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ABSTRACT

Systemic lupus erythematosus (SLE) is
a complex and challenging disorder. At
present, abnormal T cells are consid-
ered to be the key point in the pathogen-
esis of SLE, including the losing central
immune tolerance of self-reactive T
cells in the thymus, breaking of regula-
tory T cell balances, and the overacti-
vation of pro-inflammatory T cells. The
alterations of T-cell receptor proteins
are closely related to these abnormal
changes. Glycosylation is one of the
most ubiquitous steps of protein post-
translational modification. Especially
the modifications of N-glycans and O-
glycans on T-cell surfaces have been
found to regulate apoptosis and down-
stream signalling in SLE. Accordingly,
this review summarises the aberrant
modulate effects of T cell glycosylation
in SLE and provides new insights into
understanding the pathogenesis and
some potential therapeutic targets of
this chronic autoimmune disease.

Introduction

Systemic lupus erythematosus (SLE)
is a chronic autoimmune disease char-
acterised by multiple autoantibody pro-
duction and abnormal immune-related
pathologies (1, 2). This heterogeneous
disease results in variable clinical mani-
festations and involves specific tissue
and organ (3). Gene polymorphisms
and epigenetic modifications provide
the susceptibility for the loss of periph-
eral immune tolerance. Strong evidence
points to the abnormal B cells and the
secretion of autoantibodies as the patho-
genesis centre of SLE (4-7). Some clini-
cal trials indicated that B-cell inhibitor
is a new target for the treatment of SLE
(3,8-10). However, the anti-CD20 mon-
oclonal antibody (Rituximab) failed
to deliver satisfactory clinical effects
in active lupus disease (11, 12), which

demonstrates that other immune path-
ways play an important role in SLE. As
another major category of adaptive im-
munity, the role of T cells in the patho-
genesis of SLE cannot be ignored. T
cells subsets are altered in SLE and se-
cret pro-inflammation cytokines in the
serum. T follicular helper (Tth) cells, as
members of T helper (Th) cells, assist
B cell differentiation by CD40L expres-
sion and other costimulatory factors.
Moreover, Tth cells promote immuno-
globulin production, isotype switching,
and B cell somatic hypermutation in
germinal centre (13) by producing IL-
21, which behaves like a checkpoint for
self-reactive B cells (14, 15). T helper
cell subset producing IL-17 (T,17) is
found in kidneys and skin lesions of pa-
tients with SLE (16, 17). Other T cell
subsets such as double-negative T cells
are considered to be the source of IL-
17, also the pro-inflammation cytokines
like IL-1 and IFN-y, which promote B
cell differentiation and antibody pro-
duction (18, 19). Therefore, T cells play
a crucial role in the pathogenesis of SLE
by communicating with other immune
cells, alerting the expression of recep-
tors on the cell surface and the down-
stream signalling (20).

One of the mechanisms of T cell tol-
erance deficiency is first described
as the abnormal signalling pathways
through the T-cell receptor (TCR) on
the cell surface (21, 22), especially the
interaction between extracellular ma-
trix and their protein ligands (23, 24).
Glycosylation, as the most common
post-translational modification, affects
protein functions, including protein
maturation, enzyme activity, and the
contact between cell and others (cell
or extracellular matrix) (25). Also, gly-
cans display different structures even
on the same protein, which is consid-
ered to reflect the biochemical condi-
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tions of a cell or an organ under the
pressure of stimulus (26). Actually, the
glycoproteins bonded to the TCR take
part in the initial inflammation process
and influence the function of T cells.
For example, the apoptosis mediated
by lectin (one kind of glycoprotein) is
downregulated in proinflammatory T
cells, such as T, 17, which accelerate the
pathogenic cytokines infiltrations (27).
One of the difficulties in understanding
SLE pathogenesis is how T cells alter
their phenotype when contact with vari-
able peptides or cytokines. The studies
of glycoproteins on T cells will open
another gate for a deep understanding
of SLE. In this review, we focus on the
researches about the disturbed glyco-
sylation patterns on T cells and how
they affect the abnormal pathways in
cell signalling responses in SLE.

