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Y. Wang1,2, F. Guo1, Y. Guo1, Y. Lu1, W. Ji1, L. Lin3, W. Chen1, T. Xu1,2, D. Kong3, 
Q. Shen3, Y. Zhu3, P. Liu1, J. Su4, L. Wang4, Y. Li4, P. Gao4, J. Shan3, S. Liu1

1Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; 
2School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 
Nanjing, Jiangsu, China; 3College of Pharmacy, Jiangsu Collaborative Innovation Center of 

Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 
Nanjing, Jiangsu, China; 4Xuzhou Medical University, Xuzhou, Jiangsu, China.

Abstract
Objective

To identify potential lipid biomarkers by studying changes in the blood lipid profile of patients with systemic lupus 
erythematosus (SLE) using lipidomics.

Methods
Serum samples were collected from 115 SLE patients and 115 age- and sex-matched healthy controls (HCs). Lipid profiles 
were assessed using ultrahigh-performance liquid chromatography coupled with Q Exactive spectrometry, and possible 

lipid biomarkers were screened and evaluated by univariate and multivariate analyses.

Results
Metabolic phenotypes related to SLE disease activity index (SLEDAI) scores were detected in the serum of SLE patients, 
and these phenotypes indicated the activity of the disease. Alterations in energy metabolism, fatty acid metabolism and 

other pathways were observed in patients with SLE. Phosphatidylethanolamine (16:0/18:2), lysophosphatidylethanolamine 
(18:0), and acylcarnitine (11:0) can be used as biomarkers for the clinical diagnosis of SLE, and receiver operating 

characteristic (ROC) analysis indicated their effectiveness in diagnosing this disease.

Conclusion
Our study identified serum biomarkers related to disease activity in patients with SLE, providing a basis for its clinical 

diagnosis.
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Introduction
Systemic lupus erythematosus (SLE) 
is a systemic autoimmune disease re-
lated to heredity, sex hormones, infec-
tion and other factors (1). It is estimated 
that the prevalence of SLE is 30–50 
per 100,000 people. Lineage, race and 
nationality have a significant impact 
on the manifestations and severity of 
systemic lupus erythematosus (2, 3). 
Ninety percent of patients are women, 
generally of childbearing age (4). SLE 
has a variety of clinical manifestations, 
including rash, fever, and arthritis; 
organ-threatening complications may 
occur, such as lupus nephritis, autoim-
mune erythrocytopenia or nervous sys-
tem diseases, in severe cases.
SLE is also one of the most heteroge-
neous diseases, which renders diagno-
sis as well as treatment and its efficacy 
challenging. Overall, excessive dam-
age, morbidity and mortality still oc-
cur in SLE (5), indicating an existing 
large medical demand for therapies. 
Despite strong interest in studying the 
pathogenesis of SLE and identifying 
biomarkers, there are few biomarkers 
to date used for diagnosis, evaluating 
disease activity and predicting organ 
damage. In practice, the few markers 
widely used for SLE diagnosis or as-
sessing disease activity are limited to 
antinuclear antibodies, complements 
and several autoantibodies (6). In re-
cent years, several studies on new bio-
markers have been published including 
circular RNAs, beta-2 microglobulin, 
IL-17A and protein deltex-1 (7). With 
the emergence of new technologies, the 
discovery of biomarkers has entered the 
“omics” era. 
Lipids are components of cells and tis-
sues and play an important role in life 
activities. Some studies have shown that 
glycolysis, the tricarboxylic (TCA) cy-
cle, fatty acid oxidation and amino acid 
metabolism are seriously suppressed 
in patients with SLE compared with 
healthy people or those with other rheu-
matic diseases. For example, the levels 
of most amino acids and glycolysis and 
TCA cycle metabolites are reduced in 
patients with SLE, whereas fatty acids 
and markers of oxidative stress are in-
creased (8, 9). Lipidomics is a new area 
of research in which whole lipids are 

