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ABSTRACT
Rheumatologists use classification cri-
teria to separate patients with inflam-
matory rheumatic diseases (IRD). They 
change over time, and the concepts of 
the diseases also change. The para-
digm is currently moving as the goal 
of classification in the future will be 
more to select which patients may be 
relevant for a specific treatment rather 
than to describe their characteristics. 
Therefore, the challenge will be to re-
classify multifactorial diseases on the 
basis of their biological mechanisms 
rather than their clinical phenotype. 
Currently, various projects are trying to 
reclassify diseases using bioinformat-
ics approaches and in the near future 
the use of advanced machine learning 
algorithms with large omics datasets 
could lead to new classification mod-
els not only based on a clinical phe-
notype but also on complex biological 
profile and common sensitivity to tar-
geted treatment. These models would 
highlight common biological pathways 
between patients classified in the same 
cluster and provide a deep understand-
ing of the mechanisms involved in the 
patient’s clinical phenotype. Such ap-
proaches would ultimately lead to clas-
sification models that rely more on bio-
logical causes than on symptoms. This 
overview on current classification of 
subgroups of IRD summarises the clas-
sification criteria that we use routinely, 
and how we will classify IRD in the fu-
ture using bioinformatics and artificial 
intelligence techniques. 

Introduction
The landscape of rheumatology is not 
only vast and varied, but also chang-
ing. Rheumatology manuals published 
in the early 20th century distinguished 
three categories of joint disease: acute 
rheumatism, chronic rheumatism, and 

gout (1). In 1942, Stone stated that 
inflammatory arthritis could be classi-
fied as pyogenic, tuberculous, rheuma-
toid, chronic traumatic, allergic, and 
of unknown mechanism (2). Current 
concepts of inflammatory rheumatic 
diseases (IRDs), whose emergence is 
largely ascribable to the identification 
of specific disease markers, seem to 
bear little relation to these early clas-
sifications. The pathogenesis of IRDs, 
however, remains a predominantly grey 
area, and concepts about IRDs change 
at a fast pace, in lockstep with the brisk 
tempo of rheumatology and immunol-
ogy research. As a result, even for the 
same IRD, several classification sys-
tems are often available, with differ-
ences in the types of items used, such as 
clinical findings, genetic background, 
and aetiological factors. None of these 
systems is perfect. Continuous efforts 
are therefore made by the rheumatology 
community to improve them. 
Each IRD has widely varying presenta-
tions, and most IRDs have no feature 
that could serve as a reference stand-
ard for the diagnosis. Consequently, 
although criteria sets are intended for 
classification, they are widely used as 
diagnostic aids. However, due to the 
persisting major disagreements regard-
ing the concepts relevant to IRDs, the 
application of classification criteria to 
determine the distribution of diagno-
ses within patient cohorts can produce 
variable results, even when performed 
by highly experienced international ex-
perts (3). Some experts consider criteria 
cumulatively and others simultaneous-
ly (4). Furthermore, exclusion criteria 
may or may not be applied (5).
The performance of a classification 
system can be improved via two main 
types of advances. One is the discovery, 
testing, and inclusion of new criteria. 
The other is the introduction of new 
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methodological tools for devising cri-
teria sets, such as bioinformatics and 
artificial intelligence. Active research 
is currently ongoing in both areas and 
can be expected to produce improved 
classification systems in the near fu-
ture. An overview of the current state 
of IRD classification and discussion of 
probable future developments therefore 
seems timely.

Aetiology and pathogenesis
Aetiology and pathogenesis are ma-
jor considerations when seeking to 
constitute clinically relevant groups, 
as they largely govern the therapeutic 
strategy. Two types of arthritis are due 
to clearly identifiable causes: septic ar-
thritis and crystal deposition disease. 
Arthritis without infection or crystal 
deposition defines multifactorial IRD, 
whose aetiology is unclear but involves 
a combination of genetic and environ-
mental factors. IRDs may be axial or 
peripheral; involve one, a few, or many 
joints; and/or produce systemic mani-
festations. In addition, IRDs can be 
classified according to their pathogenic 
mechanism (Fig. 1a).
In addition to autoimmunity, autoin-
flammation can cause arthritis. The 
concept of autoinflammation was intro-
duced in 1999 to distinguish two mo-
nogenic hereditary periodic fever syn-
dromes, familial Mediterranean fever 
(FMF) and TNF receptor-associated pe-
riodic syndrome (TRAPS), from classi-
cal autoimmune diseases (6). In con-
trast to autoimmune diseases, which are 
attributed to dysregulation of the adap-
tive immune responses, autoinflamma-
tory diseases are not associated with 
pathogenic autoantibodies or autoreac-
tive T cells and are thought to involve 
defects in innate immunity proteins (7). 
Research has established that interleu-
kin (IL)-1 secretion in response to Toll-
like receptor stimulation is mediated 
through co-operation with the nucleo-
tide-binding domain and leucine-rich 
repeat-containing family, pyrin domain-
containing 3 (NLRP3) inflammasome 
(8). Another recent finding is that the 
NLRP3/cold-induced autoinflamma-
tory syndrome 1 (CIAS1)-containing 
NLRP3 inflammasome is an intracel-
lular receptor that is triggered not only 

