scl70 identified the worst SSc clinical subset. While females with limited skin involvement and ACA were mediially characterised by less severe disease phenotypes (1-5, 15, 16-18).

At the SSc diagnosis, the short duration of RP (≤1 year) was significantly correlated with some hallmarks of poor disease outcome like the presence of diffuse cutaneous involvement, anti-Scl70 autoantibodies, cardiac, and/or lung involvement. This peculiar relationship was previously described in smaller SSc patients’ series (18). In the natural history of SSc, RP is found as the presenting symptom that may precede up...
Scleroderma progression investigation registry / C. Ferri et al.

Fig. 1. Clinico-serological features and gender in 1538 Italian patients with definite SSc. The diffuse cutaneous subset, digital ulcers, anti-Scl/10 antibodies, and severe lung fibrosis (honeycombing at HRCT) were significantly more prevalent in males (no. 161) compared to females (no. 1,368; see text).

ssSSc: sine scleroderma SSc; DU: digital ulcers; HRCT: high-resolution computed tomography.

Fig. 2. Scleroderma clinical features and cutaneous subsets. Diffuse SSc was significantly associated with more severe SSc phenotype, characterised by increased prevalence of digital ulcers, tendon friction rubs, subcutaneous calcinosis, arthritis, and internal organ involvement (oesophagus, heart, and lung), requiring more aggressive treatments (see text).

ssSSc: sine scleroderma SSc; HRCT: high-resolution computed tomography.

It is well known that SSc is the expression of a complex etiopathogenetic process (1, 5, 20, 21) leading to heterogeneous clinical phenotypes, unpredictable clinical course, reduced life expectancy, and inadequate response to treatments. In this scenario, SSc registries may be very useful to identify key information concerning SSc progression and outcome. Several national and international SSc registries are currently conducted worldwide (7, 22-36). The strengths and limitations of SSc registry-based studies have been previously analysed (7). Apart from several strong points such as the recording of longitudinal data on large patients’ populations with essential information on this rare condition, SSc registries show a number of limitations, specially their non uniform formulation. Possible dissimilarities in patients’ selection criteria and/or treatment strategies make quite difficult to compare the observations of currently available registries (7). In addition, both genetic and environmental differences among patients’ populations from different countries, and from particular sub-area in the same country, should be also considered. A careful registry construction along with a recruitment of sufficiently homogeneous and well-characterised SSc cohorts may overcome the above limitations. Moreover, ‘big data’ collection by SSc registries could provide valuable data for future epidemiological and clinico-pathogenetic studies, prognostic factor recognition, and real-life therapeutic protocol validation.

The identification of patients during the early phases of SSc is particularly relevant as regards its clinico-prognostic implications (9, 10, 37, 38). In a recent report by the Spanish Scleroderma Registry (RESCLE) study group, the authors underlined the usefulness of scleroderma subsetting into very early and early SSc (37). They observed that the evolution to definite SSc is more frequent in early than in very early SSc patients; moreover, the presence of gastrointestinal involvement represented a risk factor of disease progression. These findings suggested that a more detailed subsetting (37) and timely detection of early organ damage (38)
in preclinical stages may help for the patients’ clinical assessment and targeted management. In this respect, the frequent classification discrepancies should be clarified in the near future; while comparative analysis of different registry cohorts will allow us to definitively set up shared classification criteria of the patients, especially in the early phases of the disease.

Therefore, the identification of possible predictive factors of SSc progression from RP to SSc may be achieved by long-term follow-up studies of the pivotal conditions that represent the entire clinical spectrum of the disease.

Acknowledgements
The authors wish to acknowledge the help and support of Adriana Gallo, AO San Camillo Forlanini, Roma, Cristiano Caimmi, AOUI di Verona, Marta Saracco, AO Ordine Mauriziano di Torino, Cecilia Agnes, Ospedale San Lorenzo, Carmagnola, Torino, Enrico Fusaro, AO Città della Salute e della Scienza di Torino, Simone Parisi, OAU Città della Salute e della Scienza di Torino, Clara Lisa Peroni, OAU Città della Salute e della Scienza di Torino, Marta Priora, OAU Città della Salute e della Scienza di Torino, and GILS: Gruppo Italiano per la Lotta alla Sclerodermia.