systematically analysed. By comparing 
changes in lipid metabolic networks in 
different physiological states, key lipid 
biomarkers involved in metabolic regu-
lation can be identified, ultimately re-
vealing the mechanisms of lipids in var-
ious life processes (10). Lipidomics has 
wide application prospects for the iden-
tification of disease lipid markers and 
diagnosis. In this study, serum lipids 
(including acylcarnitine (ACar), phos-
phatidylcholine (PC), lysophosphati-
dylcholine, phosphatidylethanolamine 
(PE), lysophosphatidylethanolamine 
(LPE), sphingomyelin (SM), triglycer-
ide (TAG)) in patients with SLE were 
detected by ultrahigh-performance liq-
uid chromatography coupled with Q 
Exactive (UPLC-QE) spectrometry. 
The changes in serum lipid metabolism 
suggest that these lipids may be used as 
potential biomarkers of SLE.

Materials and methods
Study populations
This study was approved by the Insti-
tutional Review Board and the Eth-
ics Committee of the First Affiliated 
Hospital of Nanjing University of Tra-
ditional Chinese Medicine (2018NL-
165-02). All volunteers who partici-
pated in the study were informed of 
the use of their blood and gave written 
informed consent.
Between November 2017 and May 2018, 
115 patients with SLE were recruited 
from the Affiliated Hospital of Nanjing 
University of Chinese Medicine. At the 
same time, 115 healthy volunteers from 
the physical examination center of the 
Affiliated Hospital of Nanjing Univer-
sity of Chinese Medicine were selected 
as the control group. The SLE patients 
were included in accordance with the 
classification criteria of systemic lupus 
erythematosus of the American College 
of Rheumatology (ACR).
The inclusion criteria for the study 
were as follows: SLEDAI scores from 
2 to 22 and age 27 to 55 years. All par-
ticipants were Asian and treated at the 
Affiliated Hospital of Nanjing Univer-
sity of Chinese Medicine. There was 
no significant difference in age, sex 
or race between the patients with SLE 
and healthy subjects. Patients with a 
history of other diseases that affect 



1013Clinical and Experimental Rheumatology 2022

Metabolomics research in SLE / Y. Wang et al.

biological indicators and metabolic 
characteristics, such as cardiovascular 
disease, were excluded from the study. 
Serum samples from the SLE patients 
and healthy volunteers were collected 
in procoagulant vessels and stored at 
-80℃ until analysis.

Materials
The materials and chemicals used are 
available in the online supplementary 
file.

Sample preparation 
To 40 μL of serum sample thawed on 
ice, 225 μL ice-cold methanol contain-
ing a mixture of ISs was added and 
vortexed for 10 seconds. Then, the 
sample was mixed with 750 μL cold 
methyl tert butyl ether (MTBE) and 
vortexed for another 10 seconds. The 
mixture was shaken on an orbital mix-
er at 4°C for 10 min, after which 188 
μL of room temperature LC/MS-grade 
water was added and vortexed for 20 
s before centrifuging at 14,000 rcf at 
4℃ for 2 min. The upper phase was 
transferred to fresh tubes and dried in 
a vacuum centrifuge. The upper phase 
lipids were reconstituted with 110 μL 
of methanol:toluene (9:1) for UPLC-
QE MS analysis. To ensure data quality 
for metabolic profiling, pooled quality 
control samples were prepared by mix-
ing equal amounts of serum (10 μL) 
from the 115 patients with SLE and 
115 HCs.

Chromatography and MS
Untargeted lipidomic analysis was 
performed using the Dionex UltiMate 
3000 Ultra-Performance Liquid Chro-
matography (UPLC) system (Santa 
Clara, CA, USA) coupled with a Q 
Exactive mass spectrometer (Thermo 
Fisher Scientific, Waltham, Massachu-
setts, USA) via an electrospray ionisa-
tion (ESI) source.
Lipid separation was carried out using 
a reversed-phase Waters Acquity UPLC 
CSH C18 column (100 mm×2.1 mm, 
1.7 μm) maintained at 60°C by gradi-
ent elution, with a flow rate of 300 
μL/min. The injection volume of each 
sample was 1 μL, as maintained at 4°C 
in an auto sampler. The mobile phase 
consisted of two solvents: 60% ACN 