by exogenous microbial molecules, but 
also by endogenous stress molecules 
(9), and co-ordinates IL-1 processing 
and release via caspase-1 activation 
(10). These studies have provided in-
sight into the molecular mechanism of 
IL-1-mediated inflammation and the 
episodic nature of the inflammatory 
response. The distinction between auto-
inflammatory and autoimmune diseases 
is not clear-cut. Some monogenic auto-
inflammatory conditions are character-
ised by complex phenotypes combining 
autoinflammation with defects in the 
adaptive and/or innate immune system 
that are responsible for infections, au-
toimmunity, and/or uncontrolled hyper-
inflammation in addition to autoinflam-
mation. Furthermore, strong evidence 
points to adaptive immune response 
activation in patients with classical 
IL-1-driven autoinflammatory diseases 
(11). Thus, autoinflammatory diseases 
might now be viewed as immunologi-
cal diseases defined by an overactive 
inflammatory response driven by dys-
regulation of molecules and cells of the 
innate immune system, combined with 
host susceptibility factors and often 
with activation of the adaptive immune 
system and with immune dysfunctions 
such as susceptibility to infections, au-
toimmunity, or uncontrolled hyperin-
flammation (12).
IRDs may be confined to the joints or 
produce systemic manifestations. Sys-
temic autoimmune IRDs are character-
ised by the production of autoantibodies 
to a variety of intracellular targets, as a 
result of a specific adaptive immune re-
sponse against self antigens. Adaptive 
immune responses are initiated by the 
activation of antigen-specific T cells, 
and autoimmunity may be triggered in 
the same way. T-cell responses to self 
antigens damage tissues via direct or in-
direct mechanisms. Cytotoxic T-cell re-
sponses and inappropriate macrophage 
activation by Th1 cells can cause exten-
sive tissue injury, and help provided in-
appropriately by T-cells to self-reactive 
B cells can trigger deleterious autoan-
tibody responses. Thus, autoimmune 
IRDs result from three distinct but 
interrelated components: loss of self 
tolerance; the development of chronic 
inflammation in one or more organs; 

and, if the disease is active, tissue de-
struction with the attendant detrimental 
effects (13).

Main classification criteria 
sets for arthritis
Infectious agents
Septic arthritis and discitis are not IRDs 
but infections, in which the tissue dam-
age and symptoms are directly caused 
by infectious agents. Nevertheless, in-
fectious agents can trigger autoimmun-
ity and/or autoinflammation, thereby 
causing reactive IRD, which may be 
combined with systemic manifestations. 
An example is rheumatic fever, which 
is a systemic immune response to Strep-
tococcus pyogenes. Reactive IRD and 
infection seem to occur concomitantly, 
however, in Whipple’s disease, which is 
due to Tropheryma whipplei and usually 
resolves with long-term antibiotic thera-
py but may also have a reactive compo-
nent, since the organism is not always 
detectable in the synovial membrane 
(14). Among the reactive arthritides, 
only rheumatic fever has internation-
ally validated diagnostic criteria (online 
Supplementary Table S1) (15-21). 

Microcrystal deposition diseases
Arthritis can be caused by the deposi-
tion of microcrystals of sodium urea 
in gout (22), calcium pyrophosphate 
in chondrocalcinosis (23, 24), or hy-
droxyapatite in calcinosis  (Suppl. Ta-
ble S2 (22, 25)). These three diseases 
involve autoinflammatory mechanisms. 
Gout has internationally validated cri-
teria (22, 26). The identification of the 
relevant crystals in synovial fluid re-
mains the key to the diagnosis. How-
ever, ultrasound, radiography, or com-
puted tomography may also be helpful.

