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ABSTRACT
Systemic lupus erythematosus (SLE) is 
a complex and challenging disorder. At 
present, abnormal T cells are consid-
ered to be the key point in the pathogen-
esis of SLE, including the losing central 
immune tolerance of self-reactive T 
cells in the thymus, breaking of regula-
tory T cell balances, and the overacti-
vation of pro-inflammatory T cells. The 
alterations of T-cell receptor proteins 
are closely related to these abnormal 
changes. Glycosylation is one of the 
most ubiquitous steps of protein post-
translational modification. Especially 
the modifications of N-glycans and O-
glycans on T-cell surfaces have been 
found to regulate apoptosis and down-
stream signalling in SLE. Accordingly, 
this review summarises the aberrant 
modulate effects of T cell glycosylation 
in SLE and provides new insights into 
understanding the pathogenesis and 
some potential therapeutic targets of 
this chronic autoimmune disease.

Introduction
Systemic lupus erythematosus (SLE) 
is a chronic autoimmune disease char-
acterised by multiple autoantibody pro-
duction and abnormal immune-related 
pathologies (1, 2). This heterogeneous 
disease results in variable clinical mani-
festations and involves specific tissue 
and organ (3). Gene polymorphisms 
and epigenetic modifications provide 
the susceptibility for the loss of periph-
eral immune tolerance. Strong evidence 
points to the abnormal B cells and the 
secretion of autoantibodies as the patho-
genesis centre of SLE (4-7). Some clini-
cal trials indicated that B-cell inhibitor 
is a new target for the treatment of SLE 
(3, 8-10). However, the anti-CD20 mon-
oclonal antibody (Rituximab) failed 
to deliver satisfactory clinical effects 
in active lupus disease (11, 12), which 

demonstrates that other immune path-
ways play an important role in SLE. As 
another major category of adaptive im-
munity, the role of T cells in the patho-
genesis of SLE cannot be ignored. T 
cells subsets are altered in SLE and se-
cret pro-inflammation cytokines in the 
serum. T follicular helper (Tfh) cells, as 
members of T helper (Th) cells, assist 
B cell differentiation by CD40L expres-
sion and other costimulatory factors. 
Moreover, Tfh cells promote immuno-
globulin production, isotype switching, 
and B cell somatic hypermutation in 
germinal centre (13) by producing IL-
21, which behaves like a checkpoint for 
self-reactive B cells (14, 15). T helper 
cell subset producing IL-17 (Th17) is 
found in kidneys and skin lesions of pa-
tients with SLE (16, 17). Other T cell 
subsets such as double-negative T cells 
are considered to be the source of IL-
17, also the pro-inflammation cytokines 
like IL-1 and IFN-γ, which promote B 
cell differentiation and antibody pro-
duction (18, 19). Therefore, T cells play 
a crucial role in the pathogenesis of SLE 
by communicating with other immune 
cells, alerting the expression of recep-
tors on the cell surface and the down-
stream signalling (20).
One of the mechanisms of T cell tol-
erance deficiency is first described 
as the abnormal signalling pathways 
through the T-cell receptor (TCR) on 
the cell surface (21, 22), especially the 
interaction between extracellular ma-
trix and their protein ligands (23, 24). 
Glycosylation, as the most common 
post-translational modification, affects 
protein functions, including protein 
maturation, enzyme activity, and the 
contact between cell and others (cell 
or extracellular matrix) (25). Also, gly-
cans display different structures even 
on the same protein, which is consid-
ered to reflect the biochemical condi-
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tions of a cell or an organ under the 
pressure of stimulus (26). Actually, the 
glycoproteins bonded to the TCR take 
part in the initial inflammation process 
and influence the function of T cells. 
For example, the apoptosis mediated 
by lectin (one kind of glycoprotein) is 
downregulated in proinflammatory T 
cells, such as Th17, which accelerate the 
pathogenic cytokines infiltrations (27). 
One of the difficulties in understanding 
SLE pathogenesis is how T cells alter 
their phenotype when contact with vari-
able peptides or cytokines. The studies 
of glycoproteins on T cells will open 
another gate for a deep understanding 
of SLE. In this review, we focus on the 
researches about the disturbed glyco-
sylation patterns on T cells and how 
they affect the abnormal pathways in 
cell signalling responses in SLE.