Glycosylation
— The synthesis of N-glycosylation

and O-glycosylation
Post-translational modifications are
crucial process to ensure the normal
biological function of proteins and li-
pids, which occurs in the endoplasmic
reticulum (ER) and Golgi apparatus of
eukaryotes. Both proteins and lipids,
including sphingolipids, participate in
cell signal transduction via adding vari-
ous lengths sugar chains under the ac-
tion of a series of glycohydrolases and
glycosyltransferases (28). At present,
seventeen types of monosaccharides
and two major types of glycosylation
have been found in mammalian glyco-
conjugates (29).
Protein glycosylation includes N-
glycans, O-glycans and proteogly-
cans (30). N-glycosylation occurs
at Asn(N)-X-Ser/Thr motif that N-
acetylglucosamine is connected to the
nitrogen atom of asparagine residue by
B-1N. This modification is catalysed by
mannosidases, N-acetyl-glucosaminyl-
transferases (Mgat) I, II, IV, and V (31).
Under the action of these enzymes, the
substrate is transferred to the N-X-Ser/
Thr motif and a series of enzymatic re-
actions take place to extend the sugar
chains (32). Finally, the chains are
capped by sialic acid and fucose via the
action of sialytransferases and fucosyl-
transferases, respectively. The complex
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N-glycans sever as ligands of a series of
lectins, including galectin (33), siglecs
(34), and selectins (35), to regulate the
homeostasis of the immune system.
O-glycosylation is the connection be-
tween N-acetylgalactose (GlcNAc)/N-
acetylglucosamine  (GalNAc) and
functional hydroxyl groups catalysed
by Polypeptide N-acetylgalactosami-
nyltransferase (ppGalNAcT), which is
usually linked to serine and threonine
residues to form a structure called Tn
antigen (36). Among the O-glycosylat-
ed proteins, there is a kind of mucin
formed by O-glycosylation residues
and tandem repeats of serine and threo-
nine, which exist on the cell surface and
many secreted proteins (37). It has been
reported that these glycans regulate the
recognition, adhesion, and communi-
cation models when they interact with
lectins in internal environment (37-39).
In this review, we mainly discuss the
research status of N-glycosylation and
O-glycosylation on T cells in patients
with SLE. Glycoconjugates in human
cells are shown in Figure I.

— The biological function of
N-glycosylation and O-glycosylation
In the thymus, thymocytes experience
the negative and positive selection, then
form the single positive peripheral T
cells. Some studies found that the lev-
els of N-glycans are decreasing during
the maturation of thymocytes, suggest-
ing that N-glycans participate in the
development of these immune cells by
regulating the interaction between TCR
and MHC (major histocompatibility
complex) (40). The Mgat is responsible
for synthesis the N-glycan structure on
proteins. The abnormal enzyme activi-
ties hinder the formation of N-glycans,
which will affect recognition and bind-
ing to lectin receptors on the cell sur-
face and cause a series of biological
disorders. It is suggested that N-glycans
participate in glucose metabolism, fat
metabolism, signal transduction and
apoptosis of immune cells in organ-
isms. In Magtl1-deficient mice, varying
degrees of retardation or early postnatal
death were observed due to the lack of a
complete N-glycan sugar chain (41,42).
Some even showed symptoms similar
to those caused by human Magt2 de-

fects such as gastrointestinal, blood and
bone diseases (43). The N-glycans on
the protein are a lattice structure com-
posed of many branches. Each branch
binds precisely to the receptors on
specific cells and produces completely
different physiological effects. For ex-
ample, both Mgatda and Mgat5 are
essential enzymes which make up the
N-glycan antennas (44). The defective
mice of the former showed hyperlipi-
daemia, obesity and insulin resistance,
while the latter showed the opposite
weight loss caused by hypoglycaemia
and hyperinsulinaemia (45, 46). These
studies identified the N-glycan as a key
receptor in regulating cell signal and
biological function.

