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Abstract
Objective

Synovial fluid (SF) accumulates extensively in joints of individuals with rheumatoid arthritis (RA), which reflects the patho-
logical state of the synovium and disease activity. This study applied quasi-targeted liquid chromatography-mass spectrom-

etry/mass spectrometry, an advanced metabolomics technique, to find characteristic metabolisms in RA. 

Methods
SF samples from the patients (n=20) were collected and examined using the metabolomic technique. SF samples from 

patients with osteoarthritis (OA) (n=20) were used as controls. 

Results
Four hundred and seventy-nine variable metabolites were detected, and 250 of these metabolites were identified by 

searching the Human Metabolome Database (HMDB) and a self-constructed information list of possible metabolites. 
S-plot and volcano plot analysis detected 22 metabolites with differential levels in RA SF compared with those in OA SF. 

With these 22 candidate metabolites, pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database detected upregulation of pyrimidine metabolism and purine metabolism, and downregulation of fatty 

acid biosynthesis and unsaturated fatty acid biosynthesis in RA SF. Receiver operating characteristic (ROC) analysis and 
logistic regression models detected increased levels of guaiacol, naringenin, phenylpropanolamine and vanillylmandelic 
acid in RA SF. Furthermore, the naringenin level showed positive correlation with rheumatic factor (RF) and anti-cyclic 

citrillinated peptides (anti-CCP) levels. 

Conclusion
Our study suggests disturbed pyrimidine metabolism, purine metabolism, fatty acid biosynthesis and unsaturated fatty 

acid biosynthesis, as well as increased naringenin level, are characteristic metabolisms in RA.
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Introduction
Rheumatoid arthritis (RA) is a chronic 
autoimmune disease with persistent 
synovitis, systemic inflammation and 
autoantibodies that can cause joint 
damage and disability (1). Synovial 
fluid (SF) extensively accumulates in 
synovial junction of individuals with 
RA. SF is the main source of nutrition 
and lubrication for articular cartilage. 
SF directly contacts the joint, therefore 
more directly reflecting the pathologi-
cal state of the synovium and disease 
activity than the blood samples. Thus, 
investigating metabolite changes in SF 
rather than in serum or plasma may be 
very helpful to understand the patho-
genesis and identify biological markers 
in RA (2).
Metabolomics can detect changes in 
small molecular metabolites with high 
throughput, provide information on the 
unique characteristics and physiologi-
cal states of biological systems, and 
thus help to identify new diagnoses, 
prognoses and therapeutic interven-
tion targets in human diseases. Me-
tabolomics can be divided into targeted 
analysis and non-targeted analysis. 
Non-targeted methods based on time-
of-flight (TOF) mass spectrometry have 
the advantages of high analysis flux and 
abundant data information but have de-
fects in data stability, repeatability and 
quantitative linear range (3). Targeted 
analysis was designed based on triple-
quadrupole (TQ) mass spectrometry 
multiple-reaction monitoring (MRM) 
technology and can address the defi-
ciency of non-targeted methods, but 
there are still some deficiencies, such 
as a limited number of targets, and the 
establishment of the method depends 
on standard (STD) substances, which 
is not suitable for large-scale metabolic 
profile analysis (4). The quasi-target-
ed technical scheme combines high-
throughput and unbiased metabolite 
information acquisition of non-targeted 
analysis with high-specificity detection 
and accurate quantification of targeted 
analysis. Therefore, this new technol-
ogy that started in recent years realises 
the simultaneous detection of multiple 
known and unknown metabolite ion tar-
gets in a sample (5). This technique not 
only ensures the coverage and detection 

sensitivity of metabolome information 
but also significantly improves the in-
dices such as linear range and repeat-
ability of data and ensures subsequent 
marker discovery and verification based 
on metabolome data (6, 7).
Nuclear magnetic resonance (NMR) 
and gas chromatography-mass spec-
trometry (GC-MS)-based metabolomics 
had been applied to search for biologi-
cal markers in the SF of individuals 
with RA (8-11). Liquid chromatogra-
phy-mass spectrometry (LC-MS)-based 
non-targeted/targeted metabolomics has 
been used for the discovery of biomark-
ers in the SF of individuals with RA or 
osteoarthritis (OA) (12-14). Non-target-
ed ultraperformance liquid chromatog-
raphy quadruple TOF mass spectrom-
etry had been also applied to analyse SF 
from 10 patients with RA (15). Recent-
ly, However, quasi-targeted LC-MS/MS 
metabolomics, an advanced metabo-
lomics technique, has not been applied 
to screen RA markers in SF. The present 
study used metabolomics to analyse 
changes in small molecular metabolites 
with high throughput in SF samples 
from individuals with RA.
In this study, SF samples were aspi-
rated from 20 patients with RA and 20 
patients with OA, which were analysed 
by LC-MS/MS technique. The pur-
pose of this study was to determine the 
metabolic characteristics using new a 
metabolomic technique, analyse the re-
lationship between differential metabo-
lism and clinical variables, and screen 
possible biomarkers of RA.