Appendix
SPRING group of the Italian Society for Rheumatology (SIR)
Convenors
1. Clodoveo Ferri, University of Modena & Reggio Emilia, Italy; clodoveo.ferri@unimore.it
2. Marco Matucci-Cerinic, University of Florence, Italy; marco.matuccicerinic@unifi.it

Investigators
1. Dilia Giuggioli, University of Modena & Reggio Emilia; dilia.giuggioli@unimore.it
2. Serena Guiducci, University of Florence; s.guiducci@hotmail.com
3. Federica Lumetti, University of Modena & Reggio Emilia; fedelumetti@libero.it
4. Silvia Bellando-Randone, University of Florence; s.bellandorandone@gmail.com
5. Gianluigi Bajocchi, Arcispedale S. Maria Nuova, Reggio Emilia; gianluigi.bajocchi@asmr.re.it
6. Amelia Spinella, University of Modena & Reggio Emilia; amelia.spinella@gmail.com
7. Luca Magnani, Arcispedale S. Maria

Fig. 3. Scleroderma clinical features and main autoantibody subsets.
Compared to ACA-positive individuals, the presence of anti-Scl70 was more frequently associated with diffuse cutaneous SSc, digital ulcers, tenon friction rabs, and cardio-pulmonary symptoms, as well as with immunosuppressive treatments (see text).

ssSSc: sine scleroderma SSc; ILD: interstitial lung disease; HRCT: high-resolution computed tomography.

Fig. 4. Raynaud’s phenomenon duration before SSc diagnosis and clinico-serological features in 1538 Italian patients.
A shorter Raynaud’s phenomenon (RP) duration before SSc diagnosis was correlated with worse prognostic disease manifestations, i.e. diffuse cutaneous subset, anti-scl70 autoantibodies, and cardio-pulmonary involvement. Moreover, SSc patients with past history of RP lasting <1 year or appearing after the disease onset more frequently underwent to immunosuppressive therapies (see text).

RP: Raynaud’s phenomenon; ssSSc: sine scleroderma SSc.
Scleroderma progression investigation registry / C. Ferri et al.