O-glycosylation stabilises the fold-
ing of peptides or proteins in the ER
and accelerates their secretion, most
of which are functional enzymes(47).
Therefore, O-glycosylation influences
various tissues during the process of
biological development. One study
found that p.Thr192Met could inhibit
the post-translational modification of
matrix receptor by phosphorylated O-
mannosyl glycans, which is common
in muscles and central nervous system,
resulting in muscle nerve symptoms
(48). Stotter BR et al. (49) confirmed
that mucin O-glycosylation plays a very
important role in maintaining podocyte
function. Studies also showed that the
reduced mucin not only directly led
to hyperphosphataemia caused by the
glycosylation of fibroblast growth fac-
tor 23 (FGF23) (50), but also affected
the composition and stability of oral
microorganisms in vitro (51). Even in
Alzheimer’s disease, the reduced O-N-
acetylglucosamine glycosylation was
found to associate with the hyperphos-
phorylated tau protein in neuron cells,
indicating that precise glycosylation
of specific sites is an essential part of
maintaining normal physiological ac-
tivity (52). Similar to N-glycosylation,
O-glycosylation can also bind to extra-
cellular lectins, thus affecting cellular
adhesion and inducing cell apoptosis
(53, 54). The aberrant expression of
glycosyltransferase enzymes promotes
cell growth and metastasis, which play
a critical role in tumour-related diseases
(55). Table I shows the biological simi-
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larities and differences between N-gly-
cosylation and O-glycosylation.

T cells in SLE

SLE is a typical autoimmune disease
caused by immune system overactiva-
tion with excessive production and dep-
osition of autoantibodies (2). Also, it is
a disease that influences together from
the external environment to the internal
environment (56). Adaptive immunity
is still the core process of this disease.
In human adaptive immune responses,
T-cell subsets are the key components
in inducing inflammation and maintain-
ing immune balance (57).

There is a growing body of evidence
to suggest that T cells are the centre in
the pathogenesis of SLE, characterised
by loss of tolerance to autoantigens.
In healthy T cells, the lipid rafts form
when they contact the earliest antigen
signal (58, 59), and important signal
components are recruited into the TCR-
CD3 complex, in which the CD3Cchain
is phosphorylated by Lck kinase. Then
the downstream signals are transmit-
ted by phosphorylated ZAP-70 (60).
In SLE patients, CD3Cchain is found
to significantly decrease and replaced
by the FcR vy chain (61-64) which al-
ter T cell signalling phenotype and lead
to excessive activation of T cells (63,
65). The activation signal is transferred
from the normal ZAP-70 pathway to ty-
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rosine kinase (Syk) (64), causing a high
level of intracellular calcium (Ca>*) (60,
66). On the other hand, activated Syk
pathway attenuates the level of IL-2,
produced by JNK-c-Jun-AP-1 path-
way, and resists gal-1-mediated apop-
tosis (67). The abnormal level of Ca*
promotes the overexpression of CD40
ligand (CD40L) and activates B cells
proliferation (68). As intracellular Ca?*
concentration increased, the high mi-
tochondrial membrane potential drives
mTOR complex 1 and 2 appear oppo-
site content. And T cells differentiate
into T, 1 or T, 17 lineage (69, 70). More-
over, high mitochondrial membrane
potential accelerates the consumption
of ATPs, which leads to cells necrosis
and self-antigens exposure causing a vi-
cious circle(71-73) (Fig. 2).