Methods
Collection of SFs
RA was diagnosed according to the 
1987 American College of Rheumatol-
ogy (ACR) classification criteria (16) 
and the 2010 ACR/European League 
against Rheumatism (ACR/EULAR) 
classification criteria (17). OA was di-
agnosed according to clinical criteria 
and the Kellgren and Lawrence scale 
(18). SF samples were obtained dur-
ing knee arthroscopy from RA patients 
(n=20) and OA patients (n=20) at The 
Affiliated Hospital of Qingdao Univer-
sity (China) in Qingdao, China. The 
use of SF for research was performed 
under the guidance of the Helsinki Dec-
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laration and approved by the Ethics 
Committee of The Affiliated Hospital 
of Qingdao University (20180901). 
Informed consent was obtained from 
all patients who provided the samples. 
The samples were kept at -80 °C before 
sample preparation. The clinical infor-
mation is provided in Supplementary 
Table S1.

Sample preparation 
OA and RA SF from knee joints were 
aspirated into heparinised tubes and 
were then centrifuged at >2000g for 
5 min. The cell-free SF was decanted 
and frozen at -20°C. A 150-μL aliquot 
of SF samples was added to 430 μL of 
methanol and 20 μL of 2-chloro-l-phe-
nylalanine (0.3 mg/mL) was added. The 
mixtures were vortexed for 1 min, ul-
trasonicated at ice-cold temperature for 
5 min, stored at -20 °C for 30 min, and 
centrifuged at 13,000 rpm for 10 min at 
4 °C. A 450-μL aliquot of the superna-
tant was evaporated in a ryocentrifugal 
concentrator, and 250 μL of an ice-cold 
mixture of methanol and water (1/1, 
v/v) was added. The mixtures were 
vortexed for 30 s and ultrasonicated at 
ice-cold temperature for 2 min. A 200-
μL aliquot of chloroform was added, 
and the mixtures were vortexed for 1 
min, stored at -20°C for 20 min, and 
centrifuged at 13,000 rpm for 10 min at 
4°C. A 180-μL supernatant aliquot was 
transferred to a liquid chromatogra-
phy (LC) vial and stored at -20°C until    
LC-MS analysis.

SF metabolomic profiling 
Randomised and sex-matched SF sam-
ples from RA (n=20) and OA (n=20) 
patients were used for metabolomic pro-
filing by an ACQUITY UPLC I-Class 
system (Waters Corporation, Milford, 
USA) coupled with a VION IMS QTOF 
mass spectrometer (Waters Corporation, 
Milford, USA). The LC flow rate was 
0.4 mL/min, and solvents A (a mixture 
of acetonitrile and 10 mM ammoni-
um acetate (pH=9) (90/10%, v/v)) and B 
(10mM ammonium acetate (pH=9) were 
used. The injection volume was 3 μL, 
and the column temperature was 45°C. 
The solvent B elution gradient was as 
follows: 0 min, 5%; 1.5 min, 25%; 10 
min, 90%; 13 min, 90%; 13.5 min, 5% 

and 14.5 min, 5%. Data acquisition was 
performed in full scan mode (m/z ranges 
from 50 to 1000), and the scan time was 
0.1 s. The capillary voltage was 1.0 kV, 

and the sampling cone voltage was 40 V. 
The source temperature was 120°C. The 
desolation temperature was 550°C, and 
the desolation gas flow was 900 L/h. To 

Fig. 1. Typical base peak intensity chromatograms of SF samples. 
A: Typical base peak ion chromatograms of OA samples. 
B: Typical base peak ion chromatograms of RA samples. 
BPI: base peak ion.
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check the stability of the system, qual-
ity control (QC) samples were injected 
at regular intervals (every 10 samples) 
throughout the analytical run.