Glycosylation
– The synthesis of N-glycosylation 
   and O-glycosylation
Post-translational modifications are 
crucial process to ensure the normal 
biological function of proteins and li-
pids, which occurs in the endoplasmic 
reticulum (ER) and Golgi apparatus of 
eukaryotes. Both proteins and lipids, 
including sphingolipids, participate in 
cell signal transduction via adding vari-
ous lengths sugar chains under the ac-
tion of a series of glycohydrolases and 
glycosyltransferases (28). At present, 
seventeen types of monosaccharides 
and two major types of glycosylation 
have been found in mammalian glyco-
conjugates (29). 
Protein glycosylation includes N-
glycans, O-glycans and proteogly-
cans (30). N-glycosylation occurs 
at Asn(N)-X-Ser/Thr motif that N-
acetylglucosamine is connected to the 
nitrogen atom of asparagine residue by 
β-1N. This modification is catalysed by 
mannosidases, N-acetyl-glucosaminyl-
transferases (Mgat) I, II, IV, and V (31). 
Under the action of these enzymes, the 
substrate is transferred to the N-X-Ser/
Thr motif and a series of enzymatic re-
actions take place to extend the sugar 
chains (32). Finally, the chains are 
capped by sialic acid and fucose via the 
action of sialytransferases and fucosyl-
transferases, respectively. The complex 

N-glycans sever as ligands of a series of 
lectins, including galectin (33), siglecs 
(34), and selectins (35), to regulate the 
homeostasis of the immune system. 
O-glycosylation is the connection be-
tween N-acetylgalactose (GlcNAc)/N-
acetylglucosamine (GalNAc) and 
functional hydroxyl groups catalysed 
by Polypeptide N-acetylgalactosami-
nyltransferase (ppGalNAcT), which is 
usually linked to serine and threonine 
residues to form a structure called Tn 
antigen (36). Among the O-glycosylat-
ed proteins, there is a kind of mucin 
formed by O-glycosylation residues 
and tandem repeats of serine and threo-
nine, which exist on the cell surface and 
many secreted proteins (37). It has been 
reported that these glycans regulate the 
recognition, adhesion, and communi-
cation models when they interact with 
lectins in internal environment (37-39). 
In this review, we mainly discuss the 
research status of N-glycosylation and 
O-glycosylation on T cells in patients 
with SLE. Glycoconjugates in human 
cells are shown in Figure I. 

– The biological function of 
   N-glycosylation and O-glycosylation
In the thymus, thymocytes experience 
the negative and positive selection, then 
form the single positive peripheral T 
cells. Some studies found that the lev-
els of N-glycans are decreasing during 
the maturation of thymocytes, suggest-
ing that N-glycans participate in the 
development of these immune cells by 
regulating the interaction between TCR 
and MHC (major histocompatibility 
complex) (40). The Mgat is responsible 
for synthesis the N-glycan structure on 
proteins. The abnormal enzyme activi-
ties hinder the formation of N-glycans, 
which will affect recognition and bind-
ing to lectin receptors on the cell sur-
face and cause a series of biological 
disorders. It is suggested that N-glycans 
participate in glucose metabolism, fat 
metabolism, signal transduction and 
apoptosis of immune cells in organ-
isms. In Magt1-deficient mice, varying 
degrees of retardation or early postnatal 
death were observed due to the lack of a 
complete N-glycan sugar chain (41, 42). 
Some even showed symptoms similar 
to those caused by human Magt2 de-