in water, and isopropanol:ACN (9:1), 
both containing 5 mM ammonium for-
mate and 0.1% formic acid. The lipids 
were separated with the elution gradient 
as follows: 0–4.0 min, 15% B; 4.0–5.0 
min, 15–48% B; 5.0–22.0 min, 48–82% 
B; 22.0–23.0 min, 82-99% B; 23.0–24.0 
min, 99% B; 24.0–24.2 min, 99-15% B; 
24.2–30.0 min, 15% B.
The mass spectrometer was operated 
under positive and negative ion modes 
using a heated ESI source with a spray 
voltage of 3 kV (positive). For the ioni-
sation mode, the sheath gas and auxilia-
ry gas were kept at 45 and 10 (arbitrary 
units), and the capillary temperature 
and heater temperature were 300℃ and 
306℃, respectively. The S-Lens RF 

level was set at 50. The Orbitrap mass 
analyser was performed at a resolv-
ing power of 35,000 in full-scan mode 
(scan range: 150–2000 m/z; automatic 
gain control (AGC) target: 1e6) and of 
175.00 in the top 10 data-dependent 
MS2 mode (stepped normalised col-
lision energy: 20, 40 and 60; injection 
time: 50 ms; isolation window: 1.5 m/z; 
AGC target: 1e5), with a dynamic ex-
clusion setting of 8.0 seconds.

Data analysis 
The raw data from UPLC-QE MS were 
preprocessed by MS-DIAL, then the 
variables were identified by FiehnLab 
database. To reduce the concentration 
difference between samples, the peak 

Table I. Clinical characteristics of the subjects.

Characteristic	 Discovery set (n=153)	 Validation set (n=77)

	 SLE	 HC	 SLE	 HC

Number	 76	 77	 39	 38
Male	 9	 28	 5	 19
Female	 67	 49	 34	 19
Age (years), mean±SD	 42.28	±	12.89	 33.3 ± 7.31	 40.56	±	16.76	 33.73 ± 7.12
Body mass index (kg/m2), mean ± SD	23.49	±	3.13	 —	 21.41	±	3.98	 —
ESR (mm/h), mean (median)	 21.87 	 (13)	 —	 42.93 	 (38.5)	 —
CRP (mg/l), mean (median)	 6.36 	 (2.09)	 —	 17.06 	 (12.9)	 —
SLEDAI, mean±SD	 6.62	±	4.5 	 —	 12.93	±	5.3	 —
Serum creatinine (μmol/l), mean ± SD	 63.43	±	20.71	 —	 77.18	±	45.21	 —
Creatinine (μmol/l), mean ± SD	 57	±	24.43	 —	 68.61	±	40.63	 —
Cholesterol (mmol/l), mean ± SD	 4.44	±	1.27	 —	 4.53	±	0.77	 —
Triglyceride (mmol/l), mean ± SD	 1.55	±	0.81	 —	 1.79	±	0.52	 —
LDL-C (mmol/l), mean ± SD	 2.6	±	0.81	 —	 2.65	±	0.42	 —
HDL-C (mmol/l), mean ± SD	 1.37	±	0.49	 —	 1.26	±	0.45	 —
Positive anti-nRNP/Sm	 71.43%	 —	 91.67%	 —
Positive anti-Sm	 60.00%	 —	 75.00%	 —
Positive anti-dsDNA	 77.78%	 —	 62.50%	 —
Positive anti-SSA	 82.61%	 —	 80.00%	 —
Positive anti-SSB	 33.33%	 —	 15.38%	 —
Positive anti-CentromerB	 33.33%	 —	 25.00%	 —
Positive anti-Histone	 71.43%	 —	 66.67%	 —
Positive anti-Nukleosome	 71.43%	 —	 70.00%	 —
Positive anti-Ribosomale	 76.92%	 —	 75.00%	 —
Positive anti-Ro-52	 86.96%	 —	 80.00%	 —
Positive anti-Scl-70	 0.00%	 —	 0.00%	 —
Positive anti-Jo-1	 0.00%	 —	 0.00%	 —
C3 (g/L), mean ± SD	 0.67	±	0.21	 —	 0.51	±	0.21	 —
C4 (g/L), mean ± SD	 0.14	±	0.07	 —	 0.12	±	0.08	 —
Ig A (g/L), mean ± SD	 3.02	±	1.03	 —	 2.04	±	0.52	 —
Ig G (g/L), mean ± SD	 16.02	±	5.44	 —	 12.48	±	5.39	 —
Ig M (g/L), mean ± SD	 0.91	±	0.56	 —	 0.99	±	0.72	 —
Corticosteroid dose (mg equivalent/day)	 11.93	±	10.20	 —	 31.47	±	29.05	 —
Hydroxychloroquine	 62.26%	 —	 76.67%	 —
Mycophenolate mofetil	 9.43%	 —	 20%	 —
Cyclophosphamide	 3.77%	 —	 40%	 —
Leflunomide	 13.21%	 —	 6.67%	 —
Methotrexate	 1.89%	 —	 6.67%	 —