Data preprocessing 
and statistical analysis 
Progenesis QI v. 2.3 software (Waters 
Corporation, Milford, USA) was used 
for peak identification, identification 
of quasi-targeted metabolites, peak ex-
traction, peak alignment and quantifi-
cation. The precursor tolerance was 5 
ppm, the product tolerance was 5 ppm 
and the production threshold was 5%. 
Identification of quasi-targeted metabo-
lites was based on STD substances. The 
identification of other non-targeted me-
tabolites was based on accurate mass 
number, secondary fragments and iso-
tope distribution. Qualitative analysis 
was carried out using the HMDB da-
tabase (http://www.hmdb.ca/). Positive 
and negative data were combined to 
obtain combined data, and the obtained 
untargeted data and quasi-targeted data 
were integrated into a data matrix. 
SIMCA software (v. 14.0, Umetrics, 
Umeå, Sweden) was used for orthogo-
nal partial least squares-discriminant 
analysis (OPLS-DA). Differentially 
abundant metabolites were selected 
on the basis of variable importance in 
projection (VIP) from the OPLS-DA, 
p-values from a two-tailed Student’s t-
test (p<0.05), and fold change (FC >2 
or FC <0.5) from a volcano map. Lo-
gistic regression and receiver operating 
characteristic (ROC) curves were used 
to evaluate the predictive accuracy of 
the models.

Statistical analysis 
Two-tailed Student’s t-test were used 
to compare the differences of metabo-
lites data between rheumatoid arthri-
tis patients and osteoarthritis patients. 
Chi-square test and Mann-Whitney 
U-test were used to compare the differ-
ences of clinical data between rheuma-
toid arthritis patients and osteoarthri-
tis patients. Statistical analyses were 
performed using GraphPad Prism 7.0 
(GraphPad, USA) and SPSS software v. 
21.0 (IBM, USA). Data were recorded 
by Mean and SD. p<0.05 were consid-
ered significant.

Results 
Metabolomic profiling by 
LC-MS analysis 
The samples of OA (n=20) and RA sub-
jects (n=20) were analysed to identify 
metabolite biomarkers in RA SF using 
a quasi-metabolomic approach. Typi-
cal base peak ion chromatograms of the 
OA and RA groups are shown in Fig-
ure 1 (A-B). Positive ion mode detected 
240 variables, and negative ion mode 
detected 239 variables. A total of 250 
metabolites of these 479 variables were 
identified after searching the Human 
Metabolome Database (HMDB).
To provide evidence of good quality 
control, use of pooled QC (aliquot of 
each sample pooled together) showed 
the stability of the run and showed 
where they cluster together in PCA 
analysis (Fig. 2A). OPLS-DA, the most 
frequently used multivariate statistical 
method, was used to characterise meta-
bolic disturbances. The quality of the 
OPLS-DA model was assessed by the 
R2Y and Q2, which can indicate the ex-
planation ability and predictive capac-
ity of a model (19). The R2Y and Q2 
of the OPLS-DA model were 0.994 and 
0.771, respectively, indicating that the 
model was stable and reliable. The OA 
score plots of OPLS-DA (red circle) 
were distributed in the P1 component 
direction, and the RA score plots (blue 
box) were separated in the P2 compo-
nent direction, indicating that the model 
could discriminate metabolites between 
the OA and RA groups (Fig. 2B).
To discover potential differentially 
abundant metabolites, volcano plots 
were prepared by analysing FC and 
p-values of t-test results. The volcano 
plots were constructed by plotting the 
log of the FC between RA and OA 
samples on the x-axis (base 2) and the 
log of the p-value on the y-axis (base 
10). Compared with those in the OA 
group samples, the levels of phenyl-
propanolamine, vanillylmandelic acid, 
l-aspartyl-l-phenylalanine, taurourso-
deoxycholic acid, quinolinic acid, guai-
acol, naringenin, cytosine, 1-methyl-
histidine, paraxanthine, deoxyuridine, 
l-fucose, inosine, guanosine, alpha-n-
phenylacetyl-l-glutamine, methionine 
sulfoxide, guanosine monophosphate 
and glutaric acid were significantly el-

evated in RA SF samples. Meanwhile, 
the levels of four metabolites, palmit-
oleic acid, l-3-phenyllactic acid, lin-
oleic acid and n-acetyl-l-aspartic acid, 
were significantly decreased in the RA 
samples (Fig. 2C). To restrict the po-
tential variables, those metabolites with 
features of FC >2 or <0.5 and p<0.05 
were defined as significantly different. 
These 22 annotated metabolites among 
the 250 metabolites had significantly 
changed levels in RA SF (Fig. 2D), and 
the detailed information is also shown 
in Supplementary Table S2.