We observed that the activity of T cells
was much higher in both SLE patients
and mouse lupus models, especially the
activity of phosphokinase 2a (PP2A) in
T cells (56, 74). Increased activation
of PP2A promotes the reconnection
of TCR and decreases the activation
threshold. At the same time, the costim-
ulatory molecules on T cells are el-
evated due to the interaction with other
cells (75). In this state, the level of cell
metabolism, especially the function of
mitochondria, increased rapidly, which
leads to more productions of reactive
oxygen species (ROS) and oxidative

stress (76, 77). The ROS strengthens
the level of intracellular AKT-mTOR
signal and promotes the differentia-
tion of CD4"* T regulatory cells (Tregs)
into T effector cells (Teffs) (78, 79).
Also, the expression of DNA methyl-
transferase (DNMT1) in T cells is in-
hibited by ROS together with PP2A.
The low-level of methylation in CD4*
T cells is beneficial to the prolifera-
tion and functional stability of Tregs.
In contrast, increased cytotoxicity and
up-regulated expression of inflamma-
tory cytokines are shown in CD8* T
cells due to the inhibition of methyla-
tion (80). T-cell glycosylation is gradu-
ally attracting considerable attention in
TCR recognition of antigens and regu-
lation of downstream signals. Despite
we have known that glycosylation is a
key step after translation modification,
there remains a paucity of evidence on
a comprehensive understanding of gly-
cosylation. With the improvement of
detection and analysis technology in
recent years, such as the high-perfor-
mance liquid chromatography (HPLC)
and lectin chip, we have discovered the
modification sites of glycosylation in
different cells. This helps us explore the
pathogenesis in autoimmune diseases
from the perspective of glycosylation.
In the following paragraphs, we will
focus on the current study of glycosyla-
tion on T cells in patients with SLE.
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Table I. The biological similarities and differences between N-glycosylation and O-glycosylation.

N-glycosylation O-glycosylation References
Synthetic position endoplasmic reticulum and golgi endoplasmic reticulum and golgi (30)
Synthetic modified site B-1N of asparagine residue serine/threonine residue (31,36)
Enzymes involved in synthesis a-mannosidases, N-acetyl-glucosaminyltransferases, polypeptide GalNAc transferases (31,35)
P14 galactosytltransferases (f4Gal-Ts), (ppGalNAc-Ts) core 1 al,3
B1,3N-acetylglucosainyltransferases (3GNTs) galactosyltransferase (T-synthase
or C1GalT1)
The distribution position of the mainly on the cell surface on the cell surface and some (30)
mature glycan chains secreted proteins, such as IgA, IgG
Ligands lectins in the environment and some cell surface lectins in the environment (31,33,34)
(35,37-39)

Related physiological processes

immune homeostasis, thymocyte development,
glucose metabolism, fat metabolism, early postnatal
development, cell signal transduction,

cell differentiation

immune homeostasis, neuromuscular
system function, kidney podocyte
function, hyperphosphatemia,

cell differentiation, serve as functional
enzymes

(38-46) (47, 49)

The role of glycosylation in T cells in SLE
— The regulation of N-glycans on
T cells in SLE

Galectin 1 (gal-1) is a member of the
mammalian lectin family bound by
[-galactoside, which can specifically
recognise the N-acetyllactosamine ter-
minal motif on the cell surface and has
immunomodulatory effects (81). The
mainly regulatory mechanism of gal-1
in T cells is to promote the apoptosis of
T, 1 and T, 17 but maintain the function
of T,2 and Tregs (82, 83). The mecha-
nism of T cells apoptosis induced by
gal-1 may be that the extracellular gal-1
binds to a receptor on T cells and trig-
gers the recombination of lipid rafts that
is a key element in regulating signal
transduction. Then it induces tyrosine
phosphorylation which requires func-
tional p5S6Lck and ZAP70 to release
ceramide (84). The ceramide lowers the
expression of Bcl-2 and accelerates mi-
tochondrial depolarisation which initi-
ates caspase independent mitochondrial
apoptotic pathway. Also, this process
activates initiator caspase-9 and effector
caspase-3, resulting in the breakdown
of protein and nuclear DNA in low con-
centration gal-1 (Fig. 3) (85, 86).