Systemic autoimmune inflammatory 
rheumatic diseases
Systemic autoimmune IRDs can affect 
all organs. They include connective tis-
sue diseases, vasculitides, and a few 
rare diseases such as the inheritable pe-
riodic fevers (Suppl. Table S3) (18-20, 
27-40). Autoantibodies are usually pre-
sent (41-43). Internationally validated 
diagnostic criteria are available for all 
the systemic autoimmune IRDs except 
sarcoidosis. 
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Among the connective tissue diseases, 
only Sharp’s syndrome (29) and anti-
phospholipid syndrome (28) do not have 
validated ACR/EULAR classification 
criteria. The classification of vascu-

litides was revised in 2012 using a no-
menclature system based on the affected 
vessels (44). Nevertheless, separate clas-
sification criteria exist for each type of 
vasculitis [e.g. giant cell arteritis (33)].

Joint-dominant inflammatory 
rheumatic diseases
The cause of these conditions is un-
known. Examples include rheumatoid 
arthritis (RA) and spondyloarthritis in 
adults, polymyalgia rheumatica in older 
individuals, and juvenile idiopathic ar-
thritis in children. Internationally vali-
dated diagnostic criteria are available 
for all these diseases (Suppl. Table S3) 
(45-50). 

Why have international 
classification criteria been 
developed for most rheumatic 
diseases?
Classification criteria are needed when 
no sensitive and specific investigation 
exists to confirm the diagnosis, such as 
the detection of microcrystals in syno-
vial fluid for the microcrystal deposi-
tion diseases (51, 52). Even then, some 
patients may not undergo synovial 
analysis, and some may not have vis-
ible crystals. Similarly, criteria are nec-
essary for patients with suspected septic 
arthritis but negative microbiological 
tests (53). Validated classification cri-
teria are needed when the diagnosis is 
challenging and must rely on a converg-
ing set of clinical, laboratory (41), and 
imaging study (54) findings. This is the 
case for IRDs. The American College 
of Rheumatology (ACR) and European 
League Against Rheumatism (EULAR) 
have expended huge efforts to develop 
uniform classification systems that can 
be applied worldwide. Most of the new 
classification systems have been en-
dorsed by these two societies.

Why do disease concepts and 
classifications change over time?
For many diseases, several criteria sets 
are available, leading to confusion, as 
patients may meet some sets but not 
others. Thus, replacing multiple sets 
by a single set is an important goal. 
Furthermore, new criteria sets seek to 
improve the performance of earlier sets 
by adding newly identified criteria, in-
troducing exclusion criteria, and using 
new methodological tools.
Technological advances result in the 
development of new tools that are ca-
pable of detecting new signs of disease. 
The performance of these new signs for 

Fig. 1. Classification of rheumatic diseases.
1a. Classical diagnostic tree for early arthritis. This tree illustrates a common issue in the field of ma-
chine learning, which is the small number of patients compared to the number of variables available 
for describing them.  
1b. Model currently use to define new classification criteria. Construction of the model can be helped 
by introducing established knowledge about the variables into the algorithm. 
1c. In the future, cluster analysis will shift the basis of classification approaches from clinical pheno-
type to combinations of vast numbers of variables.
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diagnosing and/or classifying disease 
must then be evaluated. If it proves 
good, then the new sign may deserve to 
be included within classification crite-
ria sets. Examples include the addition 
of echocardiography to Jones’ criteria 
for acute rheumatic fever (21) and of 
the ultrasound double-contour sign and 
dual-energy CT identification of sodi-
um urate deposition for gout (22). Sim-
ilarly, recently validated tools include 
shoulder and hip ultrasound for poly-
myalgia rheumatica, capillaroscopy for 
scleroderma, and sacroiliac magnetic 
resonance imaging for spondyloar-
thritis. A striking modification of clas-
sification criteria related to the intro-
duction of a new tool occurred for the 
four autoinflammatory diseases FMF, 
mevalonate kinase deficiency (MKD), 
TRAPS, and cryopyrin-associated pe-
riodic syndrome (CAPS): the develop-
ment of genetic testing strategies now 
allows the detection of the underlying 
gene abnormalities (32). Another im-
portant change was the introduction of 
newly identified autoantibodies to the 
criteria sets for several diseases, such 
as anti-citrullinated peptide antibodies 
(ACPA) for RA. 
For some diseases, new epidemiologi-
cal data (55) about at-risk populations 
have led to changes in the criteria sets. 
Acute rheumatic fever is an example 
(21). Also, when developing the new 
criteria for Behçet’s disease (45), the 
differences in clinical presentations ac-
cording to geographic origin were con-
sidered, with the goal of enabling clas-
sification without having to perform a 
pathergy test. 
The introduction of new treatments that 
are effective but expensive and associ-
ated with side effects is an important 
reason for working to improve the sen-
sitivity and specificity of classification 
systems, since these are widely used as 
diagnostic aids. The sensitivity of the 
criteria set for spondyloarthritis was in-
creased by introducing the concept of 
nonradiographic forms. For systemic 
lupus erythematosus, sensitivity was 
improved by adding typical nephropa-
thy without serum anti-DNA antibod-
ies (56). In RA, the introduction of 
methotrexate (57) and biologics as ma-
jor treatment options very early in the 