Pathway analysis of 
metabolic pathways 
Metabolic pathways were analysed with 
these 22 verified differentially abundant 
metabolites with the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) 
pathway database (http://www.genome.
jp/KEGG/pathway.html). To find the 
key pathway most related to differ-
entially abundant metabolites, a bub-
ble chart of enrichment results and a 
KEGG enrichment histogram were 
prepared by analysing the p-value and 
matched metabolite number. Compared 
with those in OA samples, pyrimidine 
metabolism (p=0.00395), purine me-
tabolism (p=0.0136), fatty acid bio-
synthesis (p=0.0297), and unsaturated 
fatty acid biosynthesis (p=0.0356) were 
strikingly disturbed in RA SF samples. 
Levels of cytosine and deoxyuridine 
in pyrimidine metabolism; inosine, 
guanosine and guanosine monophos-
phate levels in purine metabolism were 
significantly higher in RA than in OA, 
whereas levels of palmitoleic acid in 
fatty acid biosynthesis and linoleic acid 
in unsaturated fatty acid biosynthesis 
were significantly lower in RA than in 
OA (Fig. 3A-B).

Correlation between RA clinical 
indices and the validated metabolites 
ROC analysis and logistic regression 
models were used to further examine 
the association between those 22 can-
didates and rheumatoid factor (RF) or 
anti-cyclic citrullinated (anti-CCP) lev-
els with significantly changed levels 
in RA SF. By ROC analysis, an area 
under the curve (AUC) of the ROC 
>0.9 was considered excellent, 0.8–0.9 
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very good, 0.7–0.8 good, 0.6–0.7 aver-
age, and <0.6 poor (20). Among the 22 
candidates, AUC values of naringenin 
(AUC=0.9300, p<0.0001), phenylpro-
panolamine (AUC=0.8425, p=0.0002), 
vanillylmandelic acid (AUC=0.8225, 
p=0.0005) and guaiacol (AUC=0.8225, 
p=0.0005) were higher than 0.8, which 
was considered an excellent diagnostic 
test (Fig. 4 A-D), meanwhile AUC val-
ues of other targeted metabolites were 
<0.8 or p-value were >0.05 (Table I). 
By logistic regression analysis, higher 
levels of naringenin, phenylpropan-
olamine, vanillylmandelic acid and 
guaiacol were found to be significantly 
associated with RA (odds ratio (OR) 
= 1.294 (1.073–1.561), 1.505 (1.142–
1.984), 1.217 (1.065–1.390) and 1.023 
(1.005–1.042), respectively) (Table 

I). Furthermore, levels of naringenin, 
phenylpropanolamine, vanillylman-
delic acid and guaiacol were signifi-
cantly higher in RA SF than in OA SF 
(p=0.0067, 0.0002, 0.0010 and 0.005, 
respectively). Using the optimal cut-
off values, prediction accuracies of the 
above 4 metabolites were 85%, 50%, 
70%, and 60% for RA, respectively 
(Suppl. Fig. S1A and S2A).
A strong correlation was detected for 
naringenin (R2=0.88) with RF value in 
RA SF, while weak correlations were 
detected for vanillylmandelic acid and 
guaiacol (R2=0.4 and 0.47) with the 
serum RF level. No correlation was de-
tected for phenylpropanolamine with 
serum RF in RA SF (p=0.61) (Suppl. 
Fig. S1B and S2B). Additionally, a 
strong correlation was obtained for nar-

ingenin (R2=0.86) and weak correla-
tions for VMA and guaiacol (R2=0.44 
and 0.47) with serum anti-CCP content 
in RA SF. No correlation was observed 
for phenylpropanolamine with the se-
rum anti-CCP level (p=0.66) (Suppl. 
Fig. S1C and S2C).