Researches have observed that the gal-
1 level is reduced in SLE and results in
diminished function of Tregs (87-89).
Multiple phenomena and hypotheses
explain the effects of gal-1 on T cells in
SLE. Among them, the overactivation
of Teffs leads to insufficient production
of gal-1 and reduces the sensitivity of
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cells to gal-1, which may be related to
the changes of glycosylation on the T-
cell surface. And, the deletion of CD3C
chain leads to the decrease of Lck and
ZAP70 activation, which is the key
component of gal-1-mediated apopto-
sis (89-91).

Another theory said that gal-1 changes
the T cells activation threshold by reduc-
ing the interaction between glycopro-
tein lattices and TCR (92). In the Golgi
apparatus, TCR, together with other
glycoproteins, loads mature N-sugar
chains under the action of mannosidas-
es, N-acetyl-glucosaminyltransferases
(Mgat5) which produced by MGATS
gene. Post-modulated TCR binds to
gal-1 to form a lattice on the cell sur-
face, and T cells need more activation
signals for further activation (93). This
regulatory function has been verified in
Mgat5-knockout mice, a model of spon-
taneous glomerulonephritis and autoim-
mune encephalomyelitis (94).

Toscano et al. proved that different
glycosylation on cell surface can con-
trol the T-cell activation signalling and
delete particular effector T cells. The
expression of glycosyltransferases will
determine the sensitivity of T cells to
lectins (27). Indeed, abnormal glyco-
syltransferase was found to associate
with T cell activation in patients with
SLE. Szabé et al. detected the expres-
sion of the glycosylation and the gly-
cosylases in T cells with SLE and
compared them with healthy control
T cells (95). They found that the bind-

ing amount of activated SLE T cells to
gal-1 was significantly lower than that
of the control group, while other lectins
were no differences. Interestingly, lev-
els of ST3 beta-galactoside alpha-2,3-
sialyltransferase 6 (ST3GAL6) mRNA
in activated T cells of SLE patients were
increased. The ST3GALSG6 is involved in
the process of capping the sialic acid to
the poly-N-acetyllactosamine chain,
which can cleave by the neuraminidase.
The opposite effects of sialytransferas-
es and neuraminidases determine the
form of sialylation on the cell surface.
Therefore, a hypothesis can be conclud-
ed that the resistance to gal-1-mediated
apoptosis of T cells in SLE is caused by
excessive sialylation on the cell surface
(95). One pilot study analysed that the
B-cell sialytransferase/neuraminidase3
ratio was positively correlated with
SLE activity, and the ratio of these two
enzymes on T cells was related to the
levels of complement and antibody in
serum (96). This study suggests that the
abnormality of glycosylation on T cells
may originate from the unbalanced
enzyme activity. Similarly, mice with
a-mannosidase II gene knockout devel-
oped an SLE-like disease. This enzyme
removes mannose from maturing glyco-
conjugates and is essential for the final
formation of complex N-glycan chains
on the surface of mammalian cells. The
a-mannosidase deficiency increases
the number of immature mannose-rich
glycoconjugates, while mannose-rich
glycoconjugates are more common

Clinical and Experimental Rheumatology 2021
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In healthy T cells, the CD3Cchain of TCR-CD3 complex is phosphorylated by Lck when they contact the earliest antigen signal. Then the downstream
signals are transmitted by phosphorylated ZAP-70. In SLE patients, CD3Tchain is decreased and replaced by the FcR vy chain. The activation signal is
transferred from the normal ZAP-70 pathway to Syk, causing a high level of intracellular Ca*". The increased level of Ca®* promotes the overexpression
of CD40L and activates B cells proliferation. At the same time, the high mitochondrial membrane potential which elevated by increased Ca** level drives
mTOR complex 1 and 2 appear opposite content. And T cells differentiate into T, 1 or T, 17 lineage. High mitochondrial membrane potential also accelerates
the consumption of ATPs, which leads to cell necrosis and self-antigens exposure causing a vicious circle.