disease created a need for tools capable 
of confidently providing the early diag-
nosis, and the identification of ACPAs 
as an effective diagnostic marker (58) 
required a change in the 1987 ACR 
criteria (4). In 2010, the ACR and EU-
LAR therefore issued a new criteria set 
(46). In addition to ACPAs, exclusion 
criteria were introduced, providing an 
example of how changes in strategy, in 
addition to items, can improve perfor-
mance. Interestingly, when we applied 
these exclusion criteria to a cohort of 
patients with early arthritis, we found 
very few classification discrepan-
cies across previous criteria sets (59). 
Changes in criteria sets over time have 
hindered attempts to determine the 
prevalence of RA, although a single 
criteria set can be applied retrospec-
tively (60). Similarly, new ASAS cri-
teria for spondyloarthritis were issued 
in in 2011 (47). There are also new 
criteria for vasculitis, which include 
recently identified antibodies (ANCA), 
introduce new categories, and provide 
new treatment guidance (61).

Difference between classification 
and diagnostic criteria
Criteria can be developed for a diag-
nostic situation to help the clinician 
(i.e. developed for diagnostic purposes 
in the clinic) or for classification when 
a patient with rheumatic disease must 
be classified among other patients in a 
rheumatology outpatient clinic for clin-
ical research or epidemiologic studies 
(a patient with a rheumatic disease 
must be classified from a large popula-
tion comprising healthy subjects) (62) 
The study design, choice of popula-
tions, and gold standard are completely 
different in terms of conception. Nev-
ertheless, many sets of criteria were 
developed as classification criteria for 
clinical research but are widely used as 
diagnostic criteria. 
The ACR has elected to focus on classi-
fication rather than on diagnosis. Most 
of the criteria sets currently endorsed 
by the ACR/EULAR were developed 
using a two-step methodology. First, 
data from patient cohorts were scruti-
nised to identify the factors most likely 
to be of interest as classification criteria 
and to assign weights to each of them. 

Then, based on the findings from this 
first step and on a literature review, a 
panel of experts developed and ranked 
clinical case scenarios using multi-
ple combinations of clinical features, 
with the assistance of decision analy-
sis software. A panel of specialists then 
determined which patients they would 
treat with a disease-modifying anti-
rheumatic drug (such as methotrexate 
in rheumatoid arthritis) or enroll in a 
clinical trial of an investigational bio-
logic therapy.

How will bioinformatics help 
classify multifactorial inflammatory 
rheumatoid diseases?
In everyday practice, rheumatologists 
use synovial fluid analysis when avail-
able as a diagnostic tool. Otherwise, a 
combination of clinical findings may 
be sufficient to determine the diagnosis 
(Fi.g 1a). If not, investigations are car-
ried out. 
The number of items – subjective symp-
toms, physical findings, and test results 
– needed to establish a diagnosis of 
IRD can be very high. In this situation, 
software based on classification criteria 
could be useful (Fig. 1b). Advances in 
research are considerably expanding 
the amount of information available on 
IRDs. Thus, when devising classifica-
tion systems, the omics or big data ap-
proach is becoming relevant (63). 