Discussion
To investigate distinctive metabolisms 
in SF as well as the relative pathogen-
esis in RA, this study performed quasi-
targeted LC-MS/MS-based metabo-
lomic analysis with SF samples from 
individuals with RA. The OPLS-DA 
model was used to characterise the met-
abolic disturbances. Of the 250 metab-
olites that we identified, 22 candidate 
metabolites in SF differed in VIP value, 
FC and p-value between RA and OA. 

Fig. 2. Multivariate statistical analysis of SF samples. 
A: PCA analysis of SF metabolome of OA (blue box), RA (red triangle) and QC (green circle). 
B: Orthogonal partial least-squares-discriminant analysis (OPLS-DA) of SF metabolome of OA (blue box) and RA (green circle). 
C: Volcano plots of statistical significance of metabolite changes between OA and RA. (p<0.05; FC >2). 
D: Heat map of 22 discovered biomarkers in SF samples. FC: fold change.
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With these 22 candidate metabolites, 
pathway analysis demonstrated acti-
vation of pyrimidine metabolism and 
purine metabolism, and suppression of 
fatty acid biosynthesis and unsaturated 
fatty acid biosynthesis in RA SF. Py-
rimidine and purine metabolism belong 
to nucleotide metabolism. Activated 
pyrimidine and purine metabolism had 
been noticed in RA, although there is 
no metabolomic evidence in human 
samples so far. Pharmacological stud-
ies show that methotrexate, a first-line 
drug for RA, can alleviate RA progres-
sion by inhibiting pyrimidine metabo-
lism and purine metabolism (21-24); 
Leflunomide, a selective inhibitor of de 
novo pyrimidine synthesis to alter the 
metabolism of pyrimidines, has been 
successfully used for treating RA and 
psoriatic arthritis for many years (25, 
26); Lapachol, a compound targeting 
pyrimidine metabolism, can amelio-
rate experimental autoimmune arthritis 
(27). A metabolomics study recently 
found altered purine, pyrimidine and 

pentose phosphate metabolisms in rat 
model with collagen II-induced arthri-
tis and suggested that inhibition on the 
nucleic acid synthesis was very helpful 
to RA therapy (28). The above studies 
were consistent with our finding about 
upregulation of pyrimidine and purine 
metabolisms in RA.
Biosynthesis of fatty acids and unsatu-
rated fatty acids plays an important 
role in RA (29-32). The present study 
detected decreased biosynthesis of fat-
ty acids and unsaturated fatty acids in 
RA. This finding was also supported by 
the metabolomic study in CIA model 
(28), although there is no metabolomic 
evidence in human samples so far. 
Pharmacological studies showed that 
eicosapentaenoic acid (EPA) and doco-
sahexaenoic acid (DHA), a representa-
tive substance of n-3 polyunsaturated 
fatty acids (n-3 PUFAs, omega-3), can 
ameliorate disease activity in patients 
with RA (27, 28, 33). A systematic re-
view and meta-analysis found that in-
take of ω-3 polyunsaturated fatty acids 

improved RA therapy in patients (33). 
Monounsaturated fatty acids in the 
Mediterranean diet can suppress RA 
disease activity (34). A recent study 
demonstrated that omega unsaturated 
fatty acids (ω-UFAs) had anti-inflam-
matory effect on collagen-induced ar-
thritis in DBA/1 Mice (35). The above 
studies were consistent with our finding 
about downregulation of fatty acids and 
unsaturated fatty acids in RA. 
ROC analysis and logistic regression 
models were used to further examine the 
association between RA clinical indices 
and these 22 candidate metabolites. 
Phenylpropanolamine, guaiacol and va-
nillylmandelic acid, showed increased 
levels in RA SF. Phenylpropanolamine, 
a risk factor for hemorrhagic stroke, is 
commonly found in appetite suppres-
sants and cough or cold remedies (36). 
However, the role of phenylpropanola-
mine in RA has not yet been reported. 
Guaiacol is a phenolic natural product 
that was isolated from guaiac resin and 
the oxidation of lignin. Guaiacol has 

Fig. 3. Pathway analysis in RA with the verified differentially abundant metabolites. A: Bubble chart of enrichment map. B: KEGG enrichment histogram. 
When the top of the column was lower than the red line (p=0.05), the signal path represented was significant. 
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long been used in clinical trials for RA 
treatment. As early as 1925, Kraiem et 
al. found that intramuscular injection 
of guaiacol dissolved in oil was satis-

factory in nine cases of RA (37). De-
rivatives, cross-coupling of guaiacol 
and sinomenine were more potent than 
guaiacol for the treatment of RA (38). 