T-cell receptor; SLE: systemic lupus erythematosus; Lck: lymphocyte-specific protein tyrosine kinase; ZAP-70: Zeta-chain-associated protein kinase 70;
FcR: Fe Receptor; Syk: spleen tyrosine kinase; Ca**: calcium; CD40L: CD40 ligand; mTOR: mammalian target of rapamycin; T,17: T helper 17 cells; T, 1:

T helper 1 cells; ATP: adenosine triphosphate.

in many fungal strains which are eas-
ily identified as non-self-substances to
produce autoimmune responses (97).
The levels/ratios of transferases are re-
lated to disease activity and serological
performance, which is likely to pro-
vide a new marker of SLE to evaluate
disease activity. Nevertheless, we still
need more cohort studies and mouse
experiments to support this mechanism.
In conclusion, genetic defects and ab-
errant expression of enzymes activity
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can explain the abnormal N-glycans
on T cells which caused the decreased
sensitivity to lectins and changed the
downstream signalling. Understandings
in this field of glycobiology in SLE will
enable the development of a variety of
glycan-based therapeutics.

— Effect of core fucosylation

on T cells in SLE
Core fucosylation locates on the cell
surface of T and B cells and plays a

crucial role in the conformation of
TCR (98, 99). It is related to the sever-
ity of SLE and increased on the surface
of CD4* T cells (100). There are two
models to explain how core fucose en-
hances T cell activity (101). The first is
that the increased binding time of TCR
to pMHC (peptide major histocompat-
ibility complex) on B cells or antigen-
presenting cells (APCs) improves the
excitability of T cells. The alternative
is that pMHC induces changes in the
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The extracellular gal-1 binds
to the sialic acid of N-glyco-
protein on T cells receptor and
induces tyrosine phosphoryla-
tion which requires functional
p56Lck and ZAP70, followed
by the release of ceramide.
The ceramide lowers the ex-
pression of Bcl-2 and acceler-
ates mitochondrial depolarisa-
tion. Mitochondrial depolari-
sation initiates caspase-9 and
effector caspase-3, resulting
in the breakdown of protein

and nuclear DNA.

gal-1:  galectin-1; p56Lck:
lymphocyte-specific ~ protein
tyrosine  kinase; ZAP-70:

Zeta-chain-associated protein
kinase 70; Bcl-2: B-cell lym-
phoma 2.

Table II. The role of glycans in T cell biology in SLE.

Glycans Ligands Roles in T cell Abnormal changes in SLE References
N-glycans Galectin-1 promote the apoptosis of Th1 and Th17 unbalanced enzyme activity leads to the (77, 82-84)
abnormal sialic acid and mannose
modification on
maintain the function of Th2 and Tregs N-glycans lattices, (78,87, 88)
the deletion of CD3Cchain
change the T cells activation threshold by MGATS mutation leads to low activation (87)
reducing the interaction between glycoprotein  threshold
lattices and TCR
Core fucosylation ~ pMHC increase binding time of TCR to pMHC on overactivation of fucosyltransferase, (95,97, 98)

B cells or APCs

induce changes in the specific conformation of
the TCR complex and enhance the downstream
cascade signal

overactivation of Mgat5

IL-6 and IL-4 inhibit the C1GalT1 and
Cosmc activity

Amaranth lectin (26,60, 87,99, 100)

(104-108)