SLEDAI: systemic lupus erythematosus disease activity index; ESR: Erythrocyte sedimentation rate; 
CRP: C-reactive protein; WBC: white blood cell; PLT: platelet; LDL-C: Low density lipoprotein cho-
lesterol; HDL-C: High density lipoprotein cholesterol; C3: Complement 3; C4: Complement 4; Ig A: 
Immunoglobulin A; Ig G: Immunoglobulin G; Ig M: Immunoglobulin M.
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area of the data was normalised to R, 
features with missing values >80% 
were removed, and the remaining miss-
ing values were replaced by LoDs (1/5 
of the minimum positive value of each 
variable) by MetaboAnalyst 4.0. The 
skewness distribution is more sym-
metrical through normalisation, and we 
carried out univariate and multivariate 
analyses of the determined blood lipids. 
The normalised data were imported into 
SIMCA software (version 14.1; Umet-
rics) for orthogonal partial least squares 
discriminant analysis (OPLS-DA) to 
identify lipid metabolites that contrib-
ute significantly to classification. Vari-
able importance in the projection (VIP) 
was used to select variables accord-
ing to the peak height obtained by the 
OPLS-DA model. We also assessed the 
significance of each lipid by correcting 
the p-values to obtain the false discov-
ery rate (FDR) via the nonparametric 
test. Lipids with VIP >1.0, p<0.05, and 
FDR <0.05 were considered differential 
metabolites.
The candidate lipids were then further 
analysed to identify potential diagnos-
tic biomarkers. Based on these poten-
tial biomarkers, a model was estab-
lished by binary logistic regression and 
receiver operating characteristic curve 
(ROC) analysis using SPSS 25.0 soft-
ware. In the binary logistic regression 
prediction model, forward stepwise re-
gression and the Wald test were used to 
screen altered blood lipids and evaluate 
their significance. The diagnostic ca-
pacity of regression analysis was ana-
lysed and quantified by ROC curves, 
and the area under the ROC curve 
(AUC) was calculated to find the best 
combination of significantly changed 
lipid types. Correlation between these 
lipids and SLEDAI scores were deter-
mined by Spearman correlation analy-
sis to identify biomarkers for SLE.

Results
Basic characteristics of the participants
In this study, 153 participants (76 SLE 
and 77 HCs) were allocated to the dis-
covery set to evaluate candidate bio-
markers; 77 participants (39 SLE and 
38 HCs) were allocated to the valida-
tion set to test the biomarkers identi-
fied. The sex, age and other clinical in-

formation of the patients and HCs are 
summarised in Table I.

Serum lipid profiling of UPLC-QE/MS
The workflow of this study is shown 
in Figure 1. In untargeted lipidomics 
analysis, we examined serum samples 
by positive and negative electrospray 
ionisation (ESI) modes with two in-
jections, and a total of 510 lipids were 
determined. We further applied OPLS-
DA (Fig. 2A) as a multivariate pattern 
analysis model to identify serum lipid 
profile differences between the groups 
in the discovery data set. Without over-
fitting of the model (Fig. 2B), there was 
an obvious separation between the SLE 
and HC groups, indicating a significant 
change in lipid metabolism patterns be-
tween them. According to the statistical 
significance criteria of VIP >1, p<0.05 

and FDR <0.05, 156 lipids with sig-
nificant changes were selected from the 
discovery data set (Supplementary Ta-
ble S1) and compared with the altered 
lipids in the validation data set for fur-
ther screening and verification.