An increased level of guaiacol in our 
study could be due to medical residues 
of previous anti-inflammation treat-
ment. Vanillylmandelic acid, one of the 
most important catecholamine metabo-
lites, is commonly used in the diagnosis 
of pheochromocytoma. Urinary vanil-
lylmandelic acid was decreased in ad-
juvant-induced arthritis (AIA) rats (39). 
In contrast, UPLC-LTQ/Orbitrap MS 
with untargeted metabolomics recently 
detected increased levels of vanillyl-
mandelic acid in adjuvant-induced ar-
thritis (AIA) rats (40), which was con-
sistent with the results of our study. We 
suggest that phenylpropanolamine and 
vanillylmandelic acid could be possible 
risk factors for RA, although their role 
in RA needs further exploration. 
The present study not only detected an 
increased level of naringenin in RA SF 
but also demonstrated a positive corre-
lation of naringenin level with RF and 
anti-CCP levels in RA. Naringenin is an 
abundant flavonoid compound in daily 
food and drinks, such as fruits, vegeta-
bles, nuts, coffee, tea and wine, which 
can be more easily absorbed by intes-
tines than other flavonoids (41). Narin-
genin is a well-known immunomodu-
lator that possesses various biological 
activities, such as anti-inflammatory 
activity (42). Zhu et al. also found that 
naringenin can relieve inflammation in 
complete Freund’s adjuvant-induced ar-
thritis by regulating the Bax/Bcl-2 bal-
ance (43). On the other hand, naringenin 
significantly reduces lung metastases 
in mice with pulmonary fibrosis and 
increases their survival by improving 
the immunosuppressive environment 
through down-regulating transforming 
growth factor-beta1 (TGF-β1) and re-
ducing regulatory T cells (Treg cells) 
(44). Naringenin also prevents TGF-β1 
secretion from breast cancer and sup-
presses pulmonary metastasis (45). 
Many studies demonstrated that the 
numbers and function of Treg cells are 
impaired in the disease, but the reason is 
not entirely understood (46, 47). Thus, 
naringenin has possibility to promote 
RA by reducing the numbers of Treg 
cells. TGF-β1 induced CD4+ T cells to 
differentiate into Treg cells (48, 49). 
Interestingly, naringenin has a similar 
chemical structure to oestrogen and has 

Fig. 4. ROC analysis and Logistic regression of 22 candidate metabolites in RA SF. 
A: naringenin, B: phenylpropanolamine, C: vanillylmandelic acid; D: guaiacol. 

Tab. I. ROC analysis and Logistic regression analysis of candidate metabolites.