Nuova, Reggio Emilia; Luca.Magnani@ausl.re.it
8. Veronica Codullo, Policlinico San Matteo, Pavia; veronicacodullo@yahoo.it
9. Giovanni Zanframundo, Policlinico San Matteo, Pavia
10. Alarico Ariani, AOU Parma; dott.alaricoariani@libero.it
11. Francesco Girelli, Ospedale GB Morgagni, Forlì; francesco.girelli@auslrmagna.it
12. Valeria Riccieri, Sapienza, Università di Roma; valeria.riccieri@uniroma1.it
13. Greta Pellegrino, Sapienza, Università di Roma
14. Silvia Bosello, Fondazione Policlinico Universitario Agostino Gemelli – IRCs, UOC di Reumatologia, Roma; silvia.bosello@libero.it, silvia.laura.bosello@policlinicogemelli.it
15. Rosario Foti, AOU ‘Policlinico Vittorio Emanuele’ Catania; catania.rosfoti@gmail.com
16. Elisa Visalli, AOU ‘Policlinico Vittorio Emanuele’ Catania; elisa.visalli1@gmail.com
17. Giorgio Amato, AOU ‘Policlinico Vittorio Emanuele’ Catania; giorgioamato@tiscali.it
18. Alessia Benenati, AOU ‘Policlinico - Vittorio Emanuele’, Catania; alessia.benenati@libero.it
19. Giovanna Cuomo, Università degli Studi della Campania – Luigi Vanvitelli, Napoli; giovanna.cuomo@unicampania.it
20. Florence Iannone, UO Reumatologia – DETO, Università di Bari; florence.iannone@uniba.it
21. Fabio Cacciapaglia, UO Reumatologia – DETO, Università di Bari; fabio.cacciapaglia@gmail.com
22. Rossella De Angelis, Clinica Reumatologica, Università Politecnica delle Marche, Ancona; dearcosss65@libero.it
23. Francesca Ingengoli, Università degli Studi di Milano; francesca.ingengoli@unimi.it
24. Rossella Talotta, Ospedale S. Camillo, Roma; talotta@virgilio.it
25. Corrado Campochiaro, Ospedale S. Raffaele, Milano; corradocampochiaro@gmail.com
26. Lorenzo Dagna, Ospedale S. Raffaele, Milano; dagna.lorenzo@hsr.it
27. Giacomo De Luca, Ospedale S. Raffaele, Milano.; deluca.giacomo@hsr.it
28. Giuseppe Murdaca, Ospedale Policlinico S. Martino-Università di Genova; giuseppe.murdaca@unige.it
29. Nicoletta Romeo, ASO S. Croce e Carle, Cuneo; nicolet.romeo@gmail.com; romeo.n@ospedale.cuneo.it
30. Maria De Santis, Istituto Clinico Humanitas, Rozzano, Milano; maria.de.santis@humanitas.it
31. Elena Generali, Istituto Clinico Humanitas, Rozzano, Milano; e.generalii@gmail.com
32. Simone Barotti, AOU Santa Chiara, Pisa; simone.barotti@outlook.com
33. Alessandra Della Rossa, AOU Santa Chiara, Pisa; a.dellarossa69@gmail.com, a.dellarossa@ao-pisa.toscana.it
34. Ilaria Cavazzana, Spedali Civili di Brescia; ilariacavazzana@virgilio.it
35. Francesca Dall’Ara, SpeUO Medicina Interna e Ambulatorio Reumatologico, Ospedale Maggiore Lodi, francesca.dallar@gmail.com
36. Maria Grazia Lazzaroni, Spedali Civili and University of Brescia; mariagraziakallarazzon@gmail.com
37. Franco Cozzi, Università degli Studi di Padova; franco.cozzi@unipd.it
38. Andrea Doria, Università degli Studi di Padova; adoria@unipd.it
39. Erika Pigatto, Università degli Studi di Padova; erika.pigatto@gmail.com
40. Elisabetta Zanatta, Università degli Studi di Padova; elisabetta.zanatta@yahoomail.com
41. Giovanni Ciano, ASL Avellino; giovanni.ciano@gmail.com, g.ciano@virgilio.it
42. Lorenzo Beretta, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano; lborherm@hotmai.com
43. Giuseppina Abignano, AOR San Carlo di Potenza; g.abignano@hotmail.com
44. Salvatore D’Angelo, AOR San Carlo di Potenza; saldangelo@katamail.com
45. Gianna Men nillo, AOR San Carlo di Potenza; giannangelamennillo@virgilio.it
46. Gianluca Bagnato, Università degli Studi di Messina; gianbagnato@gmail.com
47. Francesca Calabrese, SSD Reumatologia, Reggio Calabria; francescaca balese81@virgilio.it
48. Maurizio Caminiti, SSD Reumatologia, Reggio Calabria; mauriziocaminiti@tin.it
49. Giuseppe Pagano Mariano, SSD Reumatologia, Reggio Calabria; g.paganomariano@libero.it
50. Elisabetta Battaglia, AO ARNAS Garibaldi, Catania; elisabettabattaglia@hot mail.com
51. Ennio Lubrano, Università degli Studi di Messina; ennio.lubrano@unime.it
52. Federica Furini, Department of Medical Sciences, University of Ferrara; f.furini@gmail.com
53. Annamaria Iuliano, AO San Camillo Forlanini, Roma; annamariaiuliano@hotmail.it

Study Centre of the Italian Society for Rheumatology (SIR)
1. Carlo Scirè, Department of Medical Sciences, University of Ferrara, and Epidemiology Unit, Italian Society for Rheumatology, Milano, Italy; c.sciere@reumatologia.it
2. Greta Carrara, Epidemiology Unit, Italian Society for Rheumatology, Milano, Italy; g.carrara@reumatologia.it
3. Federica Rumi, Epidemiology Unit, Italian Society for Rheumatology, Milano, Italy; f.rumi@reumatologia.it
4. Anna Zanetti, Epidemiology Unit, Italian Society for Rheumatology, Milano, Italy; centrostudisir@reumatologia.it

Affiliations

Funding
This study was supported by the Italian Society for Rheumatology (SIR).

Competing interests
F. Iannone received consultancy fees and/or speaker honoraria from Actelion, Pfizer, AbbVie, Janssen, Celgene, Novartis, MSD, BMS, UCB, Sobi, Roche, Sanofi outside this work. M. Mattucci Cerinic received honoraria for speaker bureau and research grants from Chemomab, Actelion, Janssen, Pfizer, Lilly, MSD, Corbus, Boehringer Ingelheim. The other co-authors have declared no competing interests.
The mighty fibroblast and its

REGISTRIES in systemic sclerosis: a
The registry of the German Net
2012; 70: 476-81.

Trials and Research Group.

sis of systemic sclerosis: results of a Delphi

and serologic features and survival in 1,012

Systemic sclerosis: demographic, clinical,

and therapeutic opportunities. J Scleroderma

SEKHON S, POPE J, CANADIAN SCLERODERMA RESEARCH GROUP, BARON M: The

REFERENCES