Definition and verification 
of potential biomarkers for SLE
A validation set was used to evaluate 
the reliability of the differential me-
tabolites and define meaningful bio-
markers. The above differential lipids 
were further verified in the validation 
set, and 77 potential biomarkers with 
significant differences between the two 
comparisons (SLE and HCs) were se-
lected (Suppl. Table S2). Moreover, the 
change trend of these biomarkers in the 
validation set was consistent with that 
in the discovery set. Significance anal-

Fig. 1. Study design.

Fig. 2. Identification of potential lipid biomarkers for the diagnosis of SLE. 
A: Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot based on HCs and 
SLE groups in the Discovery Set. Green dot: healthy controls; blue dot: SLE patients. 
B: 200 permutation tests of the OPLS-DA model.
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ysis via random forest and microarray 
was applied for further selection of sig-
nificantly altered lipid metabolites (Fig. 
3A-B), and 15 lipids were retained, as 
shown in Table II. The heatmap of Fig. 
3C and the volcano map of Fig. 3D 
show the relative intensity distribution 
and the significance of the differences 
of these metabolites, respectively.
Subsequently, the above 15 differential 
lipid metabolites were analysed by bi-
nary logic regression using SPSS 25.0. 
The optimal model was constructed by 
the forwarding stepwise optimisation 
algorithm (Wald), and PE (16:0/18:2), 
LPE (18:0) and ACar (11:0) were de-
termined to be reliable lipids in the 
regression model. PE (16:0/18:2) and 
LPE (18:0) levels were significantly 

increased but ACar (11:0) level de-
creased in patients with SLE (Fig. 4). 
The ROC values of the three lipids 
and their combination are provided 
in Figure 5. For SLE and HCs, PE 
(16:0/18:2), LPE (18:0), ACar (11:0) 
and their combination showed AUCs 
of 0.976, 0.962, 0.989 and 1.000, sensi-
tivities of 92.31%, 89.74%, 97.44% and 
100%, and specificities of 100%, 100%, 
97.37% and 100%, respectively.
Next, correlations between PE 
(16:0/18:2), LPE (18:0), ACar (11:0) 
and SLEDAI were determined (Fig.6A-
B-C). According to the latest SLE stag-
ing standard, scores of 0~6, 7~12 and 
>12 are considered mild (or remission), 
moderate and severe disease activity, 
respectively. The results showed that 

there were significant differences in the 
levels of the three biomarkers in differ-
ent disease status of SLE. As shown in 
Figure 6D and E, the combination of 
PE (16:0/18:2), LPE (18:0) and ACar 
(11:0) distinguishes remission SLE 
from active SLE and HCs, with a coin-
cidence rate of 67.92% and 92.06%, re-
spectively. In addition, 0.304 as the cut-
off value can differentiate between ac-
tive SLE and HCs (Fig. 6F). Therefore, 
the combination of PE (16:0/18:2), LPE 
(18:0) and ACar (11:0) is ideal bio-
marker to differentiate between patients 
with SLE and healthy subjects.
It has been reported that antibodies to PE 
(aPE) is related to antiphospholipid anti-
bodies (aPL). Therefore, we performed 
spearman correlation analysis between 

Fig. 3. Lipidomic profiling of serum samples from 15 lipid species that distinguish HCs and SLE. 
A: Significant features identified by random forest. B: The result of the SAM scatter plot of observed scores plotted versus expected scores with a delta value 
of 3.1. Significant lipid species are represented in green. C: A Heatmap of the differential lipid species between HCs and SLE. Brown: increased levels; blue: 
decreased levels. Rows: serum samples; Columns: lipid species. D: Comparison of the abundance of 15 different lipid species. Coloured spots are lipids that 
change significantly. Green: increased levels; orange: decreased levels.
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PE (16:0/18:2) and anticardiolipin anti-
body (ANA) IgG (Suppl. Fig. S1). The 
result shows that PE (16:0/18:2) is as-
sociated with ANA IgG.

Discussion
SLE is a complex autoimmune disease 
with a variety of clinical manifesta-
tions and serological markers that has 

attracted much attention. Although 
the exact pathogenesis of SLE re-
mains unclear, there is much research 
on this disease. At present, markers 
used for SLE diagnosis are limited to 
antinuclear antibodies, anti-ds-DNA 
antibodies, several autoantibodies and 
complements. Therefore, we urgently 
need biomarkers for SLE diagnosis. 

Some previous studies were limited by 
the analysis platform (11) or sample 
size (12, 13), and these types of studies 
cannot well identify a sufficient number 
of biomarkers. Liposomes have shown 
wide application prospects in the iden-
tification of disease lipid markers, diag-
nosis, drug targets and the discovery of 
lead compounds. We used the UPLC-
QE method to conduct a comprehensive 
study of serum lipids in patients with 
SLE using a sample size larger than that 
in previous studies-making the results 
more effective. We screened more than 
510 lipids, identified the types of lipids 
associated with SLE, and verified the 
biomarkers related to disease activity 
in a verification set. It was found that 
levels of serum PE and LPE were sig-
nificantly increased but that ACar was 
decreased in patients with SLE.
Elevated levels of oxidative stress are 
involved in the pathogenesis of SLE. 
Increased oxidative stress leads to ab-
normal lipid metabolism in SLE pa-
tients (14). It increases the levels of oxi-
dised low-density lipoprotein (ox-LDL) 
and proinflammatory cytokines (15), as 
well as damages the function of high-
density lipoprotein (HDL) and induces 
autoimmune response through oxida-
tive modification of autoantibodies 
(16, 17). Oxidative stress contributes 
to cardiovascular disease, which is the 
main cause of morbidity and mortal-
ity of SLE (18). PE is among the most 
abundant phospholipids, second only to 
phosphatidylcholines, in the mamma-
lian cell membrane and play an impor-
tant role in biological processes such as 
apoptosis and cell signal transduction 
(19). The content of PE in mitochon-
dria is significantly higher than that in 
other organelles, and some studies have 
shown that mitochondrial dysfunction 
plays an important role in the patho-
genesis of SLE (20). Mitochondrial 
dysfunction in abnormal immune cells 
of patients with SLE can lead to in-
creased oxidative stress, which in turn 
contributes to abnormal lipid metabo-
lism (21, 22). Oxidised lipids play an 
important signal transduction role in in-
flammation and the immune response. 
Oxidised phospholipids are recognised 
by the immune system and bind to C-
reactive protein (CRP) through IgG and 

Table II. Identified differential lipid metabolites between the SLE and HCs.

Metabolite	 aVIP	 bp-value	 cFDR	 dFC

ACar (11:0)	 2.082 	 <0.001	 <0.001	 0.132 
LPE (18:0)	 2.171 	 <0.001	 <0.001	 2.967 
PE (16:0/18:2)	 2.161 	 <0.001	 <0.001	 5.858 
PE (16:1/22:5)	 2.026 	 <0.001	 <0.001	 3.277 
PE (20:3/20:3)	 2.003 	 <0.001	 <0.001	 3.558 
TAG (12:0/15:0/16:0)	 1.905 	 <0.001	 <0.001	 0.449 
TAG (13:0/14:0/16:1)	 2.004 	 <0.001	 <0.001	 0.435 
TAG (13:0/14:1/16:1)	 1.962 	 <0.001	 <0.001	 0.279 
TAG (14:0/15:0/16:0)	 2.155 	 <0.001	 <0.001	 0.324 
TAG (14:0/15:0/16:1)	 2.053 	 <0.001	 <0.001	 0.454 
TAG (15:0/16:0/16:1)	 2.035 	 <0.001	 <0.001	 0.438 
TAG (15:1/16:1/16:1)	 1.915 	 <0.001	 <0.001	 0.421 
TAG (19:0/19:0/19:1)	 2.001 	 <0.001	 <0.001	 0.541 
TAG (20:1/22:1/22:1)	 1.623 	 <0.001	 <0.001	 0.419 
TAG (22:1/22:1/22:1)	 1.691 	 <0.001	 <0.001	 0.285 

aVIP was obtained from the OPLS-DA model with a threshold of 1.0. bp-values were obtained from 
one-way ANOVA. The value of cFDR was obtained from the adjusted p-value in the metaboanalyst 
4.0. The value of dFC was obtained by comparing those metabolites in patients with SLE with the HCs.
VIP: variable importance in the projection; FC: fold change; FDR: false discovery rate.

Fig. 4. Serum relative intensities of PE (16:0/18:2), LPE (18:0) and ACar (11:0) in the HCs and SLE. 
****p<0.0001.

Fig. 5. Receiver operat-
ing characteristic curve 
analysis (ROC) of PE 
(16:0/18:2), LPE (18:0) 
and ACar (11:0) and 
their combination. 
A: PE (16:0/18:2) 
B: LPE (18:0)
C: ACar (11:0)
AUC: area under the 
curve; CI: confidence 
interval; YI: Youden 
index.
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IgM antibodies, thus activating various 
intracellular signalling mechanisms. In 
addition, the existence of PE has always 
been associated with thrombosis. It has 
been reported that aPE was common in 
patients with SLE (23, 24) and its pres-
ence is also related to thrombosis (25). 
APL are heterogeneous autoantibodies 
that specifically target phospholipid-
binding proteins or their complexes 
with phospholipids. In some cases, aPE 
has been reported to be associated with 
aPL (26, 27). This is consistent with the 
correlation between PE (16:0/18:2) and 
ANA IgG in our results, indicating the 
disorder of lipid metabolism and the 
occurrence of cardiovascular disease 
in patients with SLE. LPE is a haemo-
lytic metabolite of PE. As intercellular 
signalling molecules [28), LPE plays a 
role in the occurrence and development 
of inflammation (29). Our result has 
shown that the level of LPE in patients 
with SLE is increased, which is consist-
ent with that in Changfeng Hu’s study. 
ACar, produced by mitochondria and 
peroxidase enzymes, is an intermediate 

of oxidative catabolism of fatty acids 
and amino acids, mainly transporting 
long-chain fatty acids through the mi-
tochondrial membrane for β-oxidation 
(30). ACar has a role in regulating en-
ergy metabolism, cardiac function, in-
flammation, cellular stress, ion balance 
and membrane permeability (31). Some 
studies have shown that the level of 
ACar in patients with SLE is decreased 
(32, 33), suggesting alteration of the 
fatty acid metabolism pathway. Based 
on the above results, abnormal lipid 
metabolism caused by SLE may induce 
cardiovascular disease.
Our study provides a reference for the 
diagnosis of SLE. Although the sam-
ple size was expanded, there were still 
some shortcomings. All the participants 
were Asian and were from the same re-
search center, which limits the scope of 
application of the experimental results. 
In future studies, multiethnic, cross-
centre verification should be carried out 
to confirm the results.
In conclusion, we used UPLC-QE to 
study serum lipid metabolism in pa-

tients with SLE. The results showed 
that PE and LPE are upregulated and 
ACar downregulated. These lipids are 
risk factors for oxidative stress, fatty 
acid oxidation and energy metabo-
lism disorders in patients with SLE. 
Furthermore, the diagnostic value of 
PE (16:0/18:2), LPE (18:0) and ACar 
(11:0) in SLE was further verified. In 
addition, these three lipids were cor-
related with SLEDAI scores, indicat-
ing that they can not only be used for 
the diagnosis of SLE, but also further 
determine the disease activity of SLE. 
These three lipids may serve as bio-
markers for the clinical diagnosis of 
SLE and have great potential in dis-
tinguishing SLE patients from healthy 
people.
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Fig. 6. Diagnosis of disease activity in systemic lupus erythematosus using PE (16:0/18:2), LPE (18:0) and Acar (11:0). 
A: Spearman correlation analysis between PE (16:0/18:2) and SLEDAI scores. B: Spearman correlation analysis between LPE (18:0) and SLEDAI scores. 
C: Spearman correlation analysis between Acar (11:0) and SLEDAI scores. D: Diagnostic coincidence rate for the comparison between remission vs. active SLE. 
E: Diagnostic coincidence rate for the comparison between remission SLE vs. HCs. F: Diagnostic prediction rate for thecomparison between active SLE 
vs. HC.
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