O-glycans alteration of T cells subsets and regulation

of cell apoptosis

specific conformation of the TCR com-
plex, resulting in downstream cascade
signal enhancement, such as increased
tyrosine kinase (ZAP70) phosphoryla-
tion (102). Indeed, in the cells of Fut8-
"OT-II (fucosyltransferase deficient)
mice, the junction (TCR-pMHC) be-
tween T cells and B cells are decreased
by a factor of 3.97, proved that core
fucose is the key component of the
connection between TCR and pMHC
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(100). In the EAE (experimental aller-
gic encephalomyelitis) model, the Fut8
"mice have relatively mild symptoms
and are resistant to inducing sensitive T
cells, whereas Mgat5”mice are highly
sensitive. As mentioned above, Mgat5
is involved in the formation of fourth-
order antennae of N-glycan on the cell
surface, and its deficiency reduces the
activation threshold of T lymphocytes
which would lead to autoimmune re-

sponses in vivo. For example, one study
showed that the Mgat5” mice had spon-
taneous leukocyte infiltration in their
kidneys one year after birth, includ-
ing monocyte infiltration and a large
amount of fibrin accumulation, result-
ing in the disappearance of renal vesicle
cavity, which was manifested as auto-
immune-mediated glomerulonephritis
(103). Thus, the glycosylation function
regulated by Fut8 and Mgat5 is quite

Clinical and Experimental Rheumatology 2021



opposite, which indicates the complex-
ity of glycosylation pattern in patients
with SLE. This information may lead
to the creation of a specific enzyme in-
hibitor or agonist to correct the overac-
tive T cell. However, further studies are
needed to prove whether these series of
glycosylation alterations confirmed on
T cells are the initiating pathogenic fac-
tors in SLE.

— Role of O-glycans in T cells in SLE

Previous studies have found that O-
glycans are involved in the alteration
of T cell subsets and regulation of cell
apoptosis in patients with SLE (27, 65,
92, 104). The affinity of galectin be-
tween CD43 or CD45 is determined
by core 1 O-glycans and core 2 O-
glycans which is associated with T cell
activation and adhesion (105, 106).
As explained above, Tn antigen binds
galectin under the action of core 1 f3 1
galactosyltransferase 3 (C1GalT1) and
COSMC (C1GALT1 Specific Chaper-
one 1), a special molecular chaperone,
to form galactose B 1-3GalNAc struc-
ture, which is called core 1 O-glycan.
Ramos-Martinez et al. (107) detected
the expression of mucin O-glycan chain
on T helper cells in peripheral blood
mononuclear cells (PBMCs) of 23 pa-
tients with SLE by flow cytometry.
They found that the expression of O-
glycosylation recognised by amaranth
lectin (ALL) in active SLE patients was
significantly lower than that in inac-
tive SLE patients and healthy controls,
which were consistent with the perfor-
mance of the SLE-like mice (MLR-/pr)
(108, 109). The decrease of core 1 may
be caused by the low level of Tn con-
tents, C1GalT1 or specific molecular
chaperone COSMC (110, 111). How-
ever, a previous study reported that the
contents of Tn were increased on T cells
in patients with SLE, which proved that
the decrease of enzymes or molecular
chaperones was the reason for the re-
duced of core 1 O-glycan (111). The
up-regulation cytokines such as IL-6
and IL-4 inhibited C1GalT1 or Cosmc
activities in patients with active SLE
(112-115). There was a direct evidence
showed that the high expression of IL-4
reduced the later stage of C1GalTl
mRNA transcripts (111). In summary,
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this study suggested that abnormal O-
glycosylation was also involved in the
process of immune system disorders.
However, limited to the number of pa-
tients included in this study, it remains
to be verified whether there are differ-
ences in glycoproteins between SLE
patients and healthy individuals. Table
II summarises the role of glycans in T
cell biology in SLE.

T cell glycosylation as a potential
therapeutic target for SLE

Some studies have aimed to inhibit
specific glycosylation sites against
overactive immune states. SLE-prone
mice (NZB X NZW F1) treated with
recombinant galectin-1 exhibited a
lower production of anti-dsDNA IgG,
a reduction of renal damage, and im-
proved survival rate (116). Also, it was
found that galectin-9 antibody inhibited
the proliferation of T cells and reduced
the release of inflammatory cytokines
(IFN-v, IL-2, IL-10, IL-6, IL-17) when
antibody cultured with PBMCs from
SLE patients in vitro (117). Therefore,
the multiple biology functions of galec-
tins suggest these proteins are valuable
therapeutic targets in SLE; actually,
many galectin antagonists are under de-
velopment (118). Worth noting is that
the level of sialylation on glycoprotein
determines the pattern of immune re-
sponse. Considering the excessive ex-
pression of sialylation on T cell surface
in SLE patients, intervention on sialyla-
tion may help correct immune hyperac-
tivity in SLE (95, 119).