fects such as gastrointestinal, blood and 
bone diseases (43). The N-glycans on 
the protein are a lattice structure com-
posed of many branches. Each branch 
binds precisely to the receptors on 
specific cells and produces completely 
different physiological effects. For ex-
ample, both Mgat4a and Mgat5 are 
essential enzymes which make up the 
N-glycan antennas (44). The defective 
mice of the former showed hyperlipi-
daemia, obesity and insulin resistance, 
while the latter showed the opposite 
weight loss caused by hypoglycaemia 
and hyperinsulinaemia (45, 46). These 
studies identified the N-glycan as a key 
receptor in regulating cell signal and 
biological function.
O-glycosylation stabilises the fold-
ing of peptides or proteins in the ER 
and accelerates their secretion, most 
of which are functional enzymes(47). 
Therefore, O-glycosylation influences 
various tissues during the process of 
biological development. One study 
found that p.Thr192Met could inhibit 
the post-translational modification of 
matrix receptor by phosphorylated O-
mannosyl glycans, which is common 
in muscles and central nervous system, 
resulting in muscle nerve symptoms 
(48). Stotter BR et al. (49) confirmed 
that mucin O-glycosylation plays a very 
important role in maintaining podocyte 
function. Studies also showed that the 
reduced mucin not only directly led 
to hyperphosphataemia caused by the 
glycosylation of fibroblast growth fac-
tor 23 (FGF23) (50), but also affected 
the composition and stability of oral 
microorganisms in vitro (51). Even in 
Alzheimer’s disease, the reduced O-N-
acetylglucosamine glycosylation was 
found to associate with the hyperphos-
phorylated tau protein in neuron cells, 
indicating that precise glycosylation 
of specific sites is an essential part of 
maintaining normal physiological ac-
tivity (52). Similar to N-glycosylation, 
O-glycosylation can also bind to extra-
cellular lectins, thus affecting cellular 
adhesion and inducing cell apoptosis 
(53, 54). The aberrant expression of 
glycosyltransferase enzymes promotes 
cell growth and metastasis, which play 
a critical role in tumour-related diseases 
(55). Table I shows the biological simi-
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larities and differences between N-gly-
cosylation and O-glycosylation.

T cells in SLE
SLE is a typical autoimmune disease 
caused by immune system overactiva-
tion with excessive production and dep-
osition of autoantibodies (2). Also, it is 
a disease that influences together from 
the external environment to the internal 
environment (56). Adaptive immunity 
is still the core process of this disease. 
In human adaptive immune responses, 
T-cell subsets are the key components 
in inducing inflammation and maintain-
ing immune balance (57).
There is a growing body of evidence 
to suggest that T cells are the centre in 
the pathogenesis of SLE, characterised 
by loss of tolerance to autoantigens. 
In healthy T cells, the lipid rafts form 
when they contact the earliest antigen 
signal (58, 59), and important signal 
components are recruited into the TCR-
CD3 complex, in which the CD3ζchain 
is phosphorylated by Lck kinase. Then 
the downstream signals are transmit-
ted by phosphorylated ZAP-70 (60). 
In SLE patients, CD3ζchain is found 
to significantly decrease and replaced 
by the FcR γ chain (61-64) which al-
ter T cell signalling phenotype and lead 
to excessive activation of T cells (63, 
65). The activation signal is transferred 
from the normal ZAP-70 pathway to ty-

rosine kinase (Syk) (64), causing a high 
level of intracellular calcium (Ca2+) (60, 
66). On the other hand, activated Syk 
pathway attenuates the level of IL-2, 
produced by JNK-c-Jun-AP-1 path-
way, and resists gal-1-mediated apop-
tosis (67). The abnormal level of Ca2+ 
promotes the overexpression of CD40 
ligand (CD40L) and activates B cells 
proliferation (68). As intracellular Ca2+ 
concentration increased, the high mi-
tochondrial membrane potential drives 
mTOR complex 1 and 2 appear oppo-
site content. And T cells differentiate 
into Th1 or Th17 lineage (69, 70). More-
over, high mitochondrial membrane 
potential accelerates the consumption 
of ATPs, which leads to cells necrosis 
and self-antigens exposure causing a vi-
cious circle(71-73) (Fig. 2).
We observed that the activity of T cells 
was much higher in both SLE patients 
and mouse lupus models, especially the 
activity of phosphokinase 2a (PP2A) in 
T cells (56, 74). Increased activation 
of PP2A promotes the reconnection 
of TCR and decreases the activation 
threshold. At the same time, the costim-
ulatory molecules on T cells are el-
evated due to the interaction with other 
cells (75). In this state, the level of cell 
metabolism, especially the function of 
mitochondria, increased rapidly, which 
leads to more productions of reactive 
oxygen species (ROS) and oxidative 

stress (76, 77). The ROS strengthens 
the level of intracellular AKT-mTOR 
signal and promotes the differentia-
tion of CD4+ T regulatory cells (Tregs) 
into T effector cells (Teffs) (78, 79). 
Also, the expression of DNA methyl-
transferase (DNMT1) in T cells is in-
hibited by ROS together with PP2A. 
The low-level of methylation in CD4+ 
T cells is beneficial to the prolifera-
tion and functional stability of Tregs. 
In contrast, increased cytotoxicity and 
up-regulated expression of inflamma-
tory cytokines are shown in CD8+ T 
cells due to the inhibition of methyla-
tion (80). T-cell glycosylation is gradu-
ally attracting considerable attention in 
TCR recognition of antigens and regu-
lation of downstream signals. Despite 
we have known that glycosylation is a 
key step after translation modification, 
there remains a paucity of evidence on 
a comprehensive understanding of gly-
cosylation. With the improvement of 
detection and analysis technology in 
recent years, such as the high-perfor-
mance liquid chromatography (HPLC) 
and lectin chip, we have discovered the 
modification sites of glycosylation in 
different cells. This helps us explore the 
pathogenesis in autoimmune diseases 
from the perspective of glycosylation. 
In the following paragraphs, we will 
focus on the current study of glycosyla-
tion on T cells in patients with SLE.

Fig. 1. Glycoconjugates in human cells. 
Nine major types of monosaccharides attatched to glycoprotein, glycoplipid and glycosaminoglycan.
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The role of glycosylation in T cells in SLE
– The regulation of N-glycans on 
   T cells in SLE
Galectin 1 (gal-1) is a member of the 
mammalian lectin family bound by 
β-galactoside, which can specifically 
recognise the N-acetyllactosamine ter-
minal motif on the cell surface and has 
immunomodulatory effects (81). The 
mainly regulatory mechanism of gal-1 
in T cells is to promote the apoptosis of 
Th1 and Th17 but maintain the function 
of Th2 and Tregs (82, 83). The mecha-
nism of T cells apoptosis induced by 
gal-1 may be that the extracellular gal-1 
binds to a receptor on T cells and trig-
gers the recombination of lipid rafts that 
is a key element in regulating signal 
transduction. Then it induces tyrosine 
phosphorylation which requires func-
tional p56Lck and ZAP70 to release 
ceramide (84). The ceramide lowers the 
expression of Bcl-2 and accelerates mi-
tochondrial depolarisation which initi-
ates caspase independent mitochondrial 
apoptotic pathway. Also, this process 
activates initiator caspase-9 and effector 
caspase-3, resulting in the breakdown 
of protein and nuclear DNA in low con-
centration gal-1 (Fig. 3) (85, 86). 
Researches have observed that the gal-
1 level is reduced in SLE and results in 
diminished function of Tregs (87-89). 
Multiple phenomena and hypotheses 
explain the effects of gal-1 on T cells in 
SLE. Among them, the overactivation 
of Teffs leads to insufficient production 
of gal-1 and reduces the sensitivity of 

cells to gal-1, which may be related to 
the changes of glycosylation on the T-
cell surface. And, the deletion of CD3ζ 
chain leads to the decrease of Lck and 
ZAP70 activation, which is the key 
component of gal-1-mediated apopto-
sis (89-91).
Another theory said that gal-1 changes 
the T cells activation threshold by reduc-
ing the interaction between glycopro-
tein lattices and TCR (92). In the Golgi 
apparatus, TCR, together with other 
glycoproteins, loads mature N-sugar 
chains under the action of mannosidas-
es, N-acetyl-glucosaminyltransferases 
(Mgat5) which produced by MGAT5 
gene. Post-modulated TCR binds to 
gal-1 to form a lattice on the cell sur-
face, and T cells need more activation 
signals for further activation (93). This 
regulatory function has been verified in 
Mgat5-knockout mice, a model of spon-
taneous glomerulonephritis and autoim-
mune encephalomyelitis (94). 
Toscano et al. proved that different 
glycosylation on cell surface can con-
trol the T-cell activation signalling and 
delete particular effector T cells. The 
expression of glycosyltransferases will 
determine the sensitivity of T cells to 
lectins (27). Indeed, abnormal glyco-
syltransferase was found to associate 
with T cell activation in patients with 
SLE. Szabó et al. detected the expres-
sion of the glycosylation and the gly-
cosylases in T cells with SLE and 
compared them with healthy control 
T cells (95). They found that the bind-

ing amount of activated SLE T cells to 
gal-1 was significantly lower than that 
of the control group, while other lectins 
were no differences. Interestingly, lev-
els of ST3 beta-galactoside alpha-2,3-
sialyltransferase 6 (ST3GAL6) mRNA 
in activated T cells of SLE patients were 
increased. The ST3GAL6 is involved in 
the process of capping the sialic acid to 
the poly-N-acetyllactosamine chain, 
which can cleave by the neuraminidase. 
The opposite effects of sialytransferas-
es and neuraminidases determine the 
form of sialylation on the cell surface. 
Therefore, a hypothesis can be conclud-
ed that the resistance to gal-1-mediated 
apoptosis of T cells in SLE is caused by 
excessive sialylation on the cell surface 
(95). One pilot study analysed that the 
B-cell sialytransferase/neuraminidase3 
ratio was positively correlated with 
SLE activity, and the ratio of these two 
enzymes on T cells was related to the 
levels of complement and antibody in 
serum (96). This study suggests that the 
abnormality of glycosylation on T cells 
may originate from the unbalanced 
enzyme activity. Similarly, mice with 
α-mannosidase II gene knockout devel-
oped an SLE-like disease. This enzyme 
removes mannose from maturing glyco-
conjugates and is essential for the final 
formation of complex N-glycan chains 
on the surface of mammalian cells. The 
α-mannosidase deficiency increases 
the number of immature mannose-rich 
glycoconjugates, while mannose-rich 
glycoconjugates are more common 

Table I. The biological similarities and differences between N-glycosylation and O-glycosylation.

N-glycosylation 		  O-glycosylation	 References

Synthetic position	 endoplasmic reticulum and golgi	 endoplasmic reticulum and golgi	 (30)

Synthetic modified site	 β-1N of asparagine residue	 serine/threonine residue	 (31, 36)

Enzymes involved in synthesis	 α-mannosidases, N-acetyl-glucosaminyltransferases, 	 polypeptide GalNAc transferases	 (31, 35)
	 β1,4 galactosytltransferases (β4Gal-Ts), 	 (ppGalNAc-Ts) core 1 α1,3
	 β1,3N-acetylglucosainyltransferases (βGNTs)	 galactosyltransferase (T-synthase 
		  or C1GalT1)

The distribution position of the	 mainly on the cell surface 	 on the cell surface and some 	 (30)
mature glycan chains		  secreted proteins, such as IgA, IgG

Ligands	 lectins in the environment and some cell surface	 lectins in the environment 	 (31, 33, 34) 
			   (35, 37-39) 

Related physiological processes	 immune homeostasis, thymocyte development, 	 immune homeostasis, neuromuscular	 (38-46) (47, 49)
	 glucose metabolism, fat metabolism, early postnatal 	 system function, kidney podocyte
	 development, cell signal transduction, 	 function, hyperphosphatemia,
	 cell differentiation	 cell differentiation, serve as functional 
		  enzymes



893Clinical and Experimental Rheumatology 2021

T cells glycosylation alterations / Y. Long et al.

in many fungal strains which are eas-
ily identified as non-self-substances to 
produce autoimmune responses (97). 
The levels/ratios of transferases are re-
lated to disease activity and serological 
performance, which is likely to pro-
vide a new marker of SLE to evaluate 
disease activity. Nevertheless, we still 
need more cohort studies and mouse 
experiments to support this mechanism. 
In conclusion, genetic defects and ab-
errant expression of enzymes activity 

can explain the abnormal N-glycans 
on T cells which caused the decreased 
sensitivity to lectins and changed the 
downstream signalling. Understandings 
in this field of glycobiology in SLE will 
enable the development of a variety of 
glycan-based therapeutics.

– Effect of core fucosylation 
   on T cells in SLE
Core fucosylation locates on the cell 
surface of T and B cells and plays a 

crucial role in the conformation of 
TCR (98, 99). It is related to the sever-
ity of SLE and increased on the surface 
of CD4+ T cells (100). There are two 
models to explain how core fucose en-
hances T cell activity (101). The first is 
that the increased binding time of TCR 
to pMHC (peptide major histocompat-
ibility complex) on B cells or antigen-
presenting cells (APCs) improves the 
excitability of T cells. The alternative 
is that pMHC induces changes in the 

Fig. 2. Signal pathway alterations in T cells of SLE patients and healthy controls.
In healthy T cells, the CD3ζchain of TCR-CD3 complex is phosphorylated by Lck when they contact the earliest antigen signal. Then the downstream 
signals are transmitted by phosphorylated ZAP-70. In SLE patients, CD3ζchain is decreased and replaced by the FcR γ chain. The activation signal is 
transferred from the normal ZAP-70 pathway to Syk, causing a high level of intracellular Ca2+. The increased level of Ca2+ promotes the overexpression 
of CD40L and activates B cells proliferation. At the same time, the high mitochondrial membrane potential which elevated by increased Ca2+ level drives 
mTOR complex 1 and 2 appear opposite content. And T cells differentiate into Th1 or Th17 lineage. High mitochondrial membrane potential also accelerates 
the consumption of ATPs, which leads to cell necrosis and self-antigens exposure causing a vicious circle.
T-cell receptor; SLE: systemic lupus erythematosus; Lck: lymphocyte-specific protein tyrosine kinase; ZAP-70: Zeta-chain-associated protein kinase 70; 
FcR: Fc Receptor; Syk: spleen tyrosine kinase; Ca2+: calcium; CD40L: CD40 ligand; mTOR: mammalian target of rapamycin; Th17: T helper 17 cells; Th1: 
T helper 1 cells; ATP: adenosine triphosphate.
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specific conformation of the TCR com-
plex, resulting in downstream cascade 
signal enhancement, such as increased 
tyrosine kinase (ZAP70) phosphoryla-
tion (102). Indeed, in the cells of Fut8-

/-OT-II (fucosyltransferase deficient) 
mice, the junction (TCR-pMHC) be-
tween T cells and B cells are decreased 
by a factor of 3.97, proved that core 
fucose is the key component of the 
connection between TCR and pMHC 

(100). In the EAE (experimental aller-
gic encephalomyelitis) model, the Fut8-

/-mice have relatively mild symptoms 
and are resistant to inducing sensitive T 
cells, whereas Mgat5-/-mice are highly 
sensitive. As mentioned above, Mgat5 
is involved in the formation of fourth-
order antennae of N-glycan on the cell 
surface, and its deficiency reduces the 
activation threshold of T lymphocytes 
which would lead to autoimmune re-

sponses in vivo. For example, one study 
showed that the Mgat5-/- mice had spon-
taneous leukocyte infiltration in their 
kidneys one year after birth, includ-
ing monocyte infiltration and a large 
amount of fibrin accumulation, result-
ing in the disappearance of renal vesicle 
cavity, which was manifested as auto-
immune-mediated glomerulonephritis 
(103). Thus, the glycosylation function 
regulated by Fut8 and Mgat5 is quite 

Table II. The role of glycans in T cell biology in SLE.

Glycans	 Ligands	 Roles in T cell	 Abnormal changes in SLE	 References

N-glycans	 Galectin-1	 promote the apoptosis of Th1 and Th17	 unbalanced enzyme activity leads to the 	 (77, 82-84)
			   abnormal sialic acid and mannose 
			   modification on 

		  maintain the function of Th2 and Tregs	 N-glycans lattices,	 (78, 87, 88) 
			   the deletion of CD3ζchain					  
		  change the T cells activation threshold by	 MGAT5 mutation leads to low activation 	 (87)
		  reducing the interaction between glycoprotein	 threshold 
		  lattices and TCR 	  		

Core fucosylation 	 pMHC	 increase binding time of TCR to pMHC on	 overactivation of fucosyltransferase, 	 (95, 97, 98)
		  B cells or APCs	 overactivation of Mgat5	
		  induce changes in the specific conformation of 
		  the TCR complex and enhance the downstream 
		  cascade signal			 

O-glycans	 Amaranth lectin	 alteration of T cells subsets and regulation	 IL-6 and IL-4 inhibit the C1GalT1 and	 (26, 60, 87, 99, 100) 
		  of cell apoptosis	 Cosmc activity	 (104-108)

Fig. 3. The regulatory mech-
anism of gal-1 in T cells. 
The extracellular gal-1 binds 
to the sialic acid of N-glyco-
protein on T cells receptor and 
induces tyrosine phosphoryla-
tion which requires functional 
p56Lck and ZAP70, followed 
by the release of ceramide. 
The ceramide lowers the ex-
pression of Bcl-2 and acceler-
ates mitochondrial depolarisa-
tion. Mitochondrial depolari-
sation initiates caspase-9 and 
effector caspase-3, resulting 
in the breakdown of protein 
and nuclear DNA.
gal-1: galectin-1; p56Lck: 
lymphocyte-specific protein 
tyrosine kinase; ZAP-70: 
Zeta-chain-associated protein 
kinase 70; Bcl-2: B-cell lym-
phoma 2.
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opposite, which indicates the complex-
ity of glycosylation pattern in patients 
with SLE. This information may lead 
to the creation of a specific enzyme in-
hibitor or agonist to correct the overac-
tive T cell. However, further studies are 
needed to prove whether these series of 
glycosylation alterations confirmed on 
T cells are the initiating pathogenic fac-
tors in SLE. 

– Role of O-glycans in T cells in SLE
Previous studies have found that O-
glycans are involved in the alteration 
of T cell subsets and regulation of cell 
apoptosis in patients with SLE (27, 65, 
92, 104). The affinity of galectin be-
tween CD43 or CD45 is determined 
by core 1 O-glycans and core 2 O-
glycans which is associated with T cell 
activation and adhesion (105, 106). 
As explained above, Tn antigen binds 
galectin under the action of core 1 β 1 
galactosyltransferase 3 (C1GalT1) and 
COSMC (C1GALT1 Specific Chaper-
one 1), a special molecular chaperone, 
to form galactose β 1-3GalNAc struc-
ture, which is called core 1 O-glycan. 
Ramos-Martínez et al. (107) detected 
the expression of mucin O-glycan chain 
on T helper cells in peripheral blood 
mononuclear cells (PBMCs) of 23 pa-
tients with SLE by flow cytometry. 
They found that the expression of O-
glycosylation recognised by amaranth 
lectin (ALL) in active SLE patients was 
significantly lower than that in inac-
tive SLE patients and healthy controls, 
which were consistent with the perfor-
mance of the SLE-like mice (MLR-lpr) 
(108, 109). The decrease of core 1 may 
be caused by the low level of Tn con-
tents, C1GalT1 or specific molecular 
chaperone COSMC (110, 111). How-
ever, a previous study reported that the 
contents of Tn were increased on T cells 
in patients with SLE, which proved that 
the decrease of enzymes or molecular 
chaperones was the reason for the re-
duced of core 1 O-glycan (111). The 
up-regulation cytokines such as IL-6 
and IL-4 inhibited C1GalT1 or Cosmc 
activities in patients with active SLE 
(112-115). There was a direct evidence 
showed that the high expression of IL-4 
reduced the later stage of C1GalT1 
mRNA transcripts (111). In summary, 

this study suggested that abnormal O-
glycosylation was also involved in the 
process of immune system disorders. 
However, limited to the number of pa-
tients included in this study, it remains 
to be verified whether there are differ-
ences in glycoproteins between SLE 
patients and healthy individuals. Table 
II summarises the role of glycans in T 
cell biology in SLE.

T cell glycosylation as a potential 
therapeutic target for SLE
Some studies have aimed to inhibit 
specific glycosylation sites against 
overactive immune states. SLE-prone 
mice (NZB X NZW F1) treated with 
recombinant galectin-1 exhibited a 
lower production of anti-dsDNA IgG, 
a reduction of renal damage, and im-
proved survival rate (116). Also, it was 
found that galectin-9 antibody inhibited 
the proliferation of T cells and reduced 
the release of inflammatory cytokines 
(IFN-γ, IL-2, IL-10, IL-6, IL-17) when 
antibody cultured with PBMCs from 
SLE patients in vitro (117). Therefore, 
the multiple biology functions of galec-
tins suggest these proteins are valuable 
therapeutic targets in SLE; actually, 
many galectin antagonists are under de-
velopment (118). Worth noting is that 
the level of sialylation on glycoprotein 
determines the pattern of immune re-
sponse. Considering the excessive ex-
pression of sialylation on T cell surface 
in SLE patients, intervention on sialyla-
tion may help correct immune hyperac-
tivity in SLE (95, 119). 
Compared with tumour-related disease, 
the glycomedicine researches are far 
from enough in SLE. To date, a large 
number of glycosylation-targeted treat-
ments have been applied in tumour re-
searches, such as glycoprotein agonists 
or inhibitors, chemically modified re-
ceptors (CARs), antibodies or blockers 
and vaccine therapeutic (120-127). It is 
well established that SLE is a compli-
cated and multiple factor-induced dis-
ease. Moreover, it is not often possible 
to analyse the specific glycan structure 
in a living cell from SLE patient, except 
for removing and purifying glycopro-
tein. Although studies pointed that gly-
cosyltransferase would serve as another 
significant therapeutic target, these ex-

periments were only performed in mice 
or in vitro cell culture (95, 128). Hence 
more efforts should be taken to explore 
T cell glycosylation pattern of different 
disease states, and the immune micro-
environment component alterations 
during T cell migration and prolifera-
tion. Such efforts will further promote 
the development of novel therapeutic 
for SLE patients.

Conclusions
This review summarises the results of 
existing studies on glycosylation of 
T cells in patients with SLE and pro-
vides a more systematic understanding 
of the possible molecular regulatory 
mechanism which may provide direc-
tion for further research. Glycosylation 
is mainly divided into two categories, 
N-glycans and O-glycans, whose syn-
thesis depend on the catalysis of differ-
ent transferases and cleavage enzymes 
in substrates and gradually extend the 
sugar chain. Glycans on the cell surface 
or on secretory proteins are regulated 
by specific lectin ligands for cell-to-
cell adhesion, recognition and immune 
homeostasis. N-glycans play a key role 
in undergoing positive and negative se-
lection in the thymus. Mice with con-
genital glycosyltransferase deficiency 
may develop into serious autoimmune 
diseases or death after birth.
The glycosylation on the surface of 
T cells showed abnormal in SLE pa-
tients. It was found that the increased 
sialylation on the surface of activated 
T cells reduced the binding of gal-1 in 
the extracellular matrix and resisted the 
apoptosis of Th1 and Th17. Moreover, 
the expression of core fucosylation is 
increased in SLE patients correlated 
with disease activity. At present, most 
of the studies on glycosylation are 
mainly focused on N-glycan, which 
means that N-glycan has a more exten-
sive and intimate relation with T cells. 
O-glycan is also considered to involve 
in the process of T-cell differentiation 
and apoptosis, while further researches 
need to address the specific regulatory 
mechanism.
Most galectins exist in the extracellular 
environment and they are convenient 
for detection; therefore, the glycosyla-
tion target therapy of T cells in SLE is 
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mainly concentrated on the galectin an-
tibody. With the maturity of glycosyla-
tion research tools, glyco-engineering 
is gradually applied to the treatment 
of diseases (129). Glyco-engineering 
includes glycosylation-modified anti-
bodies, glycan synthase or transferase 
inhibitors or agonists, glycosylation 
modified receptors, etc. Through gly-
can targeted therapy, a certain subset of 
abnormal T cells will be corrected, thus 
reducing the release of inflammatory 
cytokines in patients. Theoretically, it 
also reduces the side effects caused by 
non-specific treatment effects. Howev-
er, this aspect is not now being exploit-
ed in T cells in SLE. It is hoped that 
glyco-engineering might be used to aid 
the development of T cell glycosylation 
therapeutic target in SLE.  
 Collectively, the researches of the ab-
normal glycosylation of T cells partly 
explain the breakdown of immune tol-
erance in SLE and provide us a new in-
sight about the occurrence and develop-
ment of autoimmune diseases.
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