Bioinformatics techniques
Bioinformatics techniques can im-
prove the performance of classification 
systems because they can simultane-
ously consider large numbers of items 
and the links between them (Fig. 1c). 
A bioinformatics technique highly rel-
evant to the development of disease 
classification systems is cluster analy-
sis, which is an unsupervised machine 
learning technique used in artificial 
intelligence. Unlabeled items are fed 
to an algorithm, which identifies clus-
ters of items connected in some way to 
one another. When used to devise IRD 
classifications, the items are laboratory 
data. It is very important to evaluate 
the quality of these data. Data curation 
methods have been developed to tackle 
this problem for specific pathologies 
such as Sjögren’s syndrome (64). Pa-
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tients who have the same cluster of 
items are likely to share pathogenic bi-
ological pathways, irrespective of their 
diagnosis. Clustering analysis is at the 
heart of classification projects for com-
plex diseases, such as the multicentre 
study PRECISEADS involving 12 Eu-
ropean countries and investigating six 
systemic autoimmune IRDs (65). 
The omics approach provides high-
dimensional model representations 
of patients.  Classical clustering tech-
niques such as k-means algorithms are 
ill-suited to exploring high-dimensional 
models. Dimension reduction via selec-
tion of the most informative features is 
therefore required. An increasing num-
ber of algorithms is becoming available 
for dimension reduction (66-68) by se-
lecting the most informative inhabitants 
of the dataset jungle and using them to 
build a more manageable model. 

Injecting knowledge into the 
algorithms
Relying solely on big data to devise 
classification systems raises several 
challenges, notably when dealing with 
high-dimensional models. More spe-
cifically, overfitting is likely to occur 
when the number of item types in the 
dataset is considerably larger than the 
number of patients. Overfitting can be 
prevented by feeding well-established 
knowledge about the items into the al-
gorithm. Such knowledge is available 
in online databases (e.g. KEGG Path-
way, PubMed, and InnateDB). Appli-
cation programming interfaces can be 
used to develop software that partially 
automates knowledge retrieval from 
the databases. Once established knowl-
edge has been supplied, the algorithm 
can automatically assess whether a re-
lationship it has detected between two 
dataset items is scientifically plausible, 
has been described previously, and/or 
has been validated experimentally. This 
approach was applied in a recent study 
to perform a systematic literature re-
view by rapidly screening a very large 
number of publications using a list of 
keywords and the natural language pro-
cessing approach (69).

Artificial intelligence (AI)
As advances in research produce ever 

larger data sets and uncovers ever more 
complex pathogenic mechanisms, at-
tention is turning toward artificial in-
telligence as an analysis tool (70). AI 
techniques can identify highly complex 
links among variables within a huge 
dataset. Of the many available AI al-
gorithms used for unsupervised learn-
ing, generative adversarial networks 
seem particularly promising as a tool 
for devising classification systems. In 
the generative adversarial network ap-
proach, two neural networks are made 
to compete against each other in a zero-
sum game. One network generates new 
data instances, which are then evaluat-
ed as valid or not by the other network. 
This strategy increases the efficiency 
with which the algorithm can detect 
complex structures within a dataset 
(71). AI techniques applied to big data, 
combined with established knowledge, 
can be expected to become the refer-
ence standard for creating classification 
systems in the near future.  

Conclusion
The clinical acumen of the physician 
remains the best guarantee of an ac-
curate diagnosis. Nevertheless, classi-
fication criteria, although designed as 
tools to obtain uniform patient cohorts 
for research, are used as diagnostic ad-
juncts. Exclusion criteria designed to 
eliminate differential diagnoses have 
emerged as similarly or perhaps more 
useful compared to the presence of 
disease features. Both the criteria used 
in classification systems and the tools 
applied to analyse them are evolving 
rapidly in the wake of technological 
progress. In the near future, the use of 
advanced machine learning approaches 
can be expected to produce new clas-
sifications based not only on clinical 
phenotypes, but also on complex bio-
logical profiles and shared sensitivities 
to targeted treatments. Specific biologi-
cal pathways defining patient clusters 
will no doubt be identified, supplying 
new insights into the mechanisms in-
volved in each clinical phenotype and 
potentially providing information about 
which type of treatment is most likely 
to succeed. Thus, better classification 
systems should translate into better pa-
tient outcomes.
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Key messages
•	 Many reasons (new tests, new treat-

ments...) explain modification of 
classification criteria over time.

•	 In the future, classification criteria 
could be built on the basis of treat-
ment efficacy or target.

•	 An up-to-date summary of classifi-
cation criteria may help  clinicians, 
biologists and bioinformaticians 
working with clinicians in a context 
of early or unclassified arthritis.
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