Compared with tumour-related disease,
the glycomedicine researches are far
from enough in SLE. To date, a large
number of glycosylation-targeted treat-
ments have been applied in tumour re-
searches, such as glycoprotein agonists
or inhibitors, chemically modified re-
ceptors (CARs), antibodies or blockers
and vaccine therapeutic (120-127). It is
well established that SLE is a compli-
cated and multiple factor-induced dis-
ease. Moreover, it is not often possible
to analyse the specific glycan structure
in a living cell from SLE patient, except
for removing and purifying glycopro-
tein. Although studies pointed that gly-
cosyltransferase would serve as another
significant therapeutic target, these ex-

periments were only performed in mice
or in vitro cell culture (95, 128). Hence
more efforts should be taken to explore
T cell glycosylation pattern of different
disease states, and the immune micro-
environment component alterations
during T cell migration and prolifera-
tion. Such efforts will further promote
the development of novel therapeutic
for SLE patients.

Conclusions

This review summarises the results of
existing studies on glycosylation of
T cells in patients with SLE and pro-
vides a more systematic understanding
of the possible molecular regulatory
mechanism which may provide direc-
tion for further research. Glycosylation
is mainly divided into two categories,
N-glycans and O-glycans, whose syn-
thesis depend on the catalysis of differ-
ent transferases and cleavage enzymes
in substrates and gradually extend the
sugar chain. Glycans on the cell surface
or on secretory proteins are regulated
by specific lectin ligands for cell-to-
cell adhesion, recognition and immune
homeostasis. N-glycans play a key role
in undergoing positive and negative se-
lection in the thymus. Mice with con-
genital glycosyltransferase deficiency
may develop into serious autoimmune
diseases or death after birth.

The glycosylation on the surface of
T cells showed abnormal in SLE pa-
tients. It was found that the increased
sialylation on the surface of activated
T cells reduced the binding of gal-1 in
the extracellular matrix and resisted the
apoptosis of T,1 and T,17. Moreover,
the expression of core fucosylation is
increased in SLE patients correlated
with disease activity. At present, most
of the studies on glycosylation are
mainly focused on N-glycan, which
means that N-glycan has a more exten-
sive and intimate relation with T cells.
O-glycan is also considered to involve
in the process of T-cell differentiation
and apoptosis, while further researches
need to address the specific regulatory
mechanism.

Most galectins exist in the extracellular
environment and they are convenient
for detection; therefore, the glycosyla-
tion target therapy of T cells in SLE is
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mainly concentrated on the galectin an-
tibody. With the maturity of glycosyla-
tion research tools, glyco-engineering
is gradually applied to the treatment
of diseases (129). Glyco-engineering
includes glycosylation-modified anti-
bodies, glycan synthase or transferase
inhibitors or agonists, glycosylation
modified receptors, etc. Through gly-
can targeted therapy, a certain subset of
abnormal T cells will be corrected, thus
reducing the release of inflammatory
cytokines in patients. Theoretically, it
also reduces the side effects caused by
non-specific treatment effects. Howev-
er, this aspect is not now being exploit-
ed in T cells in SLE. It is hoped that
glyco-engineering might be used to aid
the development of T cell glycosylation
therapeutic target in SLE.

Collectively, the researches of the ab-
normal glycosylation of T cells partly
explain the breakdown of immune tol-
erance in SLE and provide us a new in-
sight about the occurrence and develop-
ment of autoimmune diseases.
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