Metabolites AUC p-value OR (95%CI) p-value

Phenylpropanolamine 0.842 0.0002 1.505  (1.142-1.984) 0.004
Vanillylmandelic acid 0.822 0.0005 1.217  (1.065-1.390) 0.004
L-Aspartyl-L-phenylalanine 0.767 0.0038 1.064  (1.014-1.117) 0.012
Tauroursodeoxycholic acid 0.765 0.0041 1.004  (1.001-1.006) 0.013
Quinolinic acid 0.736 0.0106 1.020  (1.004-1.037) 0.017
Guaiacol 0.822 0.0005 1.023  (1.005-1.042) 0.012
Naringenin 0.93 <0.0001 1.294  (1.073-1.561) 0.007
Cytosine 0.78 0.0024 1.030  (1.004-1.057) 0.025
1-Methylhistidine 0.655 0.0935 1.143  (0.993-1.095) 0.093
Palmitoleic acid 0.662 0.0787 0.991  (0.981-1.001) 0.065
L-3-Phenyllactic acid 0.79 0.0017 0.899  (0.824-0.980) 0.015
Paraxanthine 0.645 0.1167 1.023  (1.000-1.046) 0.049
Linoleic acid 0.617 0.2036 1.000  (0.999-1.000) 0.044
Deoxyuridine 0.64 0.1298 4.953  (0.34-70.94) 0.239
L-Fucose 0.755 0.0058 1.098  (1.000-1.205) 0.051
Inosine 0.627 0.1677 1.002  (1.000-1.004) 0.06
Guanosine 0.612 0.2235 1.006  (0.999-1.014) 0.082
N-Acetyl-L-aspartic acid 0.601 0.2733 0.947  (0.948-1.001) 0.06
α-N-Phenylacetyl-L-glutamine 0.695 0.0349 1.001  (1.000-1.003) 0.062
Methionine sulfoxide 0.705 0.0265 1.049  (0.994-1.108) 0.081
Guanosine monophosphate 0.637 0.1368 1.178  (0.994-1.171) 0.071
Glutaric acid 0.701 0.0294 1.226  (0.963-1.563) 0.099
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an oestrogen-like effect (50). RA has a 
high incidence rate in women, suggest-
ing that oestrogen may play a role in the 
development of the disease (51, 52). Our 
study emphasises that naringenin could 
be a risk factor for RA occurrence.
Some groups had conducted metabolic 
analysis with RA synovial fluids, al-
though they did not apply quasi-targeted 
LC-MS/MS metabolomics. Kim et al. 
analysed SF samples from 38 patients 
with RA, ankylosing spondylitis, Be-
hçet’s disease or gout using gas chro-
matography/time-of-flight mass spec-
trometry (GC/TOF MS). A total of 105 
metabolites were identified from these 
SF samples. These metabolites were 
found to be associated with the urea and 
tricarboxylic acid cycle as well as fatty 
acid and amino acid metabolism (8). 
Yang et al. screened different metabo-
lites in SF samples from 25 RA patients 
and 10 normal subjects using GC/TOF 
MS analysis. A subset of 58 metabo-
lites was identified. The concentration 
of glucose was decreased, and the con-
centration of lactic acid was increased 
in the synovial fluid of RA patients than 
normal subjects (9). Anderson et al. 
identified different metabolites in SF 
of 10 OA and 14 RA patients using 1H 
nuclear magnetic resonance (NMR). A 
total of 32 metabolites showed signifi-
cantly different between OA and RA SF, 
including amino acids, saccharides, nu-
cleotides and soluble lipids. They found 
that metabolites of glycolysis and the 
tricarboxylic acid cycle were lower in 
RA compared to OA (10). Ahn et al. in-
vestigated metabolic perturbation in SF 
from 48 RA patients using gas chroma-
tography/time-of-flight mass spectrom-
etry (GC/TOF MS). They found the 
significant correlation between DAS28-
ESR(3) value and the intensities of 12 
metabolites. The intensities of glyco-
cyamine and indol-3-lactate positively 
correlated with DAS28-ESR(3) value, 
and β-alanine, asparagine, citrate, cy-
ano-L-alanine, leucine, nicotinamide, 
citrulline, methionine, oxoproline, and 
salicylaldehyde negatively correlated 
with DAS28-ESR(3) value. They fur-
ther found 15 pathways that were sig-
nificantly associated with disease activ-
ity in RA and that the higher the disease 
activity, the more amino acid metabolic 

processes were affected (11). Carlson 
et al. analysed the metabolomic pro-
files of synovial fluid from RA (n=3) 
and healthy (n=5) SF samples by LC-
MS analysis. A total of 162 metabolites 
showed significantly different between 
diseased and control. Pathways up-
regulated with disease included ibu-
profen metabolism, glucocorticoid and 
mineralocorticoid metabolism, alpha-
linolenic acid metabolism, and steroid 
hormone biosynthesis, and pathways 
downregulated with disease included 
purine and pyrimidine metabolism, bio-
logical oxidations, arginine and proline 
metabolism, the citrulline-nitric oxide 
cycle, and glutathione metabolism (12). 
Combined with results of ours, signifi-
cant alternation in purine and pyrimi-
dine metabolism, fatty acid and amino 
acid metabolism, glycolysis and the tri-
carboxylic acid cycle were detected by 
the studies using metabolomics method.
In summary, the present study detected 
activation of pyrimidine metabolism 
and purine metabolism, and suppression 
of fatty acid biosynthesis and unsatu-
rated fatty acid biosynthesis in RA SF. 
The study also detected increased lev-
els of phenylpropanolamine, guaiacol, 
vanillylmandelic acid and naringenin. 
Furthermore, the naringenin level has 
a significantly positive correlation with 
RF and anti-CCP levels in RA. The 
above findings may be helpful to un-
derstand the changed metabolism and 
pathogenesis of RA. This study also 
suggests that the application of quasi-
targeted LC-MS/MS can detect more 
metabolic pathways than non-targeted 
ultraperformance LC quadruple TOF 
mass spectrometry in an RA